fetch_impl.hh revision 3327:b2a5cde9ea77
1/*
2 * Copyright (c) 2004-2006 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Kevin Lim
29 *          Korey Sewell
30 */
31
32#include "config/use_checker.hh"
33
34#include "arch/isa_traits.hh"
35#include "arch/utility.hh"
36#include "cpu/checker/cpu.hh"
37#include "cpu/exetrace.hh"
38#include "cpu/o3/fetch.hh"
39#include "mem/packet.hh"
40#include "mem/request.hh"
41#include "sim/byteswap.hh"
42#include "sim/host.hh"
43#include "sim/root.hh"
44
45#if FULL_SYSTEM
46#include "arch/tlb.hh"
47#include "arch/vtophys.hh"
48#include "base/remote_gdb.hh"
49#include "sim/system.hh"
50#endif // FULL_SYSTEM
51
52#include <algorithm>
53
54template<class Impl>
55Tick
56DefaultFetch<Impl>::IcachePort::recvAtomic(PacketPtr pkt)
57{
58    panic("DefaultFetch doesn't expect recvAtomic callback!");
59    return curTick;
60}
61
62template<class Impl>
63void
64DefaultFetch<Impl>::IcachePort::recvFunctional(PacketPtr pkt)
65{
66    warn("DefaultFetch doesn't update its state from a functional call.");
67}
68
69template<class Impl>
70void
71DefaultFetch<Impl>::IcachePort::recvStatusChange(Status status)
72{
73    if (status == RangeChange)
74        return;
75
76    panic("DefaultFetch doesn't expect recvStatusChange callback!");
77}
78
79template<class Impl>
80bool
81DefaultFetch<Impl>::IcachePort::recvTiming(Packet *pkt)
82{
83    fetch->processCacheCompletion(pkt);
84    return true;
85}
86
87template<class Impl>
88void
89DefaultFetch<Impl>::IcachePort::recvRetry()
90{
91    fetch->recvRetry();
92}
93
94template<class Impl>
95DefaultFetch<Impl>::DefaultFetch(Params *params)
96    : mem(params->mem),
97      branchPred(params),
98      decodeToFetchDelay(params->decodeToFetchDelay),
99      renameToFetchDelay(params->renameToFetchDelay),
100      iewToFetchDelay(params->iewToFetchDelay),
101      commitToFetchDelay(params->commitToFetchDelay),
102      fetchWidth(params->fetchWidth),
103      cacheBlocked(false),
104      retryPkt(NULL),
105      retryTid(-1),
106      numThreads(params->numberOfThreads),
107      numFetchingThreads(params->smtNumFetchingThreads),
108      interruptPending(false),
109      drainPending(false),
110      switchedOut(false)
111{
112    if (numThreads > Impl::MaxThreads)
113        fatal("numThreads is not a valid value\n");
114
115    // Set fetch stage's status to inactive.
116    _status = Inactive;
117
118    std::string policy = params->smtFetchPolicy;
119
120    // Convert string to lowercase
121    std::transform(policy.begin(), policy.end(), policy.begin(),
122                   (int(*)(int)) tolower);
123
124    // Figure out fetch policy
125    if (policy == "singlethread") {
126        fetchPolicy = SingleThread;
127        if (numThreads > 1)
128            panic("Invalid Fetch Policy for a SMT workload.");
129    } else if (policy == "roundrobin") {
130        fetchPolicy = RoundRobin;
131        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
132    } else if (policy == "branch") {
133        fetchPolicy = Branch;
134        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
135    } else if (policy == "iqcount") {
136        fetchPolicy = IQ;
137        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
138    } else if (policy == "lsqcount") {
139        fetchPolicy = LSQ;
140        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
141    } else {
142        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
143              " RoundRobin,LSQcount,IQcount}\n");
144    }
145
146    // Size of cache block.
147    cacheBlkSize = 64;
148
149    // Create mask to get rid of offset bits.
150    cacheBlkMask = (cacheBlkSize - 1);
151
152    for (int tid=0; tid < numThreads; tid++) {
153
154        fetchStatus[tid] = Running;
155
156        priorityList.push_back(tid);
157
158        memReq[tid] = NULL;
159
160        // Create space to store a cache line.
161        cacheData[tid] = new uint8_t[cacheBlkSize];
162        cacheDataPC[tid] = 0;
163        cacheDataValid[tid] = false;
164
165        delaySlotInfo[tid].branchSeqNum = -1;
166        delaySlotInfo[tid].numInsts = 0;
167        delaySlotInfo[tid].targetAddr = 0;
168        delaySlotInfo[tid].targetReady = false;
169
170        stalls[tid].decode = false;
171        stalls[tid].rename = false;
172        stalls[tid].iew = false;
173        stalls[tid].commit = false;
174    }
175
176    // Get the size of an instruction.
177    instSize = sizeof(TheISA::MachInst);
178}
179
180template <class Impl>
181std::string
182DefaultFetch<Impl>::name() const
183{
184    return cpu->name() + ".fetch";
185}
186
187template <class Impl>
188void
189DefaultFetch<Impl>::regStats()
190{
191    icacheStallCycles
192        .name(name() + ".icacheStallCycles")
193        .desc("Number of cycles fetch is stalled on an Icache miss")
194        .prereq(icacheStallCycles);
195
196    fetchedInsts
197        .name(name() + ".Insts")
198        .desc("Number of instructions fetch has processed")
199        .prereq(fetchedInsts);
200
201    fetchedBranches
202        .name(name() + ".Branches")
203        .desc("Number of branches that fetch encountered")
204        .prereq(fetchedBranches);
205
206    predictedBranches
207        .name(name() + ".predictedBranches")
208        .desc("Number of branches that fetch has predicted taken")
209        .prereq(predictedBranches);
210
211    fetchCycles
212        .name(name() + ".Cycles")
213        .desc("Number of cycles fetch has run and was not squashing or"
214              " blocked")
215        .prereq(fetchCycles);
216
217    fetchSquashCycles
218        .name(name() + ".SquashCycles")
219        .desc("Number of cycles fetch has spent squashing")
220        .prereq(fetchSquashCycles);
221
222    fetchIdleCycles
223        .name(name() + ".IdleCycles")
224        .desc("Number of cycles fetch was idle")
225        .prereq(fetchIdleCycles);
226
227    fetchBlockedCycles
228        .name(name() + ".BlockedCycles")
229        .desc("Number of cycles fetch has spent blocked")
230        .prereq(fetchBlockedCycles);
231
232    fetchedCacheLines
233        .name(name() + ".CacheLines")
234        .desc("Number of cache lines fetched")
235        .prereq(fetchedCacheLines);
236
237    fetchMiscStallCycles
238        .name(name() + ".MiscStallCycles")
239        .desc("Number of cycles fetch has spent waiting on interrupts, or "
240              "bad addresses, or out of MSHRs")
241        .prereq(fetchMiscStallCycles);
242
243    fetchIcacheSquashes
244        .name(name() + ".IcacheSquashes")
245        .desc("Number of outstanding Icache misses that were squashed")
246        .prereq(fetchIcacheSquashes);
247
248    fetchNisnDist
249        .init(/* base value */ 0,
250              /* last value */ fetchWidth,
251              /* bucket size */ 1)
252        .name(name() + ".rateDist")
253        .desc("Number of instructions fetched each cycle (Total)")
254        .flags(Stats::pdf);
255
256    idleRate
257        .name(name() + ".idleRate")
258        .desc("Percent of cycles fetch was idle")
259        .prereq(idleRate);
260    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
261
262    branchRate
263        .name(name() + ".branchRate")
264        .desc("Number of branch fetches per cycle")
265        .flags(Stats::total);
266    branchRate = fetchedBranches / cpu->numCycles;
267
268    fetchRate
269        .name(name() + ".rate")
270        .desc("Number of inst fetches per cycle")
271        .flags(Stats::total);
272    fetchRate = fetchedInsts / cpu->numCycles;
273
274    branchPred.regStats();
275}
276
277template<class Impl>
278void
279DefaultFetch<Impl>::setCPU(O3CPU *cpu_ptr)
280{
281    DPRINTF(Fetch, "Setting the CPU pointer.\n");
282    cpu = cpu_ptr;
283
284    // Name is finally available, so create the port.
285    icachePort = new IcachePort(this);
286
287#if USE_CHECKER
288    if (cpu->checker) {
289        cpu->checker->setIcachePort(icachePort);
290    }
291#endif
292
293    // Schedule fetch to get the correct PC from the CPU
294    // scheduleFetchStartupEvent(1);
295
296    // Fetch needs to start fetching instructions at the very beginning,
297    // so it must start up in active state.
298    switchToActive();
299}
300
301template<class Impl>
302void
303DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
304{
305    DPRINTF(Fetch, "Setting the time buffer pointer.\n");
306    timeBuffer = time_buffer;
307
308    // Create wires to get information from proper places in time buffer.
309    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310    fromRename = timeBuffer->getWire(-renameToFetchDelay);
311    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<unsigned> *at_ptr)
318{
319    DPRINTF(Fetch, "Setting active threads list pointer.\n");
320    activeThreads = at_ptr;
321}
322
323template<class Impl>
324void
325DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *fq_ptr)
326{
327    DPRINTF(Fetch, "Setting the fetch queue pointer.\n");
328    fetchQueue = fq_ptr;
329
330    // Create wire to write information to proper place in fetch queue.
331    toDecode = fetchQueue->getWire(0);
332}
333
334template<class Impl>
335void
336DefaultFetch<Impl>::initStage()
337{
338    // Setup PC and nextPC with initial state.
339    for (int tid = 0; tid < numThreads; tid++) {
340        PC[tid] = cpu->readPC(tid);
341        nextPC[tid] = cpu->readNextPC(tid);
342#if ISA_HAS_DELAY_SLOT
343        nextNPC[tid] = cpu->readNextNPC(tid);
344#endif
345    }
346}
347
348template<class Impl>
349void
350DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
351{
352    unsigned tid = pkt->req->getThreadNum();
353
354    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n",tid);
355
356    // Only change the status if it's still waiting on the icache access
357    // to return.
358    if (fetchStatus[tid] != IcacheWaitResponse ||
359        pkt->req != memReq[tid] ||
360        isSwitchedOut()) {
361        ++fetchIcacheSquashes;
362        delete pkt->req;
363        delete pkt;
364        return;
365    }
366
367    memcpy(cacheData[tid], pkt->getPtr<uint8_t *>(), cacheBlkSize);
368    cacheDataValid[tid] = true;
369
370    if (!drainPending) {
371        // Wake up the CPU (if it went to sleep and was waiting on
372        // this completion event).
373        cpu->wakeCPU();
374
375        DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
376                tid);
377
378        switchToActive();
379    }
380
381    // Only switch to IcacheAccessComplete if we're not stalled as well.
382    if (checkStall(tid)) {
383        fetchStatus[tid] = Blocked;
384    } else {
385        fetchStatus[tid] = IcacheAccessComplete;
386    }
387
388    // Reset the mem req to NULL.
389    delete pkt->req;
390    delete pkt;
391    memReq[tid] = NULL;
392}
393
394template <class Impl>
395bool
396DefaultFetch<Impl>::drain()
397{
398    // Fetch is ready to drain at any time.
399    cpu->signalDrained();
400    drainPending = true;
401    return true;
402}
403
404template <class Impl>
405void
406DefaultFetch<Impl>::resume()
407{
408    drainPending = false;
409}
410
411template <class Impl>
412void
413DefaultFetch<Impl>::switchOut()
414{
415    switchedOut = true;
416    // Branch predictor needs to have its state cleared.
417    branchPred.switchOut();
418}
419
420template <class Impl>
421void
422DefaultFetch<Impl>::takeOverFrom()
423{
424    // Reset all state
425    for (int i = 0; i < Impl::MaxThreads; ++i) {
426        stalls[i].decode = 0;
427        stalls[i].rename = 0;
428        stalls[i].iew = 0;
429        stalls[i].commit = 0;
430        PC[i] = cpu->readPC(i);
431        nextPC[i] = cpu->readNextPC(i);
432#if ISA_HAS_DELAY_SLOT
433        nextNPC[i] = cpu->readNextNPC(i);
434        delaySlotInfo[i].branchSeqNum = -1;
435        delaySlotInfo[i].numInsts = 0;
436        delaySlotInfo[i].targetAddr = 0;
437        delaySlotInfo[i].targetReady = false;
438#endif
439        fetchStatus[i] = Running;
440    }
441    numInst = 0;
442    wroteToTimeBuffer = false;
443    _status = Inactive;
444    switchedOut = false;
445    interruptPending = false;
446    branchPred.takeOverFrom();
447}
448
449template <class Impl>
450void
451DefaultFetch<Impl>::wakeFromQuiesce()
452{
453    DPRINTF(Fetch, "Waking up from quiesce\n");
454    // Hopefully this is safe
455    // @todo: Allow other threads to wake from quiesce.
456    fetchStatus[0] = Running;
457}
458
459template <class Impl>
460inline void
461DefaultFetch<Impl>::switchToActive()
462{
463    if (_status == Inactive) {
464        DPRINTF(Activity, "Activating stage.\n");
465
466        cpu->activateStage(O3CPU::FetchIdx);
467
468        _status = Active;
469    }
470}
471
472template <class Impl>
473inline void
474DefaultFetch<Impl>::switchToInactive()
475{
476    if (_status == Active) {
477        DPRINTF(Activity, "Deactivating stage.\n");
478
479        cpu->deactivateStage(O3CPU::FetchIdx);
480
481        _status = Inactive;
482    }
483}
484
485template <class Impl>
486bool
487DefaultFetch<Impl>::lookupAndUpdateNextPC(DynInstPtr &inst, Addr &next_PC,
488                                          Addr &next_NPC)
489{
490    // Do branch prediction check here.
491    // A bit of a misnomer...next_PC is actually the current PC until
492    // this function updates it.
493    bool predict_taken;
494
495    if (!inst->isControl()) {
496#if ISA_HAS_DELAY_SLOT
497        Addr cur_PC = next_PC;
498        next_PC  = cur_PC + instSize;      //next_NPC;
499        next_NPC = cur_PC + (2 * instSize);//next_NPC + instSize;
500        inst->setPredTarg(next_NPC);
501#else
502        next_PC = next_PC + instSize;
503        inst->setPredTarg(next_PC);
504#endif
505        return false;
506    }
507
508    int tid = inst->threadNumber;
509#if ISA_HAS_DELAY_SLOT
510    Addr pred_PC = next_PC;
511    predict_taken = branchPred.predict(inst, pred_PC, tid);
512
513    if (predict_taken) {
514        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be true.\n", tid);
515    } else {
516        DPRINTF(Fetch, "[tid:%i]: Branch predicted to be false.\n", tid);
517    }
518
519    if (predict_taken) {
520        next_PC = next_NPC;
521        next_NPC = pred_PC;
522
523        // Update delay slot info
524        ++delaySlotInfo[tid].numInsts;
525        delaySlotInfo[tid].targetAddr = pred_PC;
526        DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) to process.\n", tid,
527                delaySlotInfo[tid].numInsts);
528    } else { // !predict_taken
529        if (inst->isCondDelaySlot()) {
530            next_PC = pred_PC;
531            // The delay slot is skipped here if there is on
532            // prediction
533        } else {
534            next_PC = next_NPC;
535            // No need to declare a delay slot here since
536            // there is no for the pred. target to jump
537        }
538
539        next_NPC = next_NPC + instSize;
540    }
541#else
542    predict_taken = branchPred.predict(inst, next_PC, tid);
543#endif
544
545    ++fetchedBranches;
546
547    if (predict_taken) {
548        ++predictedBranches;
549    }
550
551    return predict_taken;
552}
553
554template <class Impl>
555bool
556DefaultFetch<Impl>::fetchCacheLine(Addr fetch_PC, Fault &ret_fault, unsigned tid)
557{
558    Fault fault = NoFault;
559
560#if FULL_SYSTEM
561    // Flag to say whether or not address is physical addr.
562    unsigned flags = cpu->inPalMode(fetch_PC) ? PHYSICAL : 0;
563#else
564    unsigned flags = 0;
565#endif // FULL_SYSTEM
566
567    if (cacheBlocked || isSwitchedOut() || (interruptPending && flags == 0)) {
568        // Hold off fetch from getting new instructions when:
569        // Cache is blocked, or
570        // while an interrupt is pending and we're not in PAL mode, or
571        // fetch is switched out.
572        return false;
573    }
574
575    // Align the fetch PC so it's at the start of a cache block.
576    fetch_PC = icacheBlockAlignPC(fetch_PC);
577
578    // If we've already got the block, no need to try to fetch it again.
579    if (cacheDataValid[tid] && fetch_PC == cacheDataPC[tid]) {
580        return true;
581    }
582
583    // Setup the memReq to do a read of the first instruction's address.
584    // Set the appropriate read size and flags as well.
585    // Build request here.
586    RequestPtr mem_req = new Request(tid, fetch_PC, cacheBlkSize, flags,
587                                     fetch_PC, cpu->readCpuId(), tid);
588
589    memReq[tid] = mem_req;
590
591    // Translate the instruction request.
592    fault = cpu->translateInstReq(mem_req, cpu->thread[tid]);
593
594    // In the case of faults, the fetch stage may need to stall and wait
595    // for the ITB miss to be handled.
596
597    // If translation was successful, attempt to read the first
598    // instruction.
599    if (fault == NoFault) {
600#if 0
601        if (cpu->system->memctrl->badaddr(memReq[tid]->paddr) ||
602            memReq[tid]->isUncacheable()) {
603            DPRINTF(Fetch, "Fetch: Bad address %#x (hopefully on a "
604                    "misspeculating path)!",
605                    memReq[tid]->paddr);
606            ret_fault = TheISA::genMachineCheckFault();
607            return false;
608        }
609#endif
610
611        // Build packet here.
612        PacketPtr data_pkt = new Packet(mem_req,
613                                        Packet::ReadReq, Packet::Broadcast);
614        data_pkt->dataDynamicArray(new uint8_t[cacheBlkSize]);
615
616        cacheDataPC[tid] = fetch_PC;
617        cacheDataValid[tid] = false;
618
619        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
620
621        fetchedCacheLines++;
622
623        // Now do the timing access to see whether or not the instruction
624        // exists within the cache.
625        if (!icachePort->sendTiming(data_pkt)) {
626            if (data_pkt->result == Packet::BadAddress) {
627                fault = TheISA::genMachineCheckFault();
628                delete mem_req;
629                memReq[tid] = NULL;
630            }
631            assert(retryPkt == NULL);
632            assert(retryTid == -1);
633            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
634            fetchStatus[tid] = IcacheWaitRetry;
635            retryPkt = data_pkt;
636            retryTid = tid;
637            cacheBlocked = true;
638            return false;
639        }
640
641        DPRINTF(Fetch, "[tid:%i]: Doing cache access.\n", tid);
642
643        lastIcacheStall[tid] = curTick;
644
645        DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
646                "response.\n", tid);
647
648        fetchStatus[tid] = IcacheWaitResponse;
649    } else {
650        delete mem_req;
651        memReq[tid] = NULL;
652    }
653
654    ret_fault = fault;
655    return true;
656}
657
658template <class Impl>
659inline void
660DefaultFetch<Impl>::doSquash(const Addr &new_PC, unsigned tid)
661{
662    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %#x.\n",
663            tid, new_PC);
664
665    PC[tid] = new_PC;
666    nextPC[tid] = new_PC + instSize;
667    nextNPC[tid] = new_PC + (2 * instSize);
668
669    // Clear the icache miss if it's outstanding.
670    if (fetchStatus[tid] == IcacheWaitResponse) {
671        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
672                tid);
673        memReq[tid] = NULL;
674    }
675
676    // Get rid of the retrying packet if it was from this thread.
677    if (retryTid == tid) {
678        assert(cacheBlocked);
679        cacheBlocked = false;
680        retryTid = -1;
681        delete retryPkt->req;
682        delete retryPkt;
683        retryPkt = NULL;
684    }
685
686    fetchStatus[tid] = Squashing;
687
688    ++fetchSquashCycles;
689}
690
691template<class Impl>
692void
693DefaultFetch<Impl>::squashFromDecode(const Addr &new_PC,
694                                     const InstSeqNum &seq_num,
695                                     unsigned tid)
696{
697    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n",tid);
698
699    doSquash(new_PC, tid);
700
701#if ISA_HAS_DELAY_SLOT
702    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
703        delaySlotInfo[tid].numInsts = 0;
704        delaySlotInfo[tid].targetAddr = 0;
705        delaySlotInfo[tid].targetReady = false;
706    }
707#endif
708
709    // Tell the CPU to remove any instructions that are in flight between
710    // fetch and decode.
711    cpu->removeInstsUntil(seq_num, tid);
712}
713
714template<class Impl>
715bool
716DefaultFetch<Impl>::checkStall(unsigned tid) const
717{
718    bool ret_val = false;
719
720    if (cpu->contextSwitch) {
721        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
722        ret_val = true;
723    } else if (stalls[tid].decode) {
724        DPRINTF(Fetch,"[tid:%i]: Stall from Decode stage detected.\n",tid);
725        ret_val = true;
726    } else if (stalls[tid].rename) {
727        DPRINTF(Fetch,"[tid:%i]: Stall from Rename stage detected.\n",tid);
728        ret_val = true;
729    } else if (stalls[tid].iew) {
730        DPRINTF(Fetch,"[tid:%i]: Stall from IEW stage detected.\n",tid);
731        ret_val = true;
732    } else if (stalls[tid].commit) {
733        DPRINTF(Fetch,"[tid:%i]: Stall from Commit stage detected.\n",tid);
734        ret_val = true;
735    }
736
737    return ret_val;
738}
739
740template<class Impl>
741typename DefaultFetch<Impl>::FetchStatus
742DefaultFetch<Impl>::updateFetchStatus()
743{
744    //Check Running
745    std::list<unsigned>::iterator threads = (*activeThreads).begin();
746
747    while (threads != (*activeThreads).end()) {
748
749        unsigned tid = *threads++;
750
751        if (fetchStatus[tid] == Running ||
752            fetchStatus[tid] == Squashing ||
753            fetchStatus[tid] == IcacheAccessComplete) {
754
755            if (_status == Inactive) {
756                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
757
758                if (fetchStatus[tid] == IcacheAccessComplete) {
759                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
760                            "completion\n",tid);
761                }
762
763                cpu->activateStage(O3CPU::FetchIdx);
764            }
765
766            return Active;
767        }
768    }
769
770    // Stage is switching from active to inactive, notify CPU of it.
771    if (_status == Active) {
772        DPRINTF(Activity, "Deactivating stage.\n");
773
774        cpu->deactivateStage(O3CPU::FetchIdx);
775    }
776
777    return Inactive;
778}
779
780template <class Impl>
781void
782DefaultFetch<Impl>::squash(const Addr &new_PC, const InstSeqNum &seq_num,
783                           bool squash_delay_slot, unsigned tid)
784{
785    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n",tid);
786
787    doSquash(new_PC, tid);
788
789#if ISA_HAS_DELAY_SLOT
790    if (seq_num <=  delaySlotInfo[tid].branchSeqNum) {
791        delaySlotInfo[tid].numInsts = 0;
792        delaySlotInfo[tid].targetAddr = 0;
793        delaySlotInfo[tid].targetReady = false;
794    }
795
796    // Tell the CPU to remove any instructions that are not in the ROB.
797    cpu->removeInstsNotInROB(tid, squash_delay_slot, seq_num);
798#else
799    // Tell the CPU to remove any instructions that are not in the ROB.
800    cpu->removeInstsNotInROB(tid, true, 0);
801#endif
802}
803
804template <class Impl>
805void
806DefaultFetch<Impl>::tick()
807{
808    std::list<unsigned>::iterator threads = (*activeThreads).begin();
809    bool status_change = false;
810
811    wroteToTimeBuffer = false;
812
813    while (threads != (*activeThreads).end()) {
814        unsigned tid = *threads++;
815
816        // Check the signals for each thread to determine the proper status
817        // for each thread.
818        bool updated_status = checkSignalsAndUpdate(tid);
819        status_change =  status_change || updated_status;
820    }
821
822    DPRINTF(Fetch, "Running stage.\n");
823
824    // Reset the number of the instruction we're fetching.
825    numInst = 0;
826
827#if FULL_SYSTEM
828    if (fromCommit->commitInfo[0].interruptPending) {
829        interruptPending = true;
830    }
831
832    if (fromCommit->commitInfo[0].clearInterrupt) {
833        interruptPending = false;
834    }
835#endif
836
837    for (threadFetched = 0; threadFetched < numFetchingThreads;
838         threadFetched++) {
839        // Fetch each of the actively fetching threads.
840        fetch(status_change);
841    }
842
843    // Record number of instructions fetched this cycle for distribution.
844    fetchNisnDist.sample(numInst);
845
846    if (status_change) {
847        // Change the fetch stage status if there was a status change.
848        _status = updateFetchStatus();
849    }
850
851    // If there was activity this cycle, inform the CPU of it.
852    if (wroteToTimeBuffer || cpu->contextSwitch) {
853        DPRINTF(Activity, "Activity this cycle.\n");
854
855        cpu->activityThisCycle();
856    }
857}
858
859template <class Impl>
860bool
861DefaultFetch<Impl>::checkSignalsAndUpdate(unsigned tid)
862{
863    // Update the per thread stall statuses.
864    if (fromDecode->decodeBlock[tid]) {
865        stalls[tid].decode = true;
866    }
867
868    if (fromDecode->decodeUnblock[tid]) {
869        assert(stalls[tid].decode);
870        assert(!fromDecode->decodeBlock[tid]);
871        stalls[tid].decode = false;
872    }
873
874    if (fromRename->renameBlock[tid]) {
875        stalls[tid].rename = true;
876    }
877
878    if (fromRename->renameUnblock[tid]) {
879        assert(stalls[tid].rename);
880        assert(!fromRename->renameBlock[tid]);
881        stalls[tid].rename = false;
882    }
883
884    if (fromIEW->iewBlock[tid]) {
885        stalls[tid].iew = true;
886    }
887
888    if (fromIEW->iewUnblock[tid]) {
889        assert(stalls[tid].iew);
890        assert(!fromIEW->iewBlock[tid]);
891        stalls[tid].iew = false;
892    }
893
894    if (fromCommit->commitBlock[tid]) {
895        stalls[tid].commit = true;
896    }
897
898    if (fromCommit->commitUnblock[tid]) {
899        assert(stalls[tid].commit);
900        assert(!fromCommit->commitBlock[tid]);
901        stalls[tid].commit = false;
902    }
903
904    // Check squash signals from commit.
905    if (fromCommit->commitInfo[tid].squash) {
906
907        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
908                "from commit.\n",tid);
909
910#if ISA_HAS_DELAY_SLOT
911    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].bdelayDoneSeqNum;
912#else
913    InstSeqNum doneSeqNum = fromCommit->commitInfo[tid].doneSeqNum;
914#endif
915        // In any case, squash.
916        squash(fromCommit->commitInfo[tid].nextPC,
917               doneSeqNum,
918               fromCommit->commitInfo[tid].squashDelaySlot,
919               tid);
920
921        // Also check if there's a mispredict that happened.
922        if (fromCommit->commitInfo[tid].branchMispredict) {
923            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
924                              fromCommit->commitInfo[tid].nextPC,
925                              fromCommit->commitInfo[tid].branchTaken,
926                              tid);
927        } else {
928            branchPred.squash(fromCommit->commitInfo[tid].doneSeqNum,
929                              tid);
930        }
931
932        return true;
933    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
934        // Update the branch predictor if it wasn't a squashed instruction
935        // that was broadcasted.
936        branchPred.update(fromCommit->commitInfo[tid].doneSeqNum, tid);
937    }
938
939    // Check ROB squash signals from commit.
940    if (fromCommit->commitInfo[tid].robSquashing) {
941        DPRINTF(Fetch, "[tid:%u]: ROB is still squashing.\n", tid);
942
943        // Continue to squash.
944        fetchStatus[tid] = Squashing;
945
946        return true;
947    }
948
949    // Check squash signals from decode.
950    if (fromDecode->decodeInfo[tid].squash) {
951        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
952                "from decode.\n",tid);
953
954        // Update the branch predictor.
955        if (fromDecode->decodeInfo[tid].branchMispredict) {
956            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
957                              fromDecode->decodeInfo[tid].nextPC,
958                              fromDecode->decodeInfo[tid].branchTaken,
959                              tid);
960        } else {
961            branchPred.squash(fromDecode->decodeInfo[tid].doneSeqNum,
962                              tid);
963        }
964
965        if (fetchStatus[tid] != Squashing) {
966
967#if ISA_HAS_DELAY_SLOT
968            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].bdelayDoneSeqNum;
969#else
970            InstSeqNum doneSeqNum = fromDecode->decodeInfo[tid].doneSeqNum;
971#endif
972            // Squash unless we're already squashing
973            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
974                             doneSeqNum,
975                             tid);
976
977            return true;
978        }
979    }
980
981    if (checkStall(tid) && fetchStatus[tid] != IcacheWaitResponse) {
982        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
983
984        fetchStatus[tid] = Blocked;
985
986        return true;
987    }
988
989    if (fetchStatus[tid] == Blocked ||
990        fetchStatus[tid] == Squashing) {
991        // Switch status to running if fetch isn't being told to block or
992        // squash this cycle.
993        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
994                tid);
995
996        fetchStatus[tid] = Running;
997
998        return true;
999    }
1000
1001    // If we've reached this point, we have not gotten any signals that
1002    // cause fetch to change its status.  Fetch remains the same as before.
1003    return false;
1004}
1005
1006template<class Impl>
1007void
1008DefaultFetch<Impl>::fetch(bool &status_change)
1009{
1010    //////////////////////////////////////////
1011    // Start actual fetch
1012    //////////////////////////////////////////
1013    int tid = getFetchingThread(fetchPolicy);
1014
1015    if (tid == -1 || drainPending) {
1016        DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1017
1018        // Breaks looping condition in tick()
1019        threadFetched = numFetchingThreads;
1020        return;
1021    }
1022
1023    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1024
1025    // The current PC.
1026    Addr &fetch_PC = PC[tid];
1027
1028    // Fault code for memory access.
1029    Fault fault = NoFault;
1030
1031    // If returning from the delay of a cache miss, then update the status
1032    // to running, otherwise do the cache access.  Possibly move this up
1033    // to tick() function.
1034    if (fetchStatus[tid] == IcacheAccessComplete) {
1035        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n",
1036                tid);
1037
1038        fetchStatus[tid] = Running;
1039        status_change = true;
1040    } else if (fetchStatus[tid] == Running) {
1041        DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1042                "instruction, starting at PC %08p.\n",
1043                tid, fetch_PC);
1044
1045        bool fetch_success = fetchCacheLine(fetch_PC, fault, tid);
1046        if (!fetch_success) {
1047            if (cacheBlocked) {
1048                ++icacheStallCycles;
1049            } else {
1050                ++fetchMiscStallCycles;
1051            }
1052            return;
1053        }
1054    } else {
1055        if (fetchStatus[tid] == Idle) {
1056            ++fetchIdleCycles;
1057        } else if (fetchStatus[tid] == Blocked) {
1058            ++fetchBlockedCycles;
1059        } else if (fetchStatus[tid] == Squashing) {
1060            ++fetchSquashCycles;
1061        } else if (fetchStatus[tid] == IcacheWaitResponse) {
1062            ++icacheStallCycles;
1063        }
1064
1065        // Status is Idle, Squashing, Blocked, or IcacheWaitResponse, so
1066        // fetch should do nothing.
1067        return;
1068    }
1069
1070    ++fetchCycles;
1071
1072    // If we had a stall due to an icache miss, then return.
1073    if (fetchStatus[tid] == IcacheWaitResponse) {
1074        ++icacheStallCycles;
1075        status_change = true;
1076        return;
1077    }
1078
1079    Addr next_PC = fetch_PC;
1080    Addr next_NPC = next_PC + instSize;
1081    InstSeqNum inst_seq;
1082    MachInst inst;
1083    ExtMachInst ext_inst;
1084    // @todo: Fix this hack.
1085    unsigned offset = (fetch_PC & cacheBlkMask) & ~3;
1086
1087    if (fault == NoFault) {
1088        // If the read of the first instruction was successful, then grab the
1089        // instructions from the rest of the cache line and put them into the
1090        // queue heading to decode.
1091
1092        DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1093                "decode.\n",tid);
1094
1095        // Need to keep track of whether or not a predicted branch
1096        // ended this fetch block.
1097        bool predicted_branch = false;
1098
1099        // Need to keep track of whether or not a delay slot
1100        // instruction has been fetched
1101
1102        for (;
1103             offset < cacheBlkSize &&
1104                 numInst < fetchWidth &&
1105                 (!predicted_branch || delaySlotInfo[tid].numInsts > 0);
1106             ++numInst) {
1107
1108            // Get a sequence number.
1109            inst_seq = cpu->getAndIncrementInstSeq();
1110
1111            // Make sure this is a valid index.
1112            assert(offset <= cacheBlkSize - instSize);
1113
1114            // Get the instruction from the array of the cache line.
1115            inst = TheISA::gtoh(*reinterpret_cast<TheISA::MachInst *>
1116                        (&cacheData[tid][offset]));
1117
1118            ext_inst = TheISA::makeExtMI(inst, fetch_PC);
1119
1120            // Create a new DynInst from the instruction fetched.
1121            DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1122                                                 next_PC,
1123                                                 inst_seq, cpu);
1124            instruction->setTid(tid);
1125
1126            instruction->setASID(tid);
1127
1128            instruction->setThreadState(cpu->thread[tid]);
1129
1130            DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x created "
1131                    "[sn:%lli]\n",
1132                    tid, instruction->readPC(), inst_seq);
1133
1134            DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n",
1135                    tid, instruction->staticInst->disassemble(fetch_PC));
1136
1137            instruction->traceData =
1138                Trace::getInstRecord(curTick, cpu->tcBase(tid),
1139                                     instruction->staticInst,
1140                                     instruction->readPC());
1141
1142            predicted_branch = lookupAndUpdateNextPC(instruction, next_PC,
1143                                                     next_NPC);
1144
1145            // Add instruction to the CPU's list of instructions.
1146            instruction->setInstListIt(cpu->addInst(instruction));
1147
1148            // Write the instruction to the first slot in the queue
1149            // that heads to decode.
1150            toDecode->insts[numInst] = instruction;
1151
1152            toDecode->size++;
1153
1154            // Increment stat of fetched instructions.
1155            ++fetchedInsts;
1156
1157            // Move to the next instruction, unless we have a branch.
1158            fetch_PC = next_PC;
1159
1160            if (instruction->isQuiesce()) {
1161//                warn("%lli: Quiesce instruction encountered, halting fetch!",
1162//                     curTick);
1163                fetchStatus[tid] = QuiescePending;
1164                ++numInst;
1165                status_change = true;
1166                break;
1167            }
1168
1169            offset += instSize;
1170
1171#if ISA_HAS_DELAY_SLOT
1172            if (predicted_branch) {
1173                delaySlotInfo[tid].branchSeqNum = inst_seq;
1174
1175                DPRINTF(Fetch, "[tid:%i]: Delay slot branch set to [sn:%i]\n",
1176                        tid, inst_seq);
1177                continue;
1178            } else if (delaySlotInfo[tid].numInsts > 0) {
1179                --delaySlotInfo[tid].numInsts;
1180
1181                // It's OK to set PC to target of branch
1182                if (delaySlotInfo[tid].numInsts == 0) {
1183                    delaySlotInfo[tid].targetReady = true;
1184
1185                    // Break the looping condition
1186                    predicted_branch = true;
1187                }
1188
1189                DPRINTF(Fetch, "[tid:%i]: %i delay slot inst(s) left to"
1190                        " process.\n", tid, delaySlotInfo[tid].numInsts);
1191            }
1192#endif
1193        }
1194
1195        if (offset >= cacheBlkSize) {
1196            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of cache "
1197                    "block.\n", tid);
1198        } else if (numInst >= fetchWidth) {
1199            DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1200                    "for this cycle.\n", tid);
1201        } else if (predicted_branch && delaySlotInfo[tid].numInsts <= 0) {
1202            DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1203                    "instruction encountered.\n", tid);
1204        }
1205    }
1206
1207    if (numInst > 0) {
1208        wroteToTimeBuffer = true;
1209    }
1210
1211    // Now that fetching is completed, update the PC to signify what the next
1212    // cycle will be.
1213    if (fault == NoFault) {
1214#if ISA_HAS_DELAY_SLOT
1215        if (delaySlotInfo[tid].targetReady &&
1216            delaySlotInfo[tid].numInsts == 0) {
1217            // Set PC to target
1218            PC[tid] = delaySlotInfo[tid].targetAddr; //next_PC
1219            nextPC[tid] = next_PC + instSize;        //next_NPC
1220            nextNPC[tid] = next_PC + (2 * instSize);
1221
1222            delaySlotInfo[tid].targetReady = false;
1223        } else {
1224            PC[tid] = next_PC;
1225            nextPC[tid] = next_NPC;
1226            nextNPC[tid] = next_NPC + instSize;
1227        }
1228
1229        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n", tid, PC[tid]);
1230#else
1231        DPRINTF(Fetch, "[tid:%i]: Setting PC to %08p.\n",tid, next_PC);
1232        PC[tid] = next_PC;
1233        nextPC[tid] = next_PC + instSize;
1234#endif
1235    } else {
1236        // We shouldn't be in an icache miss and also have a fault (an ITB
1237        // miss)
1238        if (fetchStatus[tid] == IcacheWaitResponse) {
1239            panic("Fetch should have exited prior to this!");
1240        }
1241
1242        // Send the fault to commit.  This thread will not do anything
1243        // until commit handles the fault.  The only other way it can
1244        // wake up is if a squash comes along and changes the PC.
1245#if FULL_SYSTEM
1246        assert(numInst != fetchWidth);
1247        // Get a sequence number.
1248        inst_seq = cpu->getAndIncrementInstSeq();
1249        // We will use a nop in order to carry the fault.
1250        ext_inst = TheISA::NoopMachInst;
1251
1252        // Create a new DynInst from the dummy nop.
1253        DynInstPtr instruction = new DynInst(ext_inst, fetch_PC,
1254                                             next_PC,
1255                                             inst_seq, cpu);
1256        instruction->setPredTarg(next_PC + instSize);
1257        instruction->setTid(tid);
1258
1259        instruction->setASID(tid);
1260
1261        instruction->setThreadState(cpu->thread[tid]);
1262
1263        instruction->traceData = NULL;
1264
1265        instruction->setInstListIt(cpu->addInst(instruction));
1266
1267        instruction->fault = fault;
1268
1269        toDecode->insts[numInst] = instruction;
1270        toDecode->size++;
1271
1272        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n",tid);
1273
1274        fetchStatus[tid] = TrapPending;
1275        status_change = true;
1276#else // !FULL_SYSTEM
1277        fetchStatus[tid] = TrapPending;
1278        status_change = true;
1279
1280#endif // FULL_SYSTEM
1281        DPRINTF(Fetch, "[tid:%i]: fault (%d) detected @ PC %08p", tid, fault, PC[tid]);
1282    }
1283}
1284
1285template<class Impl>
1286void
1287DefaultFetch<Impl>::recvRetry()
1288{
1289    if (retryPkt != NULL) {
1290        assert(cacheBlocked);
1291        assert(retryTid != -1);
1292        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1293
1294        if (icachePort->sendTiming(retryPkt)) {
1295            fetchStatus[retryTid] = IcacheWaitResponse;
1296            retryPkt = NULL;
1297            retryTid = -1;
1298            cacheBlocked = false;
1299        }
1300    } else {
1301        assert(retryTid == -1);
1302        // Access has been squashed since it was sent out.  Just clear
1303        // the cache being blocked.
1304        cacheBlocked = false;
1305    }
1306}
1307
1308///////////////////////////////////////
1309//                                   //
1310//  SMT FETCH POLICY MAINTAINED HERE //
1311//                                   //
1312///////////////////////////////////////
1313template<class Impl>
1314int
1315DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1316{
1317    if (numThreads > 1) {
1318        switch (fetch_priority) {
1319
1320          case SingleThread:
1321            return 0;
1322
1323          case RoundRobin:
1324            return roundRobin();
1325
1326          case IQ:
1327            return iqCount();
1328
1329          case LSQ:
1330            return lsqCount();
1331
1332          case Branch:
1333            return branchCount();
1334
1335          default:
1336            return -1;
1337        }
1338    } else {
1339        int tid = *((*activeThreads).begin());
1340
1341        if (fetchStatus[tid] == Running ||
1342            fetchStatus[tid] == IcacheAccessComplete ||
1343            fetchStatus[tid] == Idle) {
1344            return tid;
1345        } else {
1346            return -1;
1347        }
1348    }
1349
1350}
1351
1352
1353template<class Impl>
1354int
1355DefaultFetch<Impl>::roundRobin()
1356{
1357    std::list<unsigned>::iterator pri_iter = priorityList.begin();
1358    std::list<unsigned>::iterator end      = priorityList.end();
1359
1360    int high_pri;
1361
1362    while (pri_iter != end) {
1363        high_pri = *pri_iter;
1364
1365        assert(high_pri <= numThreads);
1366
1367        if (fetchStatus[high_pri] == Running ||
1368            fetchStatus[high_pri] == IcacheAccessComplete ||
1369            fetchStatus[high_pri] == Idle) {
1370
1371            priorityList.erase(pri_iter);
1372            priorityList.push_back(high_pri);
1373
1374            return high_pri;
1375        }
1376
1377        pri_iter++;
1378    }
1379
1380    return -1;
1381}
1382
1383template<class Impl>
1384int
1385DefaultFetch<Impl>::iqCount()
1386{
1387    std::priority_queue<unsigned> PQ;
1388
1389    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1390
1391    while (threads != (*activeThreads).end()) {
1392        unsigned tid = *threads++;
1393
1394        PQ.push(fromIEW->iewInfo[tid].iqCount);
1395    }
1396
1397    while (!PQ.empty()) {
1398
1399        unsigned high_pri = PQ.top();
1400
1401        if (fetchStatus[high_pri] == Running ||
1402            fetchStatus[high_pri] == IcacheAccessComplete ||
1403            fetchStatus[high_pri] == Idle)
1404            return high_pri;
1405        else
1406            PQ.pop();
1407
1408    }
1409
1410    return -1;
1411}
1412
1413template<class Impl>
1414int
1415DefaultFetch<Impl>::lsqCount()
1416{
1417    std::priority_queue<unsigned> PQ;
1418
1419
1420    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1421
1422    while (threads != (*activeThreads).end()) {
1423        unsigned tid = *threads++;
1424
1425        PQ.push(fromIEW->iewInfo[tid].ldstqCount);
1426    }
1427
1428    while (!PQ.empty()) {
1429
1430        unsigned high_pri = PQ.top();
1431
1432        if (fetchStatus[high_pri] == Running ||
1433            fetchStatus[high_pri] == IcacheAccessComplete ||
1434            fetchStatus[high_pri] == Idle)
1435            return high_pri;
1436        else
1437            PQ.pop();
1438
1439    }
1440
1441    return -1;
1442}
1443
1444template<class Impl>
1445int
1446DefaultFetch<Impl>::branchCount()
1447{
1448    std::list<unsigned>::iterator threads = (*activeThreads).begin();
1449    panic("Branch Count Fetch policy unimplemented\n");
1450    return *threads;
1451}
1452