fetch_impl.hh revision 13981:577196ddd040
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/generic/tlb.hh"
55#include "arch/isa_traits.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/fetch.hh"
64#include "cpu/exetrace.hh"
65#include "debug/Activity.hh"
66#include "debug/Drain.hh"
67#include "debug/Fetch.hh"
68#include "debug/O3PipeView.hh"
69#include "mem/packet.hh"
70#include "params/DerivO3CPU.hh"
71#include "sim/byteswap.hh"
72#include "sim/core.hh"
73#include "sim/eventq.hh"
74#include "sim/full_system.hh"
75#include "sim/system.hh"
76#include "cpu/o3/isa_specific.hh"
77
78using namespace std;
79
80template<class Impl>
81DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
82    : fetchPolicy(params->smtFetchPolicy),
83      cpu(_cpu),
84      branchPred(nullptr),
85      decodeToFetchDelay(params->decodeToFetchDelay),
86      renameToFetchDelay(params->renameToFetchDelay),
87      iewToFetchDelay(params->iewToFetchDelay),
88      commitToFetchDelay(params->commitToFetchDelay),
89      fetchWidth(params->fetchWidth),
90      decodeWidth(params->decodeWidth),
91      retryPkt(NULL),
92      retryTid(InvalidThreadID),
93      cacheBlkSize(cpu->cacheLineSize()),
94      fetchBufferSize(params->fetchBufferSize),
95      fetchBufferMask(fetchBufferSize - 1),
96      fetchQueueSize(params->fetchQueueSize),
97      numThreads(params->numThreads),
98      numFetchingThreads(params->smtNumFetchingThreads),
99      finishTranslationEvent(this)
100{
101    if (numThreads > Impl::MaxThreads)
102        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
103              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
104              numThreads, static_cast<int>(Impl::MaxThreads));
105    if (fetchWidth > Impl::MaxWidth)
106        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
107             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
108             fetchWidth, static_cast<int>(Impl::MaxWidth));
109    if (fetchBufferSize > cacheBlkSize)
110        fatal("fetch buffer size (%u bytes) is greater than the cache "
111              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
112    if (cacheBlkSize % fetchBufferSize)
113        fatal("cache block (%u bytes) is not a multiple of the "
114              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
115
116    // Figure out fetch policy
117    panic_if(fetchPolicy == FetchPolicy::SingleThread && numThreads > 1,
118             "Invalid Fetch Policy for a SMT workload.");
119
120    // Get the size of an instruction.
121    instSize = sizeof(TheISA::MachInst);
122
123    for (int i = 0; i < Impl::MaxThreads; i++) {
124        fetchStatus[i] = Idle;
125        decoder[i] = nullptr;
126        pc[i] = 0;
127        fetchOffset[i] = 0;
128        macroop[i] = nullptr;
129        delayedCommit[i] = false;
130        memReq[i] = nullptr;
131        stalls[i] = {false, false};
132        fetchBuffer[i] = NULL;
133        fetchBufferPC[i] = 0;
134        fetchBufferValid[i] = false;
135        lastIcacheStall[i] = 0;
136        issuePipelinedIfetch[i] = false;
137    }
138
139    branchPred = params->branchPred;
140
141    for (ThreadID tid = 0; tid < numThreads; tid++) {
142        decoder[tid] = new TheISA::Decoder(params->isa[tid]);
143        // Create space to buffer the cache line data,
144        // which may not hold the entire cache line.
145        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
146    }
147}
148
149template <class Impl>
150std::string
151DefaultFetch<Impl>::name() const
152{
153    return cpu->name() + ".fetch";
154}
155
156template <class Impl>
157void
158DefaultFetch<Impl>::regProbePoints()
159{
160    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
161    ppFetchRequestSent = new ProbePointArg<RequestPtr>(cpu->getProbeManager(),
162                                                       "FetchRequest");
163
164}
165
166template <class Impl>
167void
168DefaultFetch<Impl>::regStats()
169{
170    icacheStallCycles
171        .name(name() + ".icacheStallCycles")
172        .desc("Number of cycles fetch is stalled on an Icache miss")
173        .prereq(icacheStallCycles);
174
175    fetchedInsts
176        .name(name() + ".Insts")
177        .desc("Number of instructions fetch has processed")
178        .prereq(fetchedInsts);
179
180    fetchedBranches
181        .name(name() + ".Branches")
182        .desc("Number of branches that fetch encountered")
183        .prereq(fetchedBranches);
184
185    predictedBranches
186        .name(name() + ".predictedBranches")
187        .desc("Number of branches that fetch has predicted taken")
188        .prereq(predictedBranches);
189
190    fetchCycles
191        .name(name() + ".Cycles")
192        .desc("Number of cycles fetch has run and was not squashing or"
193              " blocked")
194        .prereq(fetchCycles);
195
196    fetchSquashCycles
197        .name(name() + ".SquashCycles")
198        .desc("Number of cycles fetch has spent squashing")
199        .prereq(fetchSquashCycles);
200
201    fetchTlbCycles
202        .name(name() + ".TlbCycles")
203        .desc("Number of cycles fetch has spent waiting for tlb")
204        .prereq(fetchTlbCycles);
205
206    fetchIdleCycles
207        .name(name() + ".IdleCycles")
208        .desc("Number of cycles fetch was idle")
209        .prereq(fetchIdleCycles);
210
211    fetchBlockedCycles
212        .name(name() + ".BlockedCycles")
213        .desc("Number of cycles fetch has spent blocked")
214        .prereq(fetchBlockedCycles);
215
216    fetchedCacheLines
217        .name(name() + ".CacheLines")
218        .desc("Number of cache lines fetched")
219        .prereq(fetchedCacheLines);
220
221    fetchMiscStallCycles
222        .name(name() + ".MiscStallCycles")
223        .desc("Number of cycles fetch has spent waiting on interrupts, or "
224              "bad addresses, or out of MSHRs")
225        .prereq(fetchMiscStallCycles);
226
227    fetchPendingDrainCycles
228        .name(name() + ".PendingDrainCycles")
229        .desc("Number of cycles fetch has spent waiting on pipes to drain")
230        .prereq(fetchPendingDrainCycles);
231
232    fetchNoActiveThreadStallCycles
233        .name(name() + ".NoActiveThreadStallCycles")
234        .desc("Number of stall cycles due to no active thread to fetch from")
235        .prereq(fetchNoActiveThreadStallCycles);
236
237    fetchPendingTrapStallCycles
238        .name(name() + ".PendingTrapStallCycles")
239        .desc("Number of stall cycles due to pending traps")
240        .prereq(fetchPendingTrapStallCycles);
241
242    fetchPendingQuiesceStallCycles
243        .name(name() + ".PendingQuiesceStallCycles")
244        .desc("Number of stall cycles due to pending quiesce instructions")
245        .prereq(fetchPendingQuiesceStallCycles);
246
247    fetchIcacheWaitRetryStallCycles
248        .name(name() + ".IcacheWaitRetryStallCycles")
249        .desc("Number of stall cycles due to full MSHR")
250        .prereq(fetchIcacheWaitRetryStallCycles);
251
252    fetchIcacheSquashes
253        .name(name() + ".IcacheSquashes")
254        .desc("Number of outstanding Icache misses that were squashed")
255        .prereq(fetchIcacheSquashes);
256
257    fetchTlbSquashes
258        .name(name() + ".ItlbSquashes")
259        .desc("Number of outstanding ITLB misses that were squashed")
260        .prereq(fetchTlbSquashes);
261
262    fetchNisnDist
263        .init(/* base value */ 0,
264              /* last value */ fetchWidth,
265              /* bucket size */ 1)
266        .name(name() + ".rateDist")
267        .desc("Number of instructions fetched each cycle (Total)")
268        .flags(Stats::pdf);
269
270    idleRate
271        .name(name() + ".idleRate")
272        .desc("Percent of cycles fetch was idle")
273        .prereq(idleRate);
274    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
275
276    branchRate
277        .name(name() + ".branchRate")
278        .desc("Number of branch fetches per cycle")
279        .flags(Stats::total);
280    branchRate = fetchedBranches / cpu->numCycles;
281
282    fetchRate
283        .name(name() + ".rate")
284        .desc("Number of inst fetches per cycle")
285        .flags(Stats::total);
286    fetchRate = fetchedInsts / cpu->numCycles;
287}
288
289template<class Impl>
290void
291DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
292{
293    timeBuffer = time_buffer;
294
295    // Create wires to get information from proper places in time buffer.
296    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
297    fromRename = timeBuffer->getWire(-renameToFetchDelay);
298    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
299    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
300}
301
302template<class Impl>
303void
304DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
305{
306    activeThreads = at_ptr;
307}
308
309template<class Impl>
310void
311DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
312{
313    // Create wire to write information to proper place in fetch time buf.
314    toDecode = ftb_ptr->getWire(0);
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::startupStage()
320{
321    assert(priorityList.empty());
322    resetStage();
323
324    // Fetch needs to start fetching instructions at the very beginning,
325    // so it must start up in active state.
326    switchToActive();
327}
328
329template<class Impl>
330void
331DefaultFetch<Impl>::clearStates(ThreadID tid)
332{
333    fetchStatus[tid] = Running;
334    pc[tid] = cpu->pcState(tid);
335    fetchOffset[tid] = 0;
336    macroop[tid] = NULL;
337    delayedCommit[tid] = false;
338    memReq[tid] = NULL;
339    stalls[tid].decode = false;
340    stalls[tid].drain = false;
341    fetchBufferPC[tid] = 0;
342    fetchBufferValid[tid] = false;
343    fetchQueue[tid].clear();
344
345    // TODO not sure what to do with priorityList for now
346    // priorityList.push_back(tid);
347}
348
349template<class Impl>
350void
351DefaultFetch<Impl>::resetStage()
352{
353    numInst = 0;
354    interruptPending = false;
355    cacheBlocked = false;
356
357    priorityList.clear();
358
359    // Setup PC and nextPC with initial state.
360    for (ThreadID tid = 0; tid < numThreads; ++tid) {
361        fetchStatus[tid] = Running;
362        pc[tid] = cpu->pcState(tid);
363        fetchOffset[tid] = 0;
364        macroop[tid] = NULL;
365
366        delayedCommit[tid] = false;
367        memReq[tid] = NULL;
368
369        stalls[tid].decode = false;
370        stalls[tid].drain = false;
371
372        fetchBufferPC[tid] = 0;
373        fetchBufferValid[tid] = false;
374
375        fetchQueue[tid].clear();
376
377        priorityList.push_back(tid);
378    }
379
380    wroteToTimeBuffer = false;
381    _status = Inactive;
382}
383
384template<class Impl>
385void
386DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
387{
388    ThreadID tid = cpu->contextToThread(pkt->req->contextId());
389
390    DPRINTF(Fetch, "[tid:%i] Waking up from cache miss.\n", tid);
391    assert(!cpu->switchedOut());
392
393    // Only change the status if it's still waiting on the icache access
394    // to return.
395    if (fetchStatus[tid] != IcacheWaitResponse ||
396        pkt->req != memReq[tid]) {
397        ++fetchIcacheSquashes;
398        delete pkt;
399        return;
400    }
401
402    memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
403    fetchBufferValid[tid] = true;
404
405    // Wake up the CPU (if it went to sleep and was waiting on
406    // this completion event).
407    cpu->wakeCPU();
408
409    DPRINTF(Activity, "[tid:%i] Activating fetch due to cache completion\n",
410            tid);
411
412    switchToActive();
413
414    // Only switch to IcacheAccessComplete if we're not stalled as well.
415    if (checkStall(tid)) {
416        fetchStatus[tid] = Blocked;
417    } else {
418        fetchStatus[tid] = IcacheAccessComplete;
419    }
420
421    pkt->req->setAccessLatency();
422    cpu->ppInstAccessComplete->notify(pkt);
423    // Reset the mem req to NULL.
424    delete pkt;
425    memReq[tid] = NULL;
426}
427
428template <class Impl>
429void
430DefaultFetch<Impl>::drainResume()
431{
432    for (ThreadID i = 0; i < numThreads; ++i) {
433        stalls[i].decode = false;
434        stalls[i].drain = false;
435    }
436}
437
438template <class Impl>
439void
440DefaultFetch<Impl>::drainSanityCheck() const
441{
442    assert(isDrained());
443    assert(retryPkt == NULL);
444    assert(retryTid == InvalidThreadID);
445    assert(!cacheBlocked);
446    assert(!interruptPending);
447
448    for (ThreadID i = 0; i < numThreads; ++i) {
449        assert(!memReq[i]);
450        assert(fetchStatus[i] == Idle || stalls[i].drain);
451    }
452
453    branchPred->drainSanityCheck();
454}
455
456template <class Impl>
457bool
458DefaultFetch<Impl>::isDrained() const
459{
460    /* Make sure that threads are either idle of that the commit stage
461     * has signaled that draining has completed by setting the drain
462     * stall flag. This effectively forces the pipeline to be disabled
463     * until the whole system is drained (simulation may continue to
464     * drain other components).
465     */
466    for (ThreadID i = 0; i < numThreads; ++i) {
467        // Verify fetch queues are drained
468        if (!fetchQueue[i].empty())
469            return false;
470
471        // Return false if not idle or drain stalled
472        if (fetchStatus[i] != Idle) {
473            if (fetchStatus[i] == Blocked && stalls[i].drain)
474                continue;
475            else
476                return false;
477        }
478    }
479
480    /* The pipeline might start up again in the middle of the drain
481     * cycle if the finish translation event is scheduled, so make
482     * sure that's not the case.
483     */
484    return !finishTranslationEvent.scheduled();
485}
486
487template <class Impl>
488void
489DefaultFetch<Impl>::takeOverFrom()
490{
491    assert(cpu->getInstPort().isConnected());
492    resetStage();
493
494}
495
496template <class Impl>
497void
498DefaultFetch<Impl>::drainStall(ThreadID tid)
499{
500    assert(cpu->isDraining());
501    assert(!stalls[tid].drain);
502    DPRINTF(Drain, "%i: Thread drained.\n", tid);
503    stalls[tid].drain = true;
504}
505
506template <class Impl>
507void
508DefaultFetch<Impl>::wakeFromQuiesce()
509{
510    DPRINTF(Fetch, "Waking up from quiesce\n");
511    // Hopefully this is safe
512    // @todo: Allow other threads to wake from quiesce.
513    fetchStatus[0] = Running;
514}
515
516template <class Impl>
517inline void
518DefaultFetch<Impl>::switchToActive()
519{
520    if (_status == Inactive) {
521        DPRINTF(Activity, "Activating stage.\n");
522
523        cpu->activateStage(O3CPU::FetchIdx);
524
525        _status = Active;
526    }
527}
528
529template <class Impl>
530inline void
531DefaultFetch<Impl>::switchToInactive()
532{
533    if (_status == Active) {
534        DPRINTF(Activity, "Deactivating stage.\n");
535
536        cpu->deactivateStage(O3CPU::FetchIdx);
537
538        _status = Inactive;
539    }
540}
541
542template <class Impl>
543void
544DefaultFetch<Impl>::deactivateThread(ThreadID tid)
545{
546    // Update priority list
547    auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
548    if (thread_it != priorityList.end()) {
549        priorityList.erase(thread_it);
550    }
551}
552
553template <class Impl>
554bool
555DefaultFetch<Impl>::lookupAndUpdateNextPC(
556        const DynInstPtr &inst, TheISA::PCState &nextPC)
557{
558    // Do branch prediction check here.
559    // A bit of a misnomer...next_PC is actually the current PC until
560    // this function updates it.
561    bool predict_taken;
562
563    if (!inst->isControl()) {
564        TheISA::advancePC(nextPC, inst->staticInst);
565        inst->setPredTarg(nextPC);
566        inst->setPredTaken(false);
567        return false;
568    }
569
570    ThreadID tid = inst->threadNumber;
571    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
572                                        nextPC, tid);
573
574    if (predict_taken) {
575        DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
576                "predicted to be taken to %s\n",
577                tid, inst->seqNum, inst->pcState().instAddr(), nextPC);
578    } else {
579        DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
580                "predicted to be not taken\n",
581                tid, inst->seqNum, inst->pcState().instAddr());
582    }
583
584    DPRINTF(Fetch, "[tid:%i] [sn:%llu] Branch at PC %#x "
585            "predicted to go to %s\n",
586            tid, inst->seqNum, inst->pcState().instAddr(), nextPC);
587    inst->setPredTarg(nextPC);
588    inst->setPredTaken(predict_taken);
589
590    ++fetchedBranches;
591
592    if (predict_taken) {
593        ++predictedBranches;
594    }
595
596    return predict_taken;
597}
598
599template <class Impl>
600bool
601DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
602{
603    Fault fault = NoFault;
604
605    assert(!cpu->switchedOut());
606
607    // @todo: not sure if these should block translation.
608    //AlphaDep
609    if (cacheBlocked) {
610        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
611                tid);
612        return false;
613    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
614        // Hold off fetch from getting new instructions when:
615        // Cache is blocked, or
616        // while an interrupt is pending and we're not in PAL mode, or
617        // fetch is switched out.
618        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
619                tid);
620        return false;
621    }
622
623    // Align the fetch address to the start of a fetch buffer segment.
624    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
625
626    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
627            tid, fetchBufferBlockPC, vaddr);
628
629    // Setup the memReq to do a read of the first instruction's address.
630    // Set the appropriate read size and flags as well.
631    // Build request here.
632    RequestPtr mem_req = std::make_shared<Request>(
633        tid, fetchBufferBlockPC, fetchBufferSize,
634        Request::INST_FETCH, cpu->instMasterId(), pc,
635        cpu->thread[tid]->contextId());
636
637    mem_req->taskId(cpu->taskId());
638
639    memReq[tid] = mem_req;
640
641    // Initiate translation of the icache block
642    fetchStatus[tid] = ItlbWait;
643    FetchTranslation *trans = new FetchTranslation(this);
644    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
645                              trans, BaseTLB::Execute);
646    return true;
647}
648
649template <class Impl>
650void
651DefaultFetch<Impl>::finishTranslation(const Fault &fault,
652                                      const RequestPtr &mem_req)
653{
654    ThreadID tid = cpu->contextToThread(mem_req->contextId());
655    Addr fetchBufferBlockPC = mem_req->getVaddr();
656
657    assert(!cpu->switchedOut());
658
659    // Wake up CPU if it was idle
660    cpu->wakeCPU();
661
662    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
663        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
664        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
665                tid);
666        ++fetchTlbSquashes;
667        return;
668    }
669
670
671    // If translation was successful, attempt to read the icache block.
672    if (fault == NoFault) {
673        // Check that we're not going off into random memory
674        // If we have, just wait around for commit to squash something and put
675        // us on the right track
676        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
677            warn("Address %#x is outside of physical memory, stopping fetch\n",
678                    mem_req->getPaddr());
679            fetchStatus[tid] = NoGoodAddr;
680            memReq[tid] = NULL;
681            return;
682        }
683
684        // Build packet here.
685        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
686        data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
687
688        fetchBufferPC[tid] = fetchBufferBlockPC;
689        fetchBufferValid[tid] = false;
690        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
691
692        fetchedCacheLines++;
693
694        // Access the cache.
695        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
696            assert(retryPkt == NULL);
697            assert(retryTid == InvalidThreadID);
698            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
699
700            fetchStatus[tid] = IcacheWaitRetry;
701            retryPkt = data_pkt;
702            retryTid = tid;
703            cacheBlocked = true;
704        } else {
705            DPRINTF(Fetch, "[tid:%i] Doing Icache access.\n", tid);
706            DPRINTF(Activity, "[tid:%i] Activity: Waiting on I-cache "
707                    "response.\n", tid);
708            lastIcacheStall[tid] = curTick();
709            fetchStatus[tid] = IcacheWaitResponse;
710            // Notify Fetch Request probe when a packet containing a fetch
711            // request is successfully sent
712            ppFetchRequestSent->notify(mem_req);
713        }
714    } else {
715        // Don't send an instruction to decode if we can't handle it.
716        if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
717            assert(!finishTranslationEvent.scheduled());
718            finishTranslationEvent.setFault(fault);
719            finishTranslationEvent.setReq(mem_req);
720            cpu->schedule(finishTranslationEvent,
721                          cpu->clockEdge(Cycles(1)));
722            return;
723        }
724        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
725                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
726        // Translation faulted, icache request won't be sent.
727        memReq[tid] = NULL;
728
729        // Send the fault to commit.  This thread will not do anything
730        // until commit handles the fault.  The only other way it can
731        // wake up is if a squash comes along and changes the PC.
732        TheISA::PCState fetchPC = pc[tid];
733
734        DPRINTF(Fetch, "[tid:%i] Translation faulted, building noop.\n", tid);
735        // We will use a nop in ordier to carry the fault.
736        DynInstPtr instruction = buildInst(tid, StaticInst::nopStaticInstPtr,
737                                           NULL, fetchPC, fetchPC, false);
738        instruction->setNotAnInst();
739
740        instruction->setPredTarg(fetchPC);
741        instruction->fault = fault;
742        wroteToTimeBuffer = true;
743
744        DPRINTF(Activity, "Activity this cycle.\n");
745        cpu->activityThisCycle();
746
747        fetchStatus[tid] = TrapPending;
748
749        DPRINTF(Fetch, "[tid:%i] Blocked, need to handle the trap.\n", tid);
750        DPRINTF(Fetch, "[tid:%i] fault (%s) detected @ PC %s.\n",
751                tid, fault->name(), pc[tid]);
752    }
753    _status = updateFetchStatus();
754}
755
756template <class Impl>
757inline void
758DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
759                             const DynInstPtr squashInst, ThreadID tid)
760{
761    DPRINTF(Fetch, "[tid:%i] Squashing, setting PC to: %s.\n",
762            tid, newPC);
763
764    pc[tid] = newPC;
765    fetchOffset[tid] = 0;
766    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
767        macroop[tid] = squashInst->macroop;
768    else
769        macroop[tid] = NULL;
770    decoder[tid]->reset();
771
772    // Clear the icache miss if it's outstanding.
773    if (fetchStatus[tid] == IcacheWaitResponse) {
774        DPRINTF(Fetch, "[tid:%i] Squashing outstanding Icache miss.\n",
775                tid);
776        memReq[tid] = NULL;
777    } else if (fetchStatus[tid] == ItlbWait) {
778        DPRINTF(Fetch, "[tid:%i] Squashing outstanding ITLB miss.\n",
779                tid);
780        memReq[tid] = NULL;
781    }
782
783    // Get rid of the retrying packet if it was from this thread.
784    if (retryTid == tid) {
785        assert(cacheBlocked);
786        if (retryPkt) {
787            delete retryPkt;
788        }
789        retryPkt = NULL;
790        retryTid = InvalidThreadID;
791    }
792
793    fetchStatus[tid] = Squashing;
794
795    // Empty fetch queue
796    fetchQueue[tid].clear();
797
798    // microops are being squashed, it is not known wheather the
799    // youngest non-squashed microop was  marked delayed commit
800    // or not. Setting the flag to true ensures that the
801    // interrupts are not handled when they cannot be, though
802    // some opportunities to handle interrupts may be missed.
803    delayedCommit[tid] = true;
804
805    ++fetchSquashCycles;
806}
807
808template<class Impl>
809void
810DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
811                                     const DynInstPtr squashInst,
812                                     const InstSeqNum seq_num, ThreadID tid)
813{
814    DPRINTF(Fetch, "[tid:%i] Squashing from decode.\n", tid);
815
816    doSquash(newPC, squashInst, tid);
817
818    // Tell the CPU to remove any instructions that are in flight between
819    // fetch and decode.
820    cpu->removeInstsUntil(seq_num, tid);
821}
822
823template<class Impl>
824bool
825DefaultFetch<Impl>::checkStall(ThreadID tid) const
826{
827    bool ret_val = false;
828
829    if (stalls[tid].drain) {
830        assert(cpu->isDraining());
831        DPRINTF(Fetch,"[tid:%i] Drain stall detected.\n",tid);
832        ret_val = true;
833    }
834
835    return ret_val;
836}
837
838template<class Impl>
839typename DefaultFetch<Impl>::FetchStatus
840DefaultFetch<Impl>::updateFetchStatus()
841{
842    //Check Running
843    list<ThreadID>::iterator threads = activeThreads->begin();
844    list<ThreadID>::iterator end = activeThreads->end();
845
846    while (threads != end) {
847        ThreadID tid = *threads++;
848
849        if (fetchStatus[tid] == Running ||
850            fetchStatus[tid] == Squashing ||
851            fetchStatus[tid] == IcacheAccessComplete) {
852
853            if (_status == Inactive) {
854                DPRINTF(Activity, "[tid:%i] Activating stage.\n",tid);
855
856                if (fetchStatus[tid] == IcacheAccessComplete) {
857                    DPRINTF(Activity, "[tid:%i] Activating fetch due to cache"
858                            "completion\n",tid);
859                }
860
861                cpu->activateStage(O3CPU::FetchIdx);
862            }
863
864            return Active;
865        }
866    }
867
868    // Stage is switching from active to inactive, notify CPU of it.
869    if (_status == Active) {
870        DPRINTF(Activity, "Deactivating stage.\n");
871
872        cpu->deactivateStage(O3CPU::FetchIdx);
873    }
874
875    return Inactive;
876}
877
878template <class Impl>
879void
880DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
881                           const InstSeqNum seq_num, DynInstPtr squashInst,
882                           ThreadID tid)
883{
884    DPRINTF(Fetch, "[tid:%i] Squash from commit.\n", tid);
885
886    doSquash(newPC, squashInst, tid);
887
888    // Tell the CPU to remove any instructions that are not in the ROB.
889    cpu->removeInstsNotInROB(tid);
890}
891
892template <class Impl>
893void
894DefaultFetch<Impl>::tick()
895{
896    list<ThreadID>::iterator threads = activeThreads->begin();
897    list<ThreadID>::iterator end = activeThreads->end();
898    bool status_change = false;
899
900    wroteToTimeBuffer = false;
901
902    for (ThreadID i = 0; i < numThreads; ++i) {
903        issuePipelinedIfetch[i] = false;
904    }
905
906    while (threads != end) {
907        ThreadID tid = *threads++;
908
909        // Check the signals for each thread to determine the proper status
910        // for each thread.
911        bool updated_status = checkSignalsAndUpdate(tid);
912        status_change =  status_change || updated_status;
913    }
914
915    DPRINTF(Fetch, "Running stage.\n");
916
917    if (FullSystem) {
918        if (fromCommit->commitInfo[0].interruptPending) {
919            interruptPending = true;
920        }
921
922        if (fromCommit->commitInfo[0].clearInterrupt) {
923            interruptPending = false;
924        }
925    }
926
927    for (threadFetched = 0; threadFetched < numFetchingThreads;
928         threadFetched++) {
929        // Fetch each of the actively fetching threads.
930        fetch(status_change);
931    }
932
933    // Record number of instructions fetched this cycle for distribution.
934    fetchNisnDist.sample(numInst);
935
936    if (status_change) {
937        // Change the fetch stage status if there was a status change.
938        _status = updateFetchStatus();
939    }
940
941    // Issue the next I-cache request if possible.
942    for (ThreadID i = 0; i < numThreads; ++i) {
943        if (issuePipelinedIfetch[i]) {
944            pipelineIcacheAccesses(i);
945        }
946    }
947
948    // Send instructions enqueued into the fetch queue to decode.
949    // Limit rate by fetchWidth.  Stall if decode is stalled.
950    unsigned insts_to_decode = 0;
951    unsigned available_insts = 0;
952
953    for (auto tid : *activeThreads) {
954        if (!stalls[tid].decode) {
955            available_insts += fetchQueue[tid].size();
956        }
957    }
958
959    // Pick a random thread to start trying to grab instructions from
960    auto tid_itr = activeThreads->begin();
961    std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
962
963    while (available_insts != 0 && insts_to_decode < decodeWidth) {
964        ThreadID tid = *tid_itr;
965        if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
966            const auto& inst = fetchQueue[tid].front();
967            toDecode->insts[toDecode->size++] = inst;
968            DPRINTF(Fetch, "[tid:%i] [sn:%llu] Sending instruction to decode "
969                    "from fetch queue. Fetch queue size: %i.\n",
970                    tid, inst->seqNum, fetchQueue[tid].size());
971
972            wroteToTimeBuffer = true;
973            fetchQueue[tid].pop_front();
974            insts_to_decode++;
975            available_insts--;
976        }
977
978        tid_itr++;
979        // Wrap around if at end of active threads list
980        if (tid_itr == activeThreads->end())
981            tid_itr = activeThreads->begin();
982    }
983
984    // If there was activity this cycle, inform the CPU of it.
985    if (wroteToTimeBuffer) {
986        DPRINTF(Activity, "Activity this cycle.\n");
987        cpu->activityThisCycle();
988    }
989
990    // Reset the number of the instruction we've fetched.
991    numInst = 0;
992}
993
994template <class Impl>
995bool
996DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
997{
998    // Update the per thread stall statuses.
999    if (fromDecode->decodeBlock[tid]) {
1000        stalls[tid].decode = true;
1001    }
1002
1003    if (fromDecode->decodeUnblock[tid]) {
1004        assert(stalls[tid].decode);
1005        assert(!fromDecode->decodeBlock[tid]);
1006        stalls[tid].decode = false;
1007    }
1008
1009    // Check squash signals from commit.
1010    if (fromCommit->commitInfo[tid].squash) {
1011
1012        DPRINTF(Fetch, "[tid:%i] Squashing instructions due to squash "
1013                "from commit.\n",tid);
1014        // In any case, squash.
1015        squash(fromCommit->commitInfo[tid].pc,
1016               fromCommit->commitInfo[tid].doneSeqNum,
1017               fromCommit->commitInfo[tid].squashInst, tid);
1018
1019        // If it was a branch mispredict on a control instruction, update the
1020        // branch predictor with that instruction, otherwise just kill the
1021        // invalid state we generated in after sequence number
1022        if (fromCommit->commitInfo[tid].mispredictInst &&
1023            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1024            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1025                              fromCommit->commitInfo[tid].pc,
1026                              fromCommit->commitInfo[tid].branchTaken,
1027                              tid);
1028        } else {
1029            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1030                              tid);
1031        }
1032
1033        return true;
1034    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1035        // Update the branch predictor if it wasn't a squashed instruction
1036        // that was broadcasted.
1037        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1038    }
1039
1040    // Check squash signals from decode.
1041    if (fromDecode->decodeInfo[tid].squash) {
1042        DPRINTF(Fetch, "[tid:%i] Squashing instructions due to squash "
1043                "from decode.\n",tid);
1044
1045        // Update the branch predictor.
1046        if (fromDecode->decodeInfo[tid].branchMispredict) {
1047            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1048                              fromDecode->decodeInfo[tid].nextPC,
1049                              fromDecode->decodeInfo[tid].branchTaken,
1050                              tid);
1051        } else {
1052            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1053                              tid);
1054        }
1055
1056        if (fetchStatus[tid] != Squashing) {
1057
1058            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1059                fromDecode->decodeInfo[tid].nextPC);
1060            // Squash unless we're already squashing
1061            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1062                             fromDecode->decodeInfo[tid].squashInst,
1063                             fromDecode->decodeInfo[tid].doneSeqNum,
1064                             tid);
1065
1066            return true;
1067        }
1068    }
1069
1070    if (checkStall(tid) &&
1071        fetchStatus[tid] != IcacheWaitResponse &&
1072        fetchStatus[tid] != IcacheWaitRetry &&
1073        fetchStatus[tid] != ItlbWait &&
1074        fetchStatus[tid] != QuiescePending) {
1075        DPRINTF(Fetch, "[tid:%i] Setting to blocked\n",tid);
1076
1077        fetchStatus[tid] = Blocked;
1078
1079        return true;
1080    }
1081
1082    if (fetchStatus[tid] == Blocked ||
1083        fetchStatus[tid] == Squashing) {
1084        // Switch status to running if fetch isn't being told to block or
1085        // squash this cycle.
1086        DPRINTF(Fetch, "[tid:%i] Done squashing, switching to running.\n",
1087                tid);
1088
1089        fetchStatus[tid] = Running;
1090
1091        return true;
1092    }
1093
1094    // If we've reached this point, we have not gotten any signals that
1095    // cause fetch to change its status.  Fetch remains the same as before.
1096    return false;
1097}
1098
1099template<class Impl>
1100typename Impl::DynInstPtr
1101DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1102                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1103                              TheISA::PCState nextPC, bool trace)
1104{
1105    // Get a sequence number.
1106    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1107
1108    // Create a new DynInst from the instruction fetched.
1109    DynInstPtr instruction =
1110        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1111    instruction->setTid(tid);
1112
1113    instruction->setASID(tid);
1114
1115    instruction->setThreadState(cpu->thread[tid]);
1116
1117    DPRINTF(Fetch, "[tid:%i] Instruction PC %#x (%d) created "
1118            "[sn:%lli].\n", tid, thisPC.instAddr(),
1119            thisPC.microPC(), seq);
1120
1121    DPRINTF(Fetch, "[tid:%i] Instruction is: %s\n", tid,
1122            instruction->staticInst->
1123            disassemble(thisPC.instAddr()));
1124
1125#if TRACING_ON
1126    if (trace) {
1127        instruction->traceData =
1128            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1129                    instruction->staticInst, thisPC, curMacroop);
1130    }
1131#else
1132    instruction->traceData = NULL;
1133#endif
1134
1135    // Add instruction to the CPU's list of instructions.
1136    instruction->setInstListIt(cpu->addInst(instruction));
1137
1138    // Write the instruction to the first slot in the queue
1139    // that heads to decode.
1140    assert(numInst < fetchWidth);
1141    fetchQueue[tid].push_back(instruction);
1142    assert(fetchQueue[tid].size() <= fetchQueueSize);
1143    DPRINTF(Fetch, "[tid:%i] Fetch queue entry created (%i/%i).\n",
1144            tid, fetchQueue[tid].size(), fetchQueueSize);
1145    //toDecode->insts[toDecode->size++] = instruction;
1146
1147    // Keep track of if we can take an interrupt at this boundary
1148    delayedCommit[tid] = instruction->isDelayedCommit();
1149
1150    return instruction;
1151}
1152
1153template<class Impl>
1154void
1155DefaultFetch<Impl>::fetch(bool &status_change)
1156{
1157    //////////////////////////////////////////
1158    // Start actual fetch
1159    //////////////////////////////////////////
1160    ThreadID tid = getFetchingThread();
1161
1162    assert(!cpu->switchedOut());
1163
1164    if (tid == InvalidThreadID) {
1165        // Breaks looping condition in tick()
1166        threadFetched = numFetchingThreads;
1167
1168        if (numThreads == 1) {  // @todo Per-thread stats
1169            profileStall(0);
1170        }
1171
1172        return;
1173    }
1174
1175    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1176
1177    // The current PC.
1178    TheISA::PCState thisPC = pc[tid];
1179
1180    Addr pcOffset = fetchOffset[tid];
1181    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1182
1183    bool inRom = isRomMicroPC(thisPC.microPC());
1184
1185    // If returning from the delay of a cache miss, then update the status
1186    // to running, otherwise do the cache access.  Possibly move this up
1187    // to tick() function.
1188    if (fetchStatus[tid] == IcacheAccessComplete) {
1189        DPRINTF(Fetch, "[tid:%i] Icache miss is complete.\n", tid);
1190
1191        fetchStatus[tid] = Running;
1192        status_change = true;
1193    } else if (fetchStatus[tid] == Running) {
1194        // Align the fetch PC so its at the start of a fetch buffer segment.
1195        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1196
1197        // If buffer is no longer valid or fetchAddr has moved to point
1198        // to the next cache block, AND we have no remaining ucode
1199        // from a macro-op, then start fetch from icache.
1200        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1201            && !inRom && !macroop[tid]) {
1202            DPRINTF(Fetch, "[tid:%i] Attempting to translate and read "
1203                    "instruction, starting at PC %s.\n", tid, thisPC);
1204
1205            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1206
1207            if (fetchStatus[tid] == IcacheWaitResponse)
1208                ++icacheStallCycles;
1209            else if (fetchStatus[tid] == ItlbWait)
1210                ++fetchTlbCycles;
1211            else
1212                ++fetchMiscStallCycles;
1213            return;
1214        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1215            // Stall CPU if an interrupt is posted and we're not issuing
1216            // an delayed commit micro-op currently (delayed commit instructions
1217            // are not interruptable by interrupts, only faults)
1218            ++fetchMiscStallCycles;
1219            DPRINTF(Fetch, "[tid:%i] Fetch is stalled!\n", tid);
1220            return;
1221        }
1222    } else {
1223        if (fetchStatus[tid] == Idle) {
1224            ++fetchIdleCycles;
1225            DPRINTF(Fetch, "[tid:%i] Fetch is idle!\n", tid);
1226        }
1227
1228        // Status is Idle, so fetch should do nothing.
1229        return;
1230    }
1231
1232    ++fetchCycles;
1233
1234    TheISA::PCState nextPC = thisPC;
1235
1236    StaticInstPtr staticInst = NULL;
1237    StaticInstPtr curMacroop = macroop[tid];
1238
1239    // If the read of the first instruction was successful, then grab the
1240    // instructions from the rest of the cache line and put them into the
1241    // queue heading to decode.
1242
1243    DPRINTF(Fetch, "[tid:%i] Adding instructions to queue to "
1244            "decode.\n", tid);
1245
1246    // Need to keep track of whether or not a predicted branch
1247    // ended this fetch block.
1248    bool predictedBranch = false;
1249
1250    // Need to halt fetch if quiesce instruction detected
1251    bool quiesce = false;
1252
1253    TheISA::MachInst *cacheInsts =
1254        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1255
1256    const unsigned numInsts = fetchBufferSize / instSize;
1257    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1258
1259    // Loop through instruction memory from the cache.
1260    // Keep issuing while fetchWidth is available and branch is not
1261    // predicted taken
1262    while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1263           && !predictedBranch && !quiesce) {
1264        // We need to process more memory if we aren't going to get a
1265        // StaticInst from the rom, the current macroop, or what's already
1266        // in the decoder.
1267        bool needMem = !inRom && !curMacroop &&
1268            !decoder[tid]->instReady();
1269        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1270        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1271
1272        if (needMem) {
1273            // If buffer is no longer valid or fetchAddr has moved to point
1274            // to the next cache block then start fetch from icache.
1275            if (!fetchBufferValid[tid] ||
1276                fetchBufferBlockPC != fetchBufferPC[tid])
1277                break;
1278
1279            if (blkOffset >= numInsts) {
1280                // We need to process more memory, but we've run out of the
1281                // current block.
1282                break;
1283            }
1284
1285            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1286            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1287
1288            if (decoder[tid]->needMoreBytes()) {
1289                blkOffset++;
1290                fetchAddr += instSize;
1291                pcOffset += instSize;
1292            }
1293        }
1294
1295        // Extract as many instructions and/or microops as we can from
1296        // the memory we've processed so far.
1297        do {
1298            if (!(curMacroop || inRom)) {
1299                if (decoder[tid]->instReady()) {
1300                    staticInst = decoder[tid]->decode(thisPC);
1301
1302                    // Increment stat of fetched instructions.
1303                    ++fetchedInsts;
1304
1305                    if (staticInst->isMacroop()) {
1306                        curMacroop = staticInst;
1307                    } else {
1308                        pcOffset = 0;
1309                    }
1310                } else {
1311                    // We need more bytes for this instruction so blkOffset and
1312                    // pcOffset will be updated
1313                    break;
1314                }
1315            }
1316            // Whether we're moving to a new macroop because we're at the
1317            // end of the current one, or the branch predictor incorrectly
1318            // thinks we are...
1319            bool newMacro = false;
1320            if (curMacroop || inRom) {
1321                if (inRom) {
1322                    staticInst = cpu->microcodeRom.fetchMicroop(
1323                            thisPC.microPC(), curMacroop);
1324                } else {
1325                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1326                }
1327                newMacro |= staticInst->isLastMicroop();
1328            }
1329
1330            DynInstPtr instruction =
1331                buildInst(tid, staticInst, curMacroop,
1332                          thisPC, nextPC, true);
1333
1334            ppFetch->notify(instruction);
1335            numInst++;
1336
1337#if TRACING_ON
1338            if (DTRACE(O3PipeView)) {
1339                instruction->fetchTick = curTick();
1340            }
1341#endif
1342
1343            nextPC = thisPC;
1344
1345            // If we're branching after this instruction, quit fetching
1346            // from the same block.
1347            predictedBranch |= thisPC.branching();
1348            predictedBranch |=
1349                lookupAndUpdateNextPC(instruction, nextPC);
1350            if (predictedBranch) {
1351                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1352            }
1353
1354            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1355
1356            // Move to the next instruction, unless we have a branch.
1357            thisPC = nextPC;
1358            inRom = isRomMicroPC(thisPC.microPC());
1359
1360            if (newMacro) {
1361                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1362                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1363                pcOffset = 0;
1364                curMacroop = NULL;
1365            }
1366
1367            if (instruction->isQuiesce()) {
1368                DPRINTF(Fetch,
1369                        "Quiesce instruction encountered, halting fetch!\n");
1370                fetchStatus[tid] = QuiescePending;
1371                status_change = true;
1372                quiesce = true;
1373                break;
1374            }
1375        } while ((curMacroop || decoder[tid]->instReady()) &&
1376                 numInst < fetchWidth &&
1377                 fetchQueue[tid].size() < fetchQueueSize);
1378
1379        // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1380        // or not.
1381        inRom = isRomMicroPC(thisPC.microPC());
1382    }
1383
1384    if (predictedBranch) {
1385        DPRINTF(Fetch, "[tid:%i] Done fetching, predicted branch "
1386                "instruction encountered.\n", tid);
1387    } else if (numInst >= fetchWidth) {
1388        DPRINTF(Fetch, "[tid:%i] Done fetching, reached fetch bandwidth "
1389                "for this cycle.\n", tid);
1390    } else if (blkOffset >= fetchBufferSize) {
1391        DPRINTF(Fetch, "[tid:%i] Done fetching, reached the end of the"
1392                "fetch buffer.\n", tid);
1393    }
1394
1395    macroop[tid] = curMacroop;
1396    fetchOffset[tid] = pcOffset;
1397
1398    if (numInst > 0) {
1399        wroteToTimeBuffer = true;
1400    }
1401
1402    pc[tid] = thisPC;
1403
1404    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1405    // a state that would preclude fetching
1406    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1407    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1408    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1409        fetchStatus[tid] != IcacheWaitResponse &&
1410        fetchStatus[tid] != ItlbWait &&
1411        fetchStatus[tid] != IcacheWaitRetry &&
1412        fetchStatus[tid] != QuiescePending &&
1413        !curMacroop;
1414}
1415
1416template<class Impl>
1417void
1418DefaultFetch<Impl>::recvReqRetry()
1419{
1420    if (retryPkt != NULL) {
1421        assert(cacheBlocked);
1422        assert(retryTid != InvalidThreadID);
1423        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1424
1425        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1426            fetchStatus[retryTid] = IcacheWaitResponse;
1427            // Notify Fetch Request probe when a retryPkt is successfully sent.
1428            // Note that notify must be called before retryPkt is set to NULL.
1429            ppFetchRequestSent->notify(retryPkt->req);
1430            retryPkt = NULL;
1431            retryTid = InvalidThreadID;
1432            cacheBlocked = false;
1433        }
1434    } else {
1435        assert(retryTid == InvalidThreadID);
1436        // Access has been squashed since it was sent out.  Just clear
1437        // the cache being blocked.
1438        cacheBlocked = false;
1439    }
1440}
1441
1442///////////////////////////////////////
1443//                                   //
1444//  SMT FETCH POLICY MAINTAINED HERE //
1445//                                   //
1446///////////////////////////////////////
1447template<class Impl>
1448ThreadID
1449DefaultFetch<Impl>::getFetchingThread()
1450{
1451    if (numThreads > 1) {
1452        switch (fetchPolicy) {
1453          case FetchPolicy::RoundRobin:
1454            return roundRobin();
1455          case FetchPolicy::IQCount:
1456            return iqCount();
1457          case FetchPolicy::LSQCount:
1458            return lsqCount();
1459          case FetchPolicy::Branch:
1460            return branchCount();
1461          default:
1462            return InvalidThreadID;
1463        }
1464    } else {
1465        list<ThreadID>::iterator thread = activeThreads->begin();
1466        if (thread == activeThreads->end()) {
1467            return InvalidThreadID;
1468        }
1469
1470        ThreadID tid = *thread;
1471
1472        if (fetchStatus[tid] == Running ||
1473            fetchStatus[tid] == IcacheAccessComplete ||
1474            fetchStatus[tid] == Idle) {
1475            return tid;
1476        } else {
1477            return InvalidThreadID;
1478        }
1479    }
1480}
1481
1482
1483template<class Impl>
1484ThreadID
1485DefaultFetch<Impl>::roundRobin()
1486{
1487    list<ThreadID>::iterator pri_iter = priorityList.begin();
1488    list<ThreadID>::iterator end      = priorityList.end();
1489
1490    ThreadID high_pri;
1491
1492    while (pri_iter != end) {
1493        high_pri = *pri_iter;
1494
1495        assert(high_pri <= numThreads);
1496
1497        if (fetchStatus[high_pri] == Running ||
1498            fetchStatus[high_pri] == IcacheAccessComplete ||
1499            fetchStatus[high_pri] == Idle) {
1500
1501            priorityList.erase(pri_iter);
1502            priorityList.push_back(high_pri);
1503
1504            return high_pri;
1505        }
1506
1507        pri_iter++;
1508    }
1509
1510    return InvalidThreadID;
1511}
1512
1513template<class Impl>
1514ThreadID
1515DefaultFetch<Impl>::iqCount()
1516{
1517    //sorted from lowest->highest
1518    std::priority_queue<unsigned,vector<unsigned>,
1519                        std::greater<unsigned> > PQ;
1520    std::map<unsigned, ThreadID> threadMap;
1521
1522    list<ThreadID>::iterator threads = activeThreads->begin();
1523    list<ThreadID>::iterator end = activeThreads->end();
1524
1525    while (threads != end) {
1526        ThreadID tid = *threads++;
1527        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1528
1529        //we can potentially get tid collisions if two threads
1530        //have the same iqCount, but this should be rare.
1531        PQ.push(iqCount);
1532        threadMap[iqCount] = tid;
1533    }
1534
1535    while (!PQ.empty()) {
1536        ThreadID high_pri = threadMap[PQ.top()];
1537
1538        if (fetchStatus[high_pri] == Running ||
1539            fetchStatus[high_pri] == IcacheAccessComplete ||
1540            fetchStatus[high_pri] == Idle)
1541            return high_pri;
1542        else
1543            PQ.pop();
1544
1545    }
1546
1547    return InvalidThreadID;
1548}
1549
1550template<class Impl>
1551ThreadID
1552DefaultFetch<Impl>::lsqCount()
1553{
1554    //sorted from lowest->highest
1555    std::priority_queue<unsigned,vector<unsigned>,
1556                        std::greater<unsigned> > PQ;
1557    std::map<unsigned, ThreadID> threadMap;
1558
1559    list<ThreadID>::iterator threads = activeThreads->begin();
1560    list<ThreadID>::iterator end = activeThreads->end();
1561
1562    while (threads != end) {
1563        ThreadID tid = *threads++;
1564        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1565
1566        //we can potentially get tid collisions if two threads
1567        //have the same iqCount, but this should be rare.
1568        PQ.push(ldstqCount);
1569        threadMap[ldstqCount] = tid;
1570    }
1571
1572    while (!PQ.empty()) {
1573        ThreadID high_pri = threadMap[PQ.top()];
1574
1575        if (fetchStatus[high_pri] == Running ||
1576            fetchStatus[high_pri] == IcacheAccessComplete ||
1577            fetchStatus[high_pri] == Idle)
1578            return high_pri;
1579        else
1580            PQ.pop();
1581    }
1582
1583    return InvalidThreadID;
1584}
1585
1586template<class Impl>
1587ThreadID
1588DefaultFetch<Impl>::branchCount()
1589{
1590    panic("Branch Count Fetch policy unimplemented\n");
1591    return InvalidThreadID;
1592}
1593
1594template<class Impl>
1595void
1596DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1597{
1598    if (!issuePipelinedIfetch[tid]) {
1599        return;
1600    }
1601
1602    // The next PC to access.
1603    TheISA::PCState thisPC = pc[tid];
1604
1605    if (isRomMicroPC(thisPC.microPC())) {
1606        return;
1607    }
1608
1609    Addr pcOffset = fetchOffset[tid];
1610    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1611
1612    // Align the fetch PC so its at the start of a fetch buffer segment.
1613    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1614
1615    // Unless buffer already got the block, fetch it from icache.
1616    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1617        DPRINTF(Fetch, "[tid:%i] Issuing a pipelined I-cache access, "
1618                "starting at PC %s.\n", tid, thisPC);
1619
1620        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1621    }
1622}
1623
1624template<class Impl>
1625void
1626DefaultFetch<Impl>::profileStall(ThreadID tid) {
1627    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1628
1629    // @todo Per-thread stats
1630
1631    if (stalls[tid].drain) {
1632        ++fetchPendingDrainCycles;
1633        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1634    } else if (activeThreads->empty()) {
1635        ++fetchNoActiveThreadStallCycles;
1636        DPRINTF(Fetch, "Fetch has no active thread!\n");
1637    } else if (fetchStatus[tid] == Blocked) {
1638        ++fetchBlockedCycles;
1639        DPRINTF(Fetch, "[tid:%i] Fetch is blocked!\n", tid);
1640    } else if (fetchStatus[tid] == Squashing) {
1641        ++fetchSquashCycles;
1642        DPRINTF(Fetch, "[tid:%i] Fetch is squashing!\n", tid);
1643    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1644        ++icacheStallCycles;
1645        DPRINTF(Fetch, "[tid:%i] Fetch is waiting cache response!\n",
1646                tid);
1647    } else if (fetchStatus[tid] == ItlbWait) {
1648        ++fetchTlbCycles;
1649        DPRINTF(Fetch, "[tid:%i] Fetch is waiting ITLB walk to "
1650                "finish!\n", tid);
1651    } else if (fetchStatus[tid] == TrapPending) {
1652        ++fetchPendingTrapStallCycles;
1653        DPRINTF(Fetch, "[tid:%i] Fetch is waiting for a pending trap!\n",
1654                tid);
1655    } else if (fetchStatus[tid] == QuiescePending) {
1656        ++fetchPendingQuiesceStallCycles;
1657        DPRINTF(Fetch, "[tid:%i] Fetch is waiting for a pending quiesce "
1658                "instruction!\n", tid);
1659    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1660        ++fetchIcacheWaitRetryStallCycles;
1661        DPRINTF(Fetch, "[tid:%i] Fetch is waiting for an I-cache retry!\n",
1662                tid);
1663    } else if (fetchStatus[tid] == NoGoodAddr) {
1664            DPRINTF(Fetch, "[tid:%i] Fetch predicted non-executable address\n",
1665                    tid);
1666    } else {
1667        DPRINTF(Fetch, "[tid:%i] Unexpected fetch stall reason "
1668            "(Status: %i)\n",
1669            tid, fetchStatus[tid]);
1670    }
1671}
1672
1673#endif//__CPU_O3_FETCH_IMPL_HH__
1674