fetch_impl.hh revision 11650:fe601d7bd955
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/isa_traits.hh"
55#include "arch/tlb.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/fetch.hh"
64#include "cpu/exetrace.hh"
65#include "debug/Activity.hh"
66#include "debug/Drain.hh"
67#include "debug/Fetch.hh"
68#include "debug/O3PipeView.hh"
69#include "mem/packet.hh"
70#include "params/DerivO3CPU.hh"
71#include "sim/byteswap.hh"
72#include "sim/core.hh"
73#include "sim/eventq.hh"
74#include "sim/full_system.hh"
75#include "sim/system.hh"
76#include "cpu/o3/isa_specific.hh"
77
78using namespace std;
79
80template<class Impl>
81DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
82    : cpu(_cpu),
83      decodeToFetchDelay(params->decodeToFetchDelay),
84      renameToFetchDelay(params->renameToFetchDelay),
85      iewToFetchDelay(params->iewToFetchDelay),
86      commitToFetchDelay(params->commitToFetchDelay),
87      fetchWidth(params->fetchWidth),
88      decodeWidth(params->decodeWidth),
89      retryPkt(NULL),
90      retryTid(InvalidThreadID),
91      cacheBlkSize(cpu->cacheLineSize()),
92      fetchBufferSize(params->fetchBufferSize),
93      fetchBufferMask(fetchBufferSize - 1),
94      fetchQueueSize(params->fetchQueueSize),
95      numThreads(params->numThreads),
96      numFetchingThreads(params->smtNumFetchingThreads),
97      finishTranslationEvent(this)
98{
99    if (numThreads > Impl::MaxThreads)
100        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
101              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
102              numThreads, static_cast<int>(Impl::MaxThreads));
103    if (fetchWidth > Impl::MaxWidth)
104        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
105             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
106             fetchWidth, static_cast<int>(Impl::MaxWidth));
107    if (fetchBufferSize > cacheBlkSize)
108        fatal("fetch buffer size (%u bytes) is greater than the cache "
109              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
110    if (cacheBlkSize % fetchBufferSize)
111        fatal("cache block (%u bytes) is not a multiple of the "
112              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
113
114    std::string policy = params->smtFetchPolicy;
115
116    // Convert string to lowercase
117    std::transform(policy.begin(), policy.end(), policy.begin(),
118                   (int(*)(int)) tolower);
119
120    // Figure out fetch policy
121    if (policy == "singlethread") {
122        fetchPolicy = SingleThread;
123        if (numThreads > 1)
124            panic("Invalid Fetch Policy for a SMT workload.");
125    } else if (policy == "roundrobin") {
126        fetchPolicy = RoundRobin;
127        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
128    } else if (policy == "branch") {
129        fetchPolicy = Branch;
130        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
131    } else if (policy == "iqcount") {
132        fetchPolicy = IQ;
133        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
134    } else if (policy == "lsqcount") {
135        fetchPolicy = LSQ;
136        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
137    } else {
138        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
139              " RoundRobin,LSQcount,IQcount}\n");
140    }
141
142    // Get the size of an instruction.
143    instSize = sizeof(TheISA::MachInst);
144
145    for (int i = 0; i < Impl::MaxThreads; i++) {
146        decoder[i] = NULL;
147        fetchBuffer[i] = NULL;
148        fetchBufferPC[i] = 0;
149        fetchBufferValid[i] = false;
150    }
151
152    branchPred = params->branchPred;
153
154    for (ThreadID tid = 0; tid < numThreads; tid++) {
155        decoder[tid] = new TheISA::Decoder(params->isa[tid]);
156        // Create space to buffer the cache line data,
157        // which may not hold the entire cache line.
158        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
159    }
160}
161
162template <class Impl>
163std::string
164DefaultFetch<Impl>::name() const
165{
166    return cpu->name() + ".fetch";
167}
168
169template <class Impl>
170void
171DefaultFetch<Impl>::regProbePoints()
172{
173    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
174    ppFetchRequestSent = new ProbePointArg<RequestPtr>(cpu->getProbeManager(),
175                                                       "FetchRequest");
176
177}
178
179template <class Impl>
180void
181DefaultFetch<Impl>::regStats()
182{
183    icacheStallCycles
184        .name(name() + ".icacheStallCycles")
185        .desc("Number of cycles fetch is stalled on an Icache miss")
186        .prereq(icacheStallCycles);
187
188    fetchedInsts
189        .name(name() + ".Insts")
190        .desc("Number of instructions fetch has processed")
191        .prereq(fetchedInsts);
192
193    fetchedBranches
194        .name(name() + ".Branches")
195        .desc("Number of branches that fetch encountered")
196        .prereq(fetchedBranches);
197
198    predictedBranches
199        .name(name() + ".predictedBranches")
200        .desc("Number of branches that fetch has predicted taken")
201        .prereq(predictedBranches);
202
203    fetchCycles
204        .name(name() + ".Cycles")
205        .desc("Number of cycles fetch has run and was not squashing or"
206              " blocked")
207        .prereq(fetchCycles);
208
209    fetchSquashCycles
210        .name(name() + ".SquashCycles")
211        .desc("Number of cycles fetch has spent squashing")
212        .prereq(fetchSquashCycles);
213
214    fetchTlbCycles
215        .name(name() + ".TlbCycles")
216        .desc("Number of cycles fetch has spent waiting for tlb")
217        .prereq(fetchTlbCycles);
218
219    fetchIdleCycles
220        .name(name() + ".IdleCycles")
221        .desc("Number of cycles fetch was idle")
222        .prereq(fetchIdleCycles);
223
224    fetchBlockedCycles
225        .name(name() + ".BlockedCycles")
226        .desc("Number of cycles fetch has spent blocked")
227        .prereq(fetchBlockedCycles);
228
229    fetchedCacheLines
230        .name(name() + ".CacheLines")
231        .desc("Number of cache lines fetched")
232        .prereq(fetchedCacheLines);
233
234    fetchMiscStallCycles
235        .name(name() + ".MiscStallCycles")
236        .desc("Number of cycles fetch has spent waiting on interrupts, or "
237              "bad addresses, or out of MSHRs")
238        .prereq(fetchMiscStallCycles);
239
240    fetchPendingDrainCycles
241        .name(name() + ".PendingDrainCycles")
242        .desc("Number of cycles fetch has spent waiting on pipes to drain")
243        .prereq(fetchPendingDrainCycles);
244
245    fetchNoActiveThreadStallCycles
246        .name(name() + ".NoActiveThreadStallCycles")
247        .desc("Number of stall cycles due to no active thread to fetch from")
248        .prereq(fetchNoActiveThreadStallCycles);
249
250    fetchPendingTrapStallCycles
251        .name(name() + ".PendingTrapStallCycles")
252        .desc("Number of stall cycles due to pending traps")
253        .prereq(fetchPendingTrapStallCycles);
254
255    fetchPendingQuiesceStallCycles
256        .name(name() + ".PendingQuiesceStallCycles")
257        .desc("Number of stall cycles due to pending quiesce instructions")
258        .prereq(fetchPendingQuiesceStallCycles);
259
260    fetchIcacheWaitRetryStallCycles
261        .name(name() + ".IcacheWaitRetryStallCycles")
262        .desc("Number of stall cycles due to full MSHR")
263        .prereq(fetchIcacheWaitRetryStallCycles);
264
265    fetchIcacheSquashes
266        .name(name() + ".IcacheSquashes")
267        .desc("Number of outstanding Icache misses that were squashed")
268        .prereq(fetchIcacheSquashes);
269
270    fetchTlbSquashes
271        .name(name() + ".ItlbSquashes")
272        .desc("Number of outstanding ITLB misses that were squashed")
273        .prereq(fetchTlbSquashes);
274
275    fetchNisnDist
276        .init(/* base value */ 0,
277              /* last value */ fetchWidth,
278              /* bucket size */ 1)
279        .name(name() + ".rateDist")
280        .desc("Number of instructions fetched each cycle (Total)")
281        .flags(Stats::pdf);
282
283    idleRate
284        .name(name() + ".idleRate")
285        .desc("Percent of cycles fetch was idle")
286        .prereq(idleRate);
287    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
288
289    branchRate
290        .name(name() + ".branchRate")
291        .desc("Number of branch fetches per cycle")
292        .flags(Stats::total);
293    branchRate = fetchedBranches / cpu->numCycles;
294
295    fetchRate
296        .name(name() + ".rate")
297        .desc("Number of inst fetches per cycle")
298        .flags(Stats::total);
299    fetchRate = fetchedInsts / cpu->numCycles;
300}
301
302template<class Impl>
303void
304DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
305{
306    timeBuffer = time_buffer;
307
308    // Create wires to get information from proper places in time buffer.
309    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
310    fromRename = timeBuffer->getWire(-renameToFetchDelay);
311    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
312    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
313}
314
315template<class Impl>
316void
317DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
318{
319    activeThreads = at_ptr;
320}
321
322template<class Impl>
323void
324DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
325{
326    // Create wire to write information to proper place in fetch time buf.
327    toDecode = ftb_ptr->getWire(0);
328}
329
330template<class Impl>
331void
332DefaultFetch<Impl>::startupStage()
333{
334    assert(priorityList.empty());
335    resetStage();
336
337    // Fetch needs to start fetching instructions at the very beginning,
338    // so it must start up in active state.
339    switchToActive();
340}
341
342template<class Impl>
343void
344DefaultFetch<Impl>::resetStage()
345{
346    numInst = 0;
347    interruptPending = false;
348    cacheBlocked = false;
349
350    priorityList.clear();
351
352    // Setup PC and nextPC with initial state.
353    for (ThreadID tid = 0; tid < numThreads; ++tid) {
354        fetchStatus[tid] = Running;
355        pc[tid] = cpu->pcState(tid);
356        fetchOffset[tid] = 0;
357        macroop[tid] = NULL;
358
359        delayedCommit[tid] = false;
360        memReq[tid] = NULL;
361
362        stalls[tid].decode = false;
363        stalls[tid].drain = false;
364
365        fetchBufferPC[tid] = 0;
366        fetchBufferValid[tid] = false;
367
368        fetchQueue[tid].clear();
369
370        priorityList.push_back(tid);
371    }
372
373    wroteToTimeBuffer = false;
374    _status = Inactive;
375}
376
377template<class Impl>
378void
379DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
380{
381    ThreadID tid = cpu->contextToThread(pkt->req->contextId());
382
383    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
384    assert(!cpu->switchedOut());
385
386    // Only change the status if it's still waiting on the icache access
387    // to return.
388    if (fetchStatus[tid] != IcacheWaitResponse ||
389        pkt->req != memReq[tid]) {
390        ++fetchIcacheSquashes;
391        delete pkt->req;
392        delete pkt;
393        return;
394    }
395
396    memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
397    fetchBufferValid[tid] = true;
398
399    // Wake up the CPU (if it went to sleep and was waiting on
400    // this completion event).
401    cpu->wakeCPU();
402
403    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
404            tid);
405
406    switchToActive();
407
408    // Only switch to IcacheAccessComplete if we're not stalled as well.
409    if (checkStall(tid)) {
410        fetchStatus[tid] = Blocked;
411    } else {
412        fetchStatus[tid] = IcacheAccessComplete;
413    }
414
415    pkt->req->setAccessLatency();
416    cpu->ppInstAccessComplete->notify(pkt);
417    // Reset the mem req to NULL.
418    delete pkt->req;
419    delete pkt;
420    memReq[tid] = NULL;
421}
422
423template <class Impl>
424void
425DefaultFetch<Impl>::drainResume()
426{
427    for (ThreadID i = 0; i < numThreads; ++i) {
428        stalls[i].decode = false;
429        stalls[i].drain = false;
430    }
431}
432
433template <class Impl>
434void
435DefaultFetch<Impl>::drainSanityCheck() const
436{
437    assert(isDrained());
438    assert(retryPkt == NULL);
439    assert(retryTid == InvalidThreadID);
440    assert(!cacheBlocked);
441    assert(!interruptPending);
442
443    for (ThreadID i = 0; i < numThreads; ++i) {
444        assert(!memReq[i]);
445        assert(fetchStatus[i] == Idle || stalls[i].drain);
446    }
447
448    branchPred->drainSanityCheck();
449}
450
451template <class Impl>
452bool
453DefaultFetch<Impl>::isDrained() const
454{
455    /* Make sure that threads are either idle of that the commit stage
456     * has signaled that draining has completed by setting the drain
457     * stall flag. This effectively forces the pipeline to be disabled
458     * until the whole system is drained (simulation may continue to
459     * drain other components).
460     */
461    for (ThreadID i = 0; i < numThreads; ++i) {
462        // Verify fetch queues are drained
463        if (!fetchQueue[i].empty())
464            return false;
465
466        // Return false if not idle or drain stalled
467        if (fetchStatus[i] != Idle) {
468            if (fetchStatus[i] == Blocked && stalls[i].drain)
469                continue;
470            else
471                return false;
472        }
473    }
474
475    /* The pipeline might start up again in the middle of the drain
476     * cycle if the finish translation event is scheduled, so make
477     * sure that's not the case.
478     */
479    return !finishTranslationEvent.scheduled();
480}
481
482template <class Impl>
483void
484DefaultFetch<Impl>::takeOverFrom()
485{
486    assert(cpu->getInstPort().isConnected());
487    resetStage();
488
489}
490
491template <class Impl>
492void
493DefaultFetch<Impl>::drainStall(ThreadID tid)
494{
495    assert(cpu->isDraining());
496    assert(!stalls[tid].drain);
497    DPRINTF(Drain, "%i: Thread drained.\n", tid);
498    stalls[tid].drain = true;
499}
500
501template <class Impl>
502void
503DefaultFetch<Impl>::wakeFromQuiesce()
504{
505    DPRINTF(Fetch, "Waking up from quiesce\n");
506    // Hopefully this is safe
507    // @todo: Allow other threads to wake from quiesce.
508    fetchStatus[0] = Running;
509}
510
511template <class Impl>
512inline void
513DefaultFetch<Impl>::switchToActive()
514{
515    if (_status == Inactive) {
516        DPRINTF(Activity, "Activating stage.\n");
517
518        cpu->activateStage(O3CPU::FetchIdx);
519
520        _status = Active;
521    }
522}
523
524template <class Impl>
525inline void
526DefaultFetch<Impl>::switchToInactive()
527{
528    if (_status == Active) {
529        DPRINTF(Activity, "Deactivating stage.\n");
530
531        cpu->deactivateStage(O3CPU::FetchIdx);
532
533        _status = Inactive;
534    }
535}
536
537template <class Impl>
538void
539DefaultFetch<Impl>::deactivateThread(ThreadID tid)
540{
541    // Update priority list
542    auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
543    if (thread_it != priorityList.end()) {
544        priorityList.erase(thread_it);
545    }
546}
547
548template <class Impl>
549bool
550DefaultFetch<Impl>::lookupAndUpdateNextPC(
551        DynInstPtr &inst, TheISA::PCState &nextPC)
552{
553    // Do branch prediction check here.
554    // A bit of a misnomer...next_PC is actually the current PC until
555    // this function updates it.
556    bool predict_taken;
557
558    if (!inst->isControl()) {
559        TheISA::advancePC(nextPC, inst->staticInst);
560        inst->setPredTarg(nextPC);
561        inst->setPredTaken(false);
562        return false;
563    }
564
565    ThreadID tid = inst->threadNumber;
566    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
567                                        nextPC, tid);
568
569    if (predict_taken) {
570        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
571                tid, inst->seqNum, nextPC);
572    } else {
573        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
574                tid, inst->seqNum);
575    }
576
577    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
578            tid, inst->seqNum, nextPC);
579    inst->setPredTarg(nextPC);
580    inst->setPredTaken(predict_taken);
581
582    ++fetchedBranches;
583
584    if (predict_taken) {
585        ++predictedBranches;
586    }
587
588    return predict_taken;
589}
590
591template <class Impl>
592bool
593DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
594{
595    Fault fault = NoFault;
596
597    assert(!cpu->switchedOut());
598
599    // @todo: not sure if these should block translation.
600    //AlphaDep
601    if (cacheBlocked) {
602        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
603                tid);
604        return false;
605    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
606        // Hold off fetch from getting new instructions when:
607        // Cache is blocked, or
608        // while an interrupt is pending and we're not in PAL mode, or
609        // fetch is switched out.
610        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
611                tid);
612        return false;
613    }
614
615    // Align the fetch address to the start of a fetch buffer segment.
616    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
617
618    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
619            tid, fetchBufferBlockPC, vaddr);
620
621    // Setup the memReq to do a read of the first instruction's address.
622    // Set the appropriate read size and flags as well.
623    // Build request here.
624    RequestPtr mem_req =
625        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
626                    Request::INST_FETCH, cpu->instMasterId(), pc,
627                    cpu->thread[tid]->contextId());
628
629    mem_req->taskId(cpu->taskId());
630
631    memReq[tid] = mem_req;
632
633    // Initiate translation of the icache block
634    fetchStatus[tid] = ItlbWait;
635    FetchTranslation *trans = new FetchTranslation(this);
636    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
637                              trans, BaseTLB::Execute);
638    return true;
639}
640
641template <class Impl>
642void
643DefaultFetch<Impl>::finishTranslation(const Fault &fault, RequestPtr mem_req)
644{
645    ThreadID tid = cpu->contextToThread(mem_req->contextId());
646    Addr fetchBufferBlockPC = mem_req->getVaddr();
647
648    assert(!cpu->switchedOut());
649
650    // Wake up CPU if it was idle
651    cpu->wakeCPU();
652
653    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
654        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
655        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
656                tid);
657        ++fetchTlbSquashes;
658        delete mem_req;
659        return;
660    }
661
662
663    // If translation was successful, attempt to read the icache block.
664    if (fault == NoFault) {
665        // Check that we're not going off into random memory
666        // If we have, just wait around for commit to squash something and put
667        // us on the right track
668        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
669            warn("Address %#x is outside of physical memory, stopping fetch\n",
670                    mem_req->getPaddr());
671            fetchStatus[tid] = NoGoodAddr;
672            delete mem_req;
673            memReq[tid] = NULL;
674            return;
675        }
676
677        // Build packet here.
678        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
679        data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
680
681        fetchBufferPC[tid] = fetchBufferBlockPC;
682        fetchBufferValid[tid] = false;
683        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
684
685        fetchedCacheLines++;
686
687        // Access the cache.
688        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
689            assert(retryPkt == NULL);
690            assert(retryTid == InvalidThreadID);
691            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
692
693            fetchStatus[tid] = IcacheWaitRetry;
694            retryPkt = data_pkt;
695            retryTid = tid;
696            cacheBlocked = true;
697        } else {
698            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
699            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
700                    "response.\n", tid);
701            lastIcacheStall[tid] = curTick();
702            fetchStatus[tid] = IcacheWaitResponse;
703            // Notify Fetch Request probe when a packet containing a fetch
704            // request is successfully sent
705            ppFetchRequestSent->notify(mem_req);
706        }
707    } else {
708        // Don't send an instruction to decode if we can't handle it.
709        if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
710            assert(!finishTranslationEvent.scheduled());
711            finishTranslationEvent.setFault(fault);
712            finishTranslationEvent.setReq(mem_req);
713            cpu->schedule(finishTranslationEvent,
714                          cpu->clockEdge(Cycles(1)));
715            return;
716        }
717        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
718                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
719        // Translation faulted, icache request won't be sent.
720        delete mem_req;
721        memReq[tid] = NULL;
722
723        // Send the fault to commit.  This thread will not do anything
724        // until commit handles the fault.  The only other way it can
725        // wake up is if a squash comes along and changes the PC.
726        TheISA::PCState fetchPC = pc[tid];
727
728        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
729        // We will use a nop in ordier to carry the fault.
730        DynInstPtr instruction = buildInst(tid,
731                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
732                NULL, fetchPC, fetchPC, false);
733
734        instruction->setPredTarg(fetchPC);
735        instruction->fault = fault;
736        wroteToTimeBuffer = true;
737
738        DPRINTF(Activity, "Activity this cycle.\n");
739        cpu->activityThisCycle();
740
741        fetchStatus[tid] = TrapPending;
742
743        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
744        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
745                tid, fault->name(), pc[tid]);
746    }
747    _status = updateFetchStatus();
748}
749
750template <class Impl>
751inline void
752DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
753                             const DynInstPtr squashInst, ThreadID tid)
754{
755    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
756            tid, newPC);
757
758    pc[tid] = newPC;
759    fetchOffset[tid] = 0;
760    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
761        macroop[tid] = squashInst->macroop;
762    else
763        macroop[tid] = NULL;
764    decoder[tid]->reset();
765
766    // Clear the icache miss if it's outstanding.
767    if (fetchStatus[tid] == IcacheWaitResponse) {
768        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
769                tid);
770        memReq[tid] = NULL;
771    } else if (fetchStatus[tid] == ItlbWait) {
772        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
773                tid);
774        memReq[tid] = NULL;
775    }
776
777    // Get rid of the retrying packet if it was from this thread.
778    if (retryTid == tid) {
779        assert(cacheBlocked);
780        if (retryPkt) {
781            delete retryPkt->req;
782            delete retryPkt;
783        }
784        retryPkt = NULL;
785        retryTid = InvalidThreadID;
786    }
787
788    fetchStatus[tid] = Squashing;
789
790    // Empty fetch queue
791    fetchQueue[tid].clear();
792
793    // microops are being squashed, it is not known wheather the
794    // youngest non-squashed microop was  marked delayed commit
795    // or not. Setting the flag to true ensures that the
796    // interrupts are not handled when they cannot be, though
797    // some opportunities to handle interrupts may be missed.
798    delayedCommit[tid] = true;
799
800    ++fetchSquashCycles;
801}
802
803template<class Impl>
804void
805DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
806                                     const DynInstPtr squashInst,
807                                     const InstSeqNum seq_num, ThreadID tid)
808{
809    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
810
811    doSquash(newPC, squashInst, tid);
812
813    // Tell the CPU to remove any instructions that are in flight between
814    // fetch and decode.
815    cpu->removeInstsUntil(seq_num, tid);
816}
817
818template<class Impl>
819bool
820DefaultFetch<Impl>::checkStall(ThreadID tid) const
821{
822    bool ret_val = false;
823
824    if (stalls[tid].drain) {
825        assert(cpu->isDraining());
826        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
827        ret_val = true;
828    }
829
830    return ret_val;
831}
832
833template<class Impl>
834typename DefaultFetch<Impl>::FetchStatus
835DefaultFetch<Impl>::updateFetchStatus()
836{
837    //Check Running
838    list<ThreadID>::iterator threads = activeThreads->begin();
839    list<ThreadID>::iterator end = activeThreads->end();
840
841    while (threads != end) {
842        ThreadID tid = *threads++;
843
844        if (fetchStatus[tid] == Running ||
845            fetchStatus[tid] == Squashing ||
846            fetchStatus[tid] == IcacheAccessComplete) {
847
848            if (_status == Inactive) {
849                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
850
851                if (fetchStatus[tid] == IcacheAccessComplete) {
852                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
853                            "completion\n",tid);
854                }
855
856                cpu->activateStage(O3CPU::FetchIdx);
857            }
858
859            return Active;
860        }
861    }
862
863    // Stage is switching from active to inactive, notify CPU of it.
864    if (_status == Active) {
865        DPRINTF(Activity, "Deactivating stage.\n");
866
867        cpu->deactivateStage(O3CPU::FetchIdx);
868    }
869
870    return Inactive;
871}
872
873template <class Impl>
874void
875DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
876                           const InstSeqNum seq_num, DynInstPtr squashInst,
877                           ThreadID tid)
878{
879    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
880
881    doSquash(newPC, squashInst, tid);
882
883    // Tell the CPU to remove any instructions that are not in the ROB.
884    cpu->removeInstsNotInROB(tid);
885}
886
887template <class Impl>
888void
889DefaultFetch<Impl>::tick()
890{
891    list<ThreadID>::iterator threads = activeThreads->begin();
892    list<ThreadID>::iterator end = activeThreads->end();
893    bool status_change = false;
894
895    wroteToTimeBuffer = false;
896
897    for (ThreadID i = 0; i < numThreads; ++i) {
898        issuePipelinedIfetch[i] = false;
899    }
900
901    while (threads != end) {
902        ThreadID tid = *threads++;
903
904        // Check the signals for each thread to determine the proper status
905        // for each thread.
906        bool updated_status = checkSignalsAndUpdate(tid);
907        status_change =  status_change || updated_status;
908    }
909
910    DPRINTF(Fetch, "Running stage.\n");
911
912    if (FullSystem) {
913        if (fromCommit->commitInfo[0].interruptPending) {
914            interruptPending = true;
915        }
916
917        if (fromCommit->commitInfo[0].clearInterrupt) {
918            interruptPending = false;
919        }
920    }
921
922    for (threadFetched = 0; threadFetched < numFetchingThreads;
923         threadFetched++) {
924        // Fetch each of the actively fetching threads.
925        fetch(status_change);
926    }
927
928    // Record number of instructions fetched this cycle for distribution.
929    fetchNisnDist.sample(numInst);
930
931    if (status_change) {
932        // Change the fetch stage status if there was a status change.
933        _status = updateFetchStatus();
934    }
935
936    // Issue the next I-cache request if possible.
937    for (ThreadID i = 0; i < numThreads; ++i) {
938        if (issuePipelinedIfetch[i]) {
939            pipelineIcacheAccesses(i);
940        }
941    }
942
943    // Send instructions enqueued into the fetch queue to decode.
944    // Limit rate by fetchWidth.  Stall if decode is stalled.
945    unsigned insts_to_decode = 0;
946    unsigned available_insts = 0;
947
948    for (auto tid : *activeThreads) {
949        if (!stalls[tid].decode) {
950            available_insts += fetchQueue[tid].size();
951        }
952    }
953
954    // Pick a random thread to start trying to grab instructions from
955    auto tid_itr = activeThreads->begin();
956    std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
957
958    while (available_insts != 0 && insts_to_decode < decodeWidth) {
959        ThreadID tid = *tid_itr;
960        if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
961            auto inst = fetchQueue[tid].front();
962            toDecode->insts[toDecode->size++] = inst;
963            DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
964                    "fetch queue. Fetch queue size: %i.\n",
965                    tid, inst->seqNum, fetchQueue[tid].size());
966
967            wroteToTimeBuffer = true;
968            fetchQueue[tid].pop_front();
969            insts_to_decode++;
970            available_insts--;
971        }
972
973        tid_itr++;
974        // Wrap around if at end of active threads list
975        if (tid_itr == activeThreads->end())
976            tid_itr = activeThreads->begin();
977    }
978
979    // If there was activity this cycle, inform the CPU of it.
980    if (wroteToTimeBuffer) {
981        DPRINTF(Activity, "Activity this cycle.\n");
982        cpu->activityThisCycle();
983    }
984
985    // Reset the number of the instruction we've fetched.
986    numInst = 0;
987}
988
989template <class Impl>
990bool
991DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
992{
993    // Update the per thread stall statuses.
994    if (fromDecode->decodeBlock[tid]) {
995        stalls[tid].decode = true;
996    }
997
998    if (fromDecode->decodeUnblock[tid]) {
999        assert(stalls[tid].decode);
1000        assert(!fromDecode->decodeBlock[tid]);
1001        stalls[tid].decode = false;
1002    }
1003
1004    // Check squash signals from commit.
1005    if (fromCommit->commitInfo[tid].squash) {
1006
1007        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1008                "from commit.\n",tid);
1009        // In any case, squash.
1010        squash(fromCommit->commitInfo[tid].pc,
1011               fromCommit->commitInfo[tid].doneSeqNum,
1012               fromCommit->commitInfo[tid].squashInst, tid);
1013
1014        // If it was a branch mispredict on a control instruction, update the
1015        // branch predictor with that instruction, otherwise just kill the
1016        // invalid state we generated in after sequence number
1017        if (fromCommit->commitInfo[tid].mispredictInst &&
1018            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1019            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1020                              fromCommit->commitInfo[tid].pc,
1021                              fromCommit->commitInfo[tid].branchTaken,
1022                              tid);
1023        } else {
1024            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1025                              tid);
1026        }
1027
1028        return true;
1029    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1030        // Update the branch predictor if it wasn't a squashed instruction
1031        // that was broadcasted.
1032        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1033    }
1034
1035    // Check squash signals from decode.
1036    if (fromDecode->decodeInfo[tid].squash) {
1037        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1038                "from decode.\n",tid);
1039
1040        // Update the branch predictor.
1041        if (fromDecode->decodeInfo[tid].branchMispredict) {
1042            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1043                              fromDecode->decodeInfo[tid].nextPC,
1044                              fromDecode->decodeInfo[tid].branchTaken,
1045                              tid);
1046        } else {
1047            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1048                              tid);
1049        }
1050
1051        if (fetchStatus[tid] != Squashing) {
1052
1053            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1054                fromDecode->decodeInfo[tid].nextPC);
1055            // Squash unless we're already squashing
1056            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1057                             fromDecode->decodeInfo[tid].squashInst,
1058                             fromDecode->decodeInfo[tid].doneSeqNum,
1059                             tid);
1060
1061            return true;
1062        }
1063    }
1064
1065    if (checkStall(tid) &&
1066        fetchStatus[tid] != IcacheWaitResponse &&
1067        fetchStatus[tid] != IcacheWaitRetry &&
1068        fetchStatus[tid] != ItlbWait &&
1069        fetchStatus[tid] != QuiescePending) {
1070        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1071
1072        fetchStatus[tid] = Blocked;
1073
1074        return true;
1075    }
1076
1077    if (fetchStatus[tid] == Blocked ||
1078        fetchStatus[tid] == Squashing) {
1079        // Switch status to running if fetch isn't being told to block or
1080        // squash this cycle.
1081        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1082                tid);
1083
1084        fetchStatus[tid] = Running;
1085
1086        return true;
1087    }
1088
1089    // If we've reached this point, we have not gotten any signals that
1090    // cause fetch to change its status.  Fetch remains the same as before.
1091    return false;
1092}
1093
1094template<class Impl>
1095typename Impl::DynInstPtr
1096DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1097                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1098                              TheISA::PCState nextPC, bool trace)
1099{
1100    // Get a sequence number.
1101    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1102
1103    // Create a new DynInst from the instruction fetched.
1104    DynInstPtr instruction =
1105        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1106    instruction->setTid(tid);
1107
1108    instruction->setASID(tid);
1109
1110    instruction->setThreadState(cpu->thread[tid]);
1111
1112    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1113            "[sn:%lli].\n", tid, thisPC.instAddr(),
1114            thisPC.microPC(), seq);
1115
1116    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1117            instruction->staticInst->
1118            disassemble(thisPC.instAddr()));
1119
1120#if TRACING_ON
1121    if (trace) {
1122        instruction->traceData =
1123            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1124                    instruction->staticInst, thisPC, curMacroop);
1125    }
1126#else
1127    instruction->traceData = NULL;
1128#endif
1129
1130    // Add instruction to the CPU's list of instructions.
1131    instruction->setInstListIt(cpu->addInst(instruction));
1132
1133    // Write the instruction to the first slot in the queue
1134    // that heads to decode.
1135    assert(numInst < fetchWidth);
1136    fetchQueue[tid].push_back(instruction);
1137    assert(fetchQueue[tid].size() <= fetchQueueSize);
1138    DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1139            tid, fetchQueue[tid].size(), fetchQueueSize);
1140    //toDecode->insts[toDecode->size++] = instruction;
1141
1142    // Keep track of if we can take an interrupt at this boundary
1143    delayedCommit[tid] = instruction->isDelayedCommit();
1144
1145    return instruction;
1146}
1147
1148template<class Impl>
1149void
1150DefaultFetch<Impl>::fetch(bool &status_change)
1151{
1152    //////////////////////////////////////////
1153    // Start actual fetch
1154    //////////////////////////////////////////
1155    ThreadID tid = getFetchingThread(fetchPolicy);
1156
1157    assert(!cpu->switchedOut());
1158
1159    if (tid == InvalidThreadID) {
1160        // Breaks looping condition in tick()
1161        threadFetched = numFetchingThreads;
1162
1163        if (numThreads == 1) {  // @todo Per-thread stats
1164            profileStall(0);
1165        }
1166
1167        return;
1168    }
1169
1170    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1171
1172    // The current PC.
1173    TheISA::PCState thisPC = pc[tid];
1174
1175    Addr pcOffset = fetchOffset[tid];
1176    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1177
1178    bool inRom = isRomMicroPC(thisPC.microPC());
1179
1180    // If returning from the delay of a cache miss, then update the status
1181    // to running, otherwise do the cache access.  Possibly move this up
1182    // to tick() function.
1183    if (fetchStatus[tid] == IcacheAccessComplete) {
1184        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1185
1186        fetchStatus[tid] = Running;
1187        status_change = true;
1188    } else if (fetchStatus[tid] == Running) {
1189        // Align the fetch PC so its at the start of a fetch buffer segment.
1190        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1191
1192        // If buffer is no longer valid or fetchAddr has moved to point
1193        // to the next cache block, AND we have no remaining ucode
1194        // from a macro-op, then start fetch from icache.
1195        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1196            && !inRom && !macroop[tid]) {
1197            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1198                    "instruction, starting at PC %s.\n", tid, thisPC);
1199
1200            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1201
1202            if (fetchStatus[tid] == IcacheWaitResponse)
1203                ++icacheStallCycles;
1204            else if (fetchStatus[tid] == ItlbWait)
1205                ++fetchTlbCycles;
1206            else
1207                ++fetchMiscStallCycles;
1208            return;
1209        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1210            // Stall CPU if an interrupt is posted and we're not issuing
1211            // an delayed commit micro-op currently (delayed commit instructions
1212            // are not interruptable by interrupts, only faults)
1213            ++fetchMiscStallCycles;
1214            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1215            return;
1216        }
1217    } else {
1218        if (fetchStatus[tid] == Idle) {
1219            ++fetchIdleCycles;
1220            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1221        }
1222
1223        // Status is Idle, so fetch should do nothing.
1224        return;
1225    }
1226
1227    ++fetchCycles;
1228
1229    TheISA::PCState nextPC = thisPC;
1230
1231    StaticInstPtr staticInst = NULL;
1232    StaticInstPtr curMacroop = macroop[tid];
1233
1234    // If the read of the first instruction was successful, then grab the
1235    // instructions from the rest of the cache line and put them into the
1236    // queue heading to decode.
1237
1238    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1239            "decode.\n", tid);
1240
1241    // Need to keep track of whether or not a predicted branch
1242    // ended this fetch block.
1243    bool predictedBranch = false;
1244
1245    // Need to halt fetch if quiesce instruction detected
1246    bool quiesce = false;
1247
1248    TheISA::MachInst *cacheInsts =
1249        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1250
1251    const unsigned numInsts = fetchBufferSize / instSize;
1252    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1253
1254    // Loop through instruction memory from the cache.
1255    // Keep issuing while fetchWidth is available and branch is not
1256    // predicted taken
1257    while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1258           && !predictedBranch && !quiesce) {
1259        // We need to process more memory if we aren't going to get a
1260        // StaticInst from the rom, the current macroop, or what's already
1261        // in the decoder.
1262        bool needMem = !inRom && !curMacroop &&
1263            !decoder[tid]->instReady();
1264        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1265        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1266
1267        if (needMem) {
1268            // If buffer is no longer valid or fetchAddr has moved to point
1269            // to the next cache block then start fetch from icache.
1270            if (!fetchBufferValid[tid] ||
1271                fetchBufferBlockPC != fetchBufferPC[tid])
1272                break;
1273
1274            if (blkOffset >= numInsts) {
1275                // We need to process more memory, but we've run out of the
1276                // current block.
1277                break;
1278            }
1279
1280            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1281                // Walk past any annulled delay slot instructions.
1282                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1283                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1284                    blkOffset++;
1285                    fetchAddr += instSize;
1286                }
1287                if (blkOffset >= numInsts)
1288                    break;
1289            }
1290
1291            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1292            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1293
1294            if (decoder[tid]->needMoreBytes()) {
1295                blkOffset++;
1296                fetchAddr += instSize;
1297                pcOffset += instSize;
1298            }
1299        }
1300
1301        // Extract as many instructions and/or microops as we can from
1302        // the memory we've processed so far.
1303        do {
1304            if (!(curMacroop || inRom)) {
1305                if (decoder[tid]->instReady()) {
1306                    staticInst = decoder[tid]->decode(thisPC);
1307
1308                    // Increment stat of fetched instructions.
1309                    ++fetchedInsts;
1310
1311                    if (staticInst->isMacroop()) {
1312                        curMacroop = staticInst;
1313                    } else {
1314                        pcOffset = 0;
1315                    }
1316                } else {
1317                    // We need more bytes for this instruction so blkOffset and
1318                    // pcOffset will be updated
1319                    break;
1320                }
1321            }
1322            // Whether we're moving to a new macroop because we're at the
1323            // end of the current one, or the branch predictor incorrectly
1324            // thinks we are...
1325            bool newMacro = false;
1326            if (curMacroop || inRom) {
1327                if (inRom) {
1328                    staticInst = cpu->microcodeRom.fetchMicroop(
1329                            thisPC.microPC(), curMacroop);
1330                } else {
1331                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1332                }
1333                newMacro |= staticInst->isLastMicroop();
1334            }
1335
1336            DynInstPtr instruction =
1337                buildInst(tid, staticInst, curMacroop,
1338                          thisPC, nextPC, true);
1339
1340            ppFetch->notify(instruction);
1341            numInst++;
1342
1343#if TRACING_ON
1344            if (DTRACE(O3PipeView)) {
1345                instruction->fetchTick = curTick();
1346            }
1347#endif
1348
1349            nextPC = thisPC;
1350
1351            // If we're branching after this instruction, quit fetching
1352            // from the same block.
1353            predictedBranch |= thisPC.branching();
1354            predictedBranch |=
1355                lookupAndUpdateNextPC(instruction, nextPC);
1356            if (predictedBranch) {
1357                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1358            }
1359
1360            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1361
1362            // Move to the next instruction, unless we have a branch.
1363            thisPC = nextPC;
1364            inRom = isRomMicroPC(thisPC.microPC());
1365
1366            if (newMacro) {
1367                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1368                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1369                pcOffset = 0;
1370                curMacroop = NULL;
1371            }
1372
1373            if (instruction->isQuiesce()) {
1374                DPRINTF(Fetch,
1375                        "Quiesce instruction encountered, halting fetch!\n");
1376                fetchStatus[tid] = QuiescePending;
1377                status_change = true;
1378                quiesce = true;
1379                break;
1380            }
1381        } while ((curMacroop || decoder[tid]->instReady()) &&
1382                 numInst < fetchWidth &&
1383                 fetchQueue[tid].size() < fetchQueueSize);
1384
1385        // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1386        // or not.
1387        inRom = isRomMicroPC(thisPC.microPC());
1388    }
1389
1390    if (predictedBranch) {
1391        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1392                "instruction encountered.\n", tid);
1393    } else if (numInst >= fetchWidth) {
1394        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1395                "for this cycle.\n", tid);
1396    } else if (blkOffset >= fetchBufferSize) {
1397        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1398                "fetch buffer.\n", tid);
1399    }
1400
1401    macroop[tid] = curMacroop;
1402    fetchOffset[tid] = pcOffset;
1403
1404    if (numInst > 0) {
1405        wroteToTimeBuffer = true;
1406    }
1407
1408    pc[tid] = thisPC;
1409
1410    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1411    // a state that would preclude fetching
1412    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1413    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1414    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1415        fetchStatus[tid] != IcacheWaitResponse &&
1416        fetchStatus[tid] != ItlbWait &&
1417        fetchStatus[tid] != IcacheWaitRetry &&
1418        fetchStatus[tid] != QuiescePending &&
1419        !curMacroop;
1420}
1421
1422template<class Impl>
1423void
1424DefaultFetch<Impl>::recvReqRetry()
1425{
1426    if (retryPkt != NULL) {
1427        assert(cacheBlocked);
1428        assert(retryTid != InvalidThreadID);
1429        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1430
1431        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1432            fetchStatus[retryTid] = IcacheWaitResponse;
1433            // Notify Fetch Request probe when a retryPkt is successfully sent.
1434            // Note that notify must be called before retryPkt is set to NULL.
1435            ppFetchRequestSent->notify(retryPkt->req);
1436            retryPkt = NULL;
1437            retryTid = InvalidThreadID;
1438            cacheBlocked = false;
1439        }
1440    } else {
1441        assert(retryTid == InvalidThreadID);
1442        // Access has been squashed since it was sent out.  Just clear
1443        // the cache being blocked.
1444        cacheBlocked = false;
1445    }
1446}
1447
1448///////////////////////////////////////
1449//                                   //
1450//  SMT FETCH POLICY MAINTAINED HERE //
1451//                                   //
1452///////////////////////////////////////
1453template<class Impl>
1454ThreadID
1455DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1456{
1457    if (numThreads > 1) {
1458        switch (fetch_priority) {
1459
1460          case SingleThread:
1461            return 0;
1462
1463          case RoundRobin:
1464            return roundRobin();
1465
1466          case IQ:
1467            return iqCount();
1468
1469          case LSQ:
1470            return lsqCount();
1471
1472          case Branch:
1473            return branchCount();
1474
1475          default:
1476            return InvalidThreadID;
1477        }
1478    } else {
1479        list<ThreadID>::iterator thread = activeThreads->begin();
1480        if (thread == activeThreads->end()) {
1481            return InvalidThreadID;
1482        }
1483
1484        ThreadID tid = *thread;
1485
1486        if (fetchStatus[tid] == Running ||
1487            fetchStatus[tid] == IcacheAccessComplete ||
1488            fetchStatus[tid] == Idle) {
1489            return tid;
1490        } else {
1491            return InvalidThreadID;
1492        }
1493    }
1494}
1495
1496
1497template<class Impl>
1498ThreadID
1499DefaultFetch<Impl>::roundRobin()
1500{
1501    list<ThreadID>::iterator pri_iter = priorityList.begin();
1502    list<ThreadID>::iterator end      = priorityList.end();
1503
1504    ThreadID high_pri;
1505
1506    while (pri_iter != end) {
1507        high_pri = *pri_iter;
1508
1509        assert(high_pri <= numThreads);
1510
1511        if (fetchStatus[high_pri] == Running ||
1512            fetchStatus[high_pri] == IcacheAccessComplete ||
1513            fetchStatus[high_pri] == Idle) {
1514
1515            priorityList.erase(pri_iter);
1516            priorityList.push_back(high_pri);
1517
1518            return high_pri;
1519        }
1520
1521        pri_iter++;
1522    }
1523
1524    return InvalidThreadID;
1525}
1526
1527template<class Impl>
1528ThreadID
1529DefaultFetch<Impl>::iqCount()
1530{
1531    //sorted from lowest->highest
1532    std::priority_queue<unsigned,vector<unsigned>,
1533                        std::greater<unsigned> > PQ;
1534    std::map<unsigned, ThreadID> threadMap;
1535
1536    list<ThreadID>::iterator threads = activeThreads->begin();
1537    list<ThreadID>::iterator end = activeThreads->end();
1538
1539    while (threads != end) {
1540        ThreadID tid = *threads++;
1541        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1542
1543        //we can potentially get tid collisions if two threads
1544        //have the same iqCount, but this should be rare.
1545        PQ.push(iqCount);
1546        threadMap[iqCount] = tid;
1547    }
1548
1549    while (!PQ.empty()) {
1550        ThreadID high_pri = threadMap[PQ.top()];
1551
1552        if (fetchStatus[high_pri] == Running ||
1553            fetchStatus[high_pri] == IcacheAccessComplete ||
1554            fetchStatus[high_pri] == Idle)
1555            return high_pri;
1556        else
1557            PQ.pop();
1558
1559    }
1560
1561    return InvalidThreadID;
1562}
1563
1564template<class Impl>
1565ThreadID
1566DefaultFetch<Impl>::lsqCount()
1567{
1568    //sorted from lowest->highest
1569    std::priority_queue<unsigned,vector<unsigned>,
1570                        std::greater<unsigned> > PQ;
1571    std::map<unsigned, ThreadID> threadMap;
1572
1573    list<ThreadID>::iterator threads = activeThreads->begin();
1574    list<ThreadID>::iterator end = activeThreads->end();
1575
1576    while (threads != end) {
1577        ThreadID tid = *threads++;
1578        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1579
1580        //we can potentially get tid collisions if two threads
1581        //have the same iqCount, but this should be rare.
1582        PQ.push(ldstqCount);
1583        threadMap[ldstqCount] = tid;
1584    }
1585
1586    while (!PQ.empty()) {
1587        ThreadID high_pri = threadMap[PQ.top()];
1588
1589        if (fetchStatus[high_pri] == Running ||
1590            fetchStatus[high_pri] == IcacheAccessComplete ||
1591            fetchStatus[high_pri] == Idle)
1592            return high_pri;
1593        else
1594            PQ.pop();
1595    }
1596
1597    return InvalidThreadID;
1598}
1599
1600template<class Impl>
1601ThreadID
1602DefaultFetch<Impl>::branchCount()
1603{
1604#if 0
1605    list<ThreadID>::iterator thread = activeThreads->begin();
1606    assert(thread != activeThreads->end());
1607    ThreadID tid = *thread;
1608#endif
1609
1610    panic("Branch Count Fetch policy unimplemented\n");
1611    return InvalidThreadID;
1612}
1613
1614template<class Impl>
1615void
1616DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1617{
1618    if (!issuePipelinedIfetch[tid]) {
1619        return;
1620    }
1621
1622    // The next PC to access.
1623    TheISA::PCState thisPC = pc[tid];
1624
1625    if (isRomMicroPC(thisPC.microPC())) {
1626        return;
1627    }
1628
1629    Addr pcOffset = fetchOffset[tid];
1630    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1631
1632    // Align the fetch PC so its at the start of a fetch buffer segment.
1633    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1634
1635    // Unless buffer already got the block, fetch it from icache.
1636    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1637        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1638                "starting at PC %s.\n", tid, thisPC);
1639
1640        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1641    }
1642}
1643
1644template<class Impl>
1645void
1646DefaultFetch<Impl>::profileStall(ThreadID tid) {
1647    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1648
1649    // @todo Per-thread stats
1650
1651    if (stalls[tid].drain) {
1652        ++fetchPendingDrainCycles;
1653        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1654    } else if (activeThreads->empty()) {
1655        ++fetchNoActiveThreadStallCycles;
1656        DPRINTF(Fetch, "Fetch has no active thread!\n");
1657    } else if (fetchStatus[tid] == Blocked) {
1658        ++fetchBlockedCycles;
1659        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1660    } else if (fetchStatus[tid] == Squashing) {
1661        ++fetchSquashCycles;
1662        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1663    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1664        ++icacheStallCycles;
1665        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1666                tid);
1667    } else if (fetchStatus[tid] == ItlbWait) {
1668        ++fetchTlbCycles;
1669        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1670                "finish!\n", tid);
1671    } else if (fetchStatus[tid] == TrapPending) {
1672        ++fetchPendingTrapStallCycles;
1673        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1674                tid);
1675    } else if (fetchStatus[tid] == QuiescePending) {
1676        ++fetchPendingQuiesceStallCycles;
1677        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1678                "instruction!\n", tid);
1679    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1680        ++fetchIcacheWaitRetryStallCycles;
1681        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1682                tid);
1683    } else if (fetchStatus[tid] == NoGoodAddr) {
1684            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1685                    tid);
1686    } else {
1687        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1688             tid, fetchStatus[tid]);
1689    }
1690}
1691
1692#endif//__CPU_O3_FETCH_IMPL_HH__
1693