fetch_impl.hh revision 10960:b51a2a09ac7d
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * Copyright (c) 2012-2013 AMD
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 *          Korey Sewell
43 */
44
45#ifndef __CPU_O3_FETCH_IMPL_HH__
46#define __CPU_O3_FETCH_IMPL_HH__
47
48#include <algorithm>
49#include <cstring>
50#include <list>
51#include <map>
52#include <queue>
53
54#include "arch/isa_traits.hh"
55#include "arch/tlb.hh"
56#include "arch/utility.hh"
57#include "arch/vtophys.hh"
58#include "base/random.hh"
59#include "base/types.hh"
60#include "config/the_isa.hh"
61#include "cpu/base.hh"
62//#include "cpu/checker/cpu.hh"
63#include "cpu/o3/fetch.hh"
64#include "cpu/exetrace.hh"
65#include "debug/Activity.hh"
66#include "debug/Drain.hh"
67#include "debug/Fetch.hh"
68#include "debug/O3PipeView.hh"
69#include "mem/packet.hh"
70#include "params/DerivO3CPU.hh"
71#include "sim/byteswap.hh"
72#include "sim/core.hh"
73#include "sim/eventq.hh"
74#include "sim/full_system.hh"
75#include "sim/system.hh"
76
77using namespace std;
78
79template<class Impl>
80DefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
81    : cpu(_cpu),
82      decodeToFetchDelay(params->decodeToFetchDelay),
83      renameToFetchDelay(params->renameToFetchDelay),
84      iewToFetchDelay(params->iewToFetchDelay),
85      commitToFetchDelay(params->commitToFetchDelay),
86      fetchWidth(params->fetchWidth),
87      decodeWidth(params->decodeWidth),
88      retryPkt(NULL),
89      retryTid(InvalidThreadID),
90      cacheBlkSize(cpu->cacheLineSize()),
91      fetchBufferSize(params->fetchBufferSize),
92      fetchBufferMask(fetchBufferSize - 1),
93      fetchQueueSize(params->fetchQueueSize),
94      numThreads(params->numThreads),
95      numFetchingThreads(params->smtNumFetchingThreads),
96      finishTranslationEvent(this)
97{
98    if (numThreads > Impl::MaxThreads)
99        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
100              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
101              numThreads, static_cast<int>(Impl::MaxThreads));
102    if (fetchWidth > Impl::MaxWidth)
103        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
104             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
105             fetchWidth, static_cast<int>(Impl::MaxWidth));
106    if (fetchBufferSize > cacheBlkSize)
107        fatal("fetch buffer size (%u bytes) is greater than the cache "
108              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
109    if (cacheBlkSize % fetchBufferSize)
110        fatal("cache block (%u bytes) is not a multiple of the "
111              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
112
113    std::string policy = params->smtFetchPolicy;
114
115    // Convert string to lowercase
116    std::transform(policy.begin(), policy.end(), policy.begin(),
117                   (int(*)(int)) tolower);
118
119    // Figure out fetch policy
120    if (policy == "singlethread") {
121        fetchPolicy = SingleThread;
122        if (numThreads > 1)
123            panic("Invalid Fetch Policy for a SMT workload.");
124    } else if (policy == "roundrobin") {
125        fetchPolicy = RoundRobin;
126        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
127    } else if (policy == "branch") {
128        fetchPolicy = Branch;
129        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
130    } else if (policy == "iqcount") {
131        fetchPolicy = IQ;
132        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
133    } else if (policy == "lsqcount") {
134        fetchPolicy = LSQ;
135        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
136    } else {
137        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
138              " RoundRobin,LSQcount,IQcount}\n");
139    }
140
141    // Get the size of an instruction.
142    instSize = sizeof(TheISA::MachInst);
143
144    for (int i = 0; i < Impl::MaxThreads; i++) {
145        decoder[i] = NULL;
146        fetchBuffer[i] = NULL;
147        fetchBufferPC[i] = 0;
148        fetchBufferValid[i] = false;
149    }
150
151    branchPred = params->branchPred;
152
153    for (ThreadID tid = 0; tid < numThreads; tid++) {
154        decoder[tid] = new TheISA::Decoder;
155        // Create space to buffer the cache line data,
156        // which may not hold the entire cache line.
157        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
158    }
159}
160
161template <class Impl>
162std::string
163DefaultFetch<Impl>::name() const
164{
165    return cpu->name() + ".fetch";
166}
167
168template <class Impl>
169void
170DefaultFetch<Impl>::regProbePoints()
171{
172    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
173}
174
175template <class Impl>
176void
177DefaultFetch<Impl>::regStats()
178{
179    icacheStallCycles
180        .name(name() + ".icacheStallCycles")
181        .desc("Number of cycles fetch is stalled on an Icache miss")
182        .prereq(icacheStallCycles);
183
184    fetchedInsts
185        .name(name() + ".Insts")
186        .desc("Number of instructions fetch has processed")
187        .prereq(fetchedInsts);
188
189    fetchedBranches
190        .name(name() + ".Branches")
191        .desc("Number of branches that fetch encountered")
192        .prereq(fetchedBranches);
193
194    predictedBranches
195        .name(name() + ".predictedBranches")
196        .desc("Number of branches that fetch has predicted taken")
197        .prereq(predictedBranches);
198
199    fetchCycles
200        .name(name() + ".Cycles")
201        .desc("Number of cycles fetch has run and was not squashing or"
202              " blocked")
203        .prereq(fetchCycles);
204
205    fetchSquashCycles
206        .name(name() + ".SquashCycles")
207        .desc("Number of cycles fetch has spent squashing")
208        .prereq(fetchSquashCycles);
209
210    fetchTlbCycles
211        .name(name() + ".TlbCycles")
212        .desc("Number of cycles fetch has spent waiting for tlb")
213        .prereq(fetchTlbCycles);
214
215    fetchIdleCycles
216        .name(name() + ".IdleCycles")
217        .desc("Number of cycles fetch was idle")
218        .prereq(fetchIdleCycles);
219
220    fetchBlockedCycles
221        .name(name() + ".BlockedCycles")
222        .desc("Number of cycles fetch has spent blocked")
223        .prereq(fetchBlockedCycles);
224
225    fetchedCacheLines
226        .name(name() + ".CacheLines")
227        .desc("Number of cache lines fetched")
228        .prereq(fetchedCacheLines);
229
230    fetchMiscStallCycles
231        .name(name() + ".MiscStallCycles")
232        .desc("Number of cycles fetch has spent waiting on interrupts, or "
233              "bad addresses, or out of MSHRs")
234        .prereq(fetchMiscStallCycles);
235
236    fetchPendingDrainCycles
237        .name(name() + ".PendingDrainCycles")
238        .desc("Number of cycles fetch has spent waiting on pipes to drain")
239        .prereq(fetchPendingDrainCycles);
240
241    fetchNoActiveThreadStallCycles
242        .name(name() + ".NoActiveThreadStallCycles")
243        .desc("Number of stall cycles due to no active thread to fetch from")
244        .prereq(fetchNoActiveThreadStallCycles);
245
246    fetchPendingTrapStallCycles
247        .name(name() + ".PendingTrapStallCycles")
248        .desc("Number of stall cycles due to pending traps")
249        .prereq(fetchPendingTrapStallCycles);
250
251    fetchPendingQuiesceStallCycles
252        .name(name() + ".PendingQuiesceStallCycles")
253        .desc("Number of stall cycles due to pending quiesce instructions")
254        .prereq(fetchPendingQuiesceStallCycles);
255
256    fetchIcacheWaitRetryStallCycles
257        .name(name() + ".IcacheWaitRetryStallCycles")
258        .desc("Number of stall cycles due to full MSHR")
259        .prereq(fetchIcacheWaitRetryStallCycles);
260
261    fetchIcacheSquashes
262        .name(name() + ".IcacheSquashes")
263        .desc("Number of outstanding Icache misses that were squashed")
264        .prereq(fetchIcacheSquashes);
265
266    fetchTlbSquashes
267        .name(name() + ".ItlbSquashes")
268        .desc("Number of outstanding ITLB misses that were squashed")
269        .prereq(fetchTlbSquashes);
270
271    fetchNisnDist
272        .init(/* base value */ 0,
273              /* last value */ fetchWidth,
274              /* bucket size */ 1)
275        .name(name() + ".rateDist")
276        .desc("Number of instructions fetched each cycle (Total)")
277        .flags(Stats::pdf);
278
279    idleRate
280        .name(name() + ".idleRate")
281        .desc("Percent of cycles fetch was idle")
282        .prereq(idleRate);
283    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
284
285    branchRate
286        .name(name() + ".branchRate")
287        .desc("Number of branch fetches per cycle")
288        .flags(Stats::total);
289    branchRate = fetchedBranches / cpu->numCycles;
290
291    fetchRate
292        .name(name() + ".rate")
293        .desc("Number of inst fetches per cycle")
294        .flags(Stats::total);
295    fetchRate = fetchedInsts / cpu->numCycles;
296}
297
298template<class Impl>
299void
300DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
301{
302    timeBuffer = time_buffer;
303
304    // Create wires to get information from proper places in time buffer.
305    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
306    fromRename = timeBuffer->getWire(-renameToFetchDelay);
307    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
308    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
309}
310
311template<class Impl>
312void
313DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
314{
315    activeThreads = at_ptr;
316}
317
318template<class Impl>
319void
320DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
321{
322    // Create wire to write information to proper place in fetch time buf.
323    toDecode = ftb_ptr->getWire(0);
324}
325
326template<class Impl>
327void
328DefaultFetch<Impl>::startupStage()
329{
330    assert(priorityList.empty());
331    resetStage();
332
333    // Fetch needs to start fetching instructions at the very beginning,
334    // so it must start up in active state.
335    switchToActive();
336}
337
338template<class Impl>
339void
340DefaultFetch<Impl>::resetStage()
341{
342    numInst = 0;
343    interruptPending = false;
344    cacheBlocked = false;
345
346    priorityList.clear();
347
348    // Setup PC and nextPC with initial state.
349    for (ThreadID tid = 0; tid < numThreads; ++tid) {
350        fetchStatus[tid] = Running;
351        pc[tid] = cpu->pcState(tid);
352        fetchOffset[tid] = 0;
353        macroop[tid] = NULL;
354
355        delayedCommit[tid] = false;
356        memReq[tid] = NULL;
357
358        stalls[tid].decode = false;
359        stalls[tid].drain = false;
360
361        fetchBufferPC[tid] = 0;
362        fetchBufferValid[tid] = false;
363
364        fetchQueue[tid].clear();
365
366        priorityList.push_back(tid);
367    }
368
369    wroteToTimeBuffer = false;
370    _status = Inactive;
371}
372
373template<class Impl>
374void
375DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
376{
377    ThreadID tid = pkt->req->threadId();
378
379    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
380    assert(!cpu->switchedOut());
381
382    // Only change the status if it's still waiting on the icache access
383    // to return.
384    if (fetchStatus[tid] != IcacheWaitResponse ||
385        pkt->req != memReq[tid]) {
386        ++fetchIcacheSquashes;
387        delete pkt->req;
388        delete pkt;
389        return;
390    }
391
392    memcpy(fetchBuffer[tid], pkt->getConstPtr<uint8_t>(), fetchBufferSize);
393    fetchBufferValid[tid] = true;
394
395    // Wake up the CPU (if it went to sleep and was waiting on
396    // this completion event).
397    cpu->wakeCPU();
398
399    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
400            tid);
401
402    switchToActive();
403
404    // Only switch to IcacheAccessComplete if we're not stalled as well.
405    if (checkStall(tid)) {
406        fetchStatus[tid] = Blocked;
407    } else {
408        fetchStatus[tid] = IcacheAccessComplete;
409    }
410
411    pkt->req->setAccessLatency();
412    cpu->ppInstAccessComplete->notify(pkt);
413    // Reset the mem req to NULL.
414    delete pkt->req;
415    delete pkt;
416    memReq[tid] = NULL;
417}
418
419template <class Impl>
420void
421DefaultFetch<Impl>::drainResume()
422{
423    for (ThreadID i = 0; i < numThreads; ++i)
424        stalls[i].drain = false;
425}
426
427template <class Impl>
428void
429DefaultFetch<Impl>::drainSanityCheck() const
430{
431    assert(isDrained());
432    assert(retryPkt == NULL);
433    assert(retryTid == InvalidThreadID);
434    assert(!cacheBlocked);
435    assert(!interruptPending);
436
437    for (ThreadID i = 0; i < numThreads; ++i) {
438        assert(!memReq[i]);
439        assert(fetchStatus[i] == Idle || stalls[i].drain);
440    }
441
442    branchPred->drainSanityCheck();
443}
444
445template <class Impl>
446bool
447DefaultFetch<Impl>::isDrained() const
448{
449    /* Make sure that threads are either idle of that the commit stage
450     * has signaled that draining has completed by setting the drain
451     * stall flag. This effectively forces the pipeline to be disabled
452     * until the whole system is drained (simulation may continue to
453     * drain other components).
454     */
455    for (ThreadID i = 0; i < numThreads; ++i) {
456        // Verify fetch queues are drained
457        if (!fetchQueue[i].empty())
458            return false;
459
460        // Return false if not idle or drain stalled
461        if (fetchStatus[i] != Idle) {
462            if (fetchStatus[i] == Blocked && stalls[i].drain)
463                continue;
464            else
465                return false;
466        }
467    }
468
469    /* The pipeline might start up again in the middle of the drain
470     * cycle if the finish translation event is scheduled, so make
471     * sure that's not the case.
472     */
473    return !finishTranslationEvent.scheduled();
474}
475
476template <class Impl>
477void
478DefaultFetch<Impl>::takeOverFrom()
479{
480    assert(cpu->getInstPort().isConnected());
481    resetStage();
482
483}
484
485template <class Impl>
486void
487DefaultFetch<Impl>::drainStall(ThreadID tid)
488{
489    assert(cpu->isDraining());
490    assert(!stalls[tid].drain);
491    DPRINTF(Drain, "%i: Thread drained.\n", tid);
492    stalls[tid].drain = true;
493}
494
495template <class Impl>
496void
497DefaultFetch<Impl>::wakeFromQuiesce()
498{
499    DPRINTF(Fetch, "Waking up from quiesce\n");
500    // Hopefully this is safe
501    // @todo: Allow other threads to wake from quiesce.
502    fetchStatus[0] = Running;
503}
504
505template <class Impl>
506inline void
507DefaultFetch<Impl>::switchToActive()
508{
509    if (_status == Inactive) {
510        DPRINTF(Activity, "Activating stage.\n");
511
512        cpu->activateStage(O3CPU::FetchIdx);
513
514        _status = Active;
515    }
516}
517
518template <class Impl>
519inline void
520DefaultFetch<Impl>::switchToInactive()
521{
522    if (_status == Active) {
523        DPRINTF(Activity, "Deactivating stage.\n");
524
525        cpu->deactivateStage(O3CPU::FetchIdx);
526
527        _status = Inactive;
528    }
529}
530
531template <class Impl>
532void
533DefaultFetch<Impl>::deactivateThread(ThreadID tid)
534{
535    // Update priority list
536    auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
537    if (thread_it != priorityList.end()) {
538        priorityList.erase(thread_it);
539    }
540}
541
542template <class Impl>
543bool
544DefaultFetch<Impl>::lookupAndUpdateNextPC(
545        DynInstPtr &inst, TheISA::PCState &nextPC)
546{
547    // Do branch prediction check here.
548    // A bit of a misnomer...next_PC is actually the current PC until
549    // this function updates it.
550    bool predict_taken;
551
552    if (!inst->isControl()) {
553        TheISA::advancePC(nextPC, inst->staticInst);
554        inst->setPredTarg(nextPC);
555        inst->setPredTaken(false);
556        return false;
557    }
558
559    ThreadID tid = inst->threadNumber;
560    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
561                                        nextPC, tid);
562
563    if (predict_taken) {
564        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
565                tid, inst->seqNum, nextPC);
566    } else {
567        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
568                tid, inst->seqNum);
569    }
570
571    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
572            tid, inst->seqNum, nextPC);
573    inst->setPredTarg(nextPC);
574    inst->setPredTaken(predict_taken);
575
576    ++fetchedBranches;
577
578    if (predict_taken) {
579        ++predictedBranches;
580    }
581
582    return predict_taken;
583}
584
585template <class Impl>
586bool
587DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
588{
589    Fault fault = NoFault;
590
591    assert(!cpu->switchedOut());
592
593    // @todo: not sure if these should block translation.
594    //AlphaDep
595    if (cacheBlocked) {
596        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
597                tid);
598        return false;
599    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
600        // Hold off fetch from getting new instructions when:
601        // Cache is blocked, or
602        // while an interrupt is pending and we're not in PAL mode, or
603        // fetch is switched out.
604        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
605                tid);
606        return false;
607    }
608
609    // Align the fetch address to the start of a fetch buffer segment.
610    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
611
612    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
613            tid, fetchBufferBlockPC, vaddr);
614
615    // Setup the memReq to do a read of the first instruction's address.
616    // Set the appropriate read size and flags as well.
617    // Build request here.
618    RequestPtr mem_req =
619        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
620                    Request::INST_FETCH, cpu->instMasterId(), pc,
621                    cpu->thread[tid]->contextId(), tid);
622
623    mem_req->taskId(cpu->taskId());
624
625    memReq[tid] = mem_req;
626
627    // Initiate translation of the icache block
628    fetchStatus[tid] = ItlbWait;
629    FetchTranslation *trans = new FetchTranslation(this);
630    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
631                              trans, BaseTLB::Execute);
632    return true;
633}
634
635template <class Impl>
636void
637DefaultFetch<Impl>::finishTranslation(const Fault &fault, RequestPtr mem_req)
638{
639    ThreadID tid = mem_req->threadId();
640    Addr fetchBufferBlockPC = mem_req->getVaddr();
641
642    assert(!cpu->switchedOut());
643
644    // Wake up CPU if it was idle
645    cpu->wakeCPU();
646
647    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
648        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
649        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
650                tid);
651        ++fetchTlbSquashes;
652        delete mem_req;
653        return;
654    }
655
656
657    // If translation was successful, attempt to read the icache block.
658    if (fault == NoFault) {
659        // Check that we're not going off into random memory
660        // If we have, just wait around for commit to squash something and put
661        // us on the right track
662        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
663            warn("Address %#x is outside of physical memory, stopping fetch\n",
664                    mem_req->getPaddr());
665            fetchStatus[tid] = NoGoodAddr;
666            delete mem_req;
667            memReq[tid] = NULL;
668            return;
669        }
670
671        // Build packet here.
672        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
673        data_pkt->dataDynamic(new uint8_t[fetchBufferSize]);
674
675        fetchBufferPC[tid] = fetchBufferBlockPC;
676        fetchBufferValid[tid] = false;
677        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
678
679        fetchedCacheLines++;
680
681        // Access the cache.
682        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
683            assert(retryPkt == NULL);
684            assert(retryTid == InvalidThreadID);
685            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
686
687            fetchStatus[tid] = IcacheWaitRetry;
688            retryPkt = data_pkt;
689            retryTid = tid;
690            cacheBlocked = true;
691        } else {
692            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
693            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
694                    "response.\n", tid);
695            lastIcacheStall[tid] = curTick();
696            fetchStatus[tid] = IcacheWaitResponse;
697        }
698    } else {
699        // Don't send an instruction to decode if we can't handle it.
700        if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
701            assert(!finishTranslationEvent.scheduled());
702            finishTranslationEvent.setFault(fault);
703            finishTranslationEvent.setReq(mem_req);
704            cpu->schedule(finishTranslationEvent,
705                          cpu->clockEdge(Cycles(1)));
706            return;
707        }
708        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
709                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
710        // Translation faulted, icache request won't be sent.
711        delete mem_req;
712        memReq[tid] = NULL;
713
714        // Send the fault to commit.  This thread will not do anything
715        // until commit handles the fault.  The only other way it can
716        // wake up is if a squash comes along and changes the PC.
717        TheISA::PCState fetchPC = pc[tid];
718
719        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
720        // We will use a nop in ordier to carry the fault.
721        DynInstPtr instruction = buildInst(tid,
722                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
723                NULL, fetchPC, fetchPC, false);
724
725        instruction->setPredTarg(fetchPC);
726        instruction->fault = fault;
727        wroteToTimeBuffer = true;
728
729        DPRINTF(Activity, "Activity this cycle.\n");
730        cpu->activityThisCycle();
731
732        fetchStatus[tid] = TrapPending;
733
734        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
735        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
736                tid, fault->name(), pc[tid]);
737    }
738    _status = updateFetchStatus();
739}
740
741template <class Impl>
742inline void
743DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
744                             const DynInstPtr squashInst, ThreadID tid)
745{
746    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
747            tid, newPC);
748
749    pc[tid] = newPC;
750    fetchOffset[tid] = 0;
751    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
752        macroop[tid] = squashInst->macroop;
753    else
754        macroop[tid] = NULL;
755    decoder[tid]->reset();
756
757    // Clear the icache miss if it's outstanding.
758    if (fetchStatus[tid] == IcacheWaitResponse) {
759        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
760                tid);
761        memReq[tid] = NULL;
762    } else if (fetchStatus[tid] == ItlbWait) {
763        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
764                tid);
765        memReq[tid] = NULL;
766    }
767
768    // Get rid of the retrying packet if it was from this thread.
769    if (retryTid == tid) {
770        assert(cacheBlocked);
771        if (retryPkt) {
772            delete retryPkt->req;
773            delete retryPkt;
774        }
775        retryPkt = NULL;
776        retryTid = InvalidThreadID;
777    }
778
779    fetchStatus[tid] = Squashing;
780
781    // Empty fetch queue
782    fetchQueue[tid].clear();
783
784    // microops are being squashed, it is not known wheather the
785    // youngest non-squashed microop was  marked delayed commit
786    // or not. Setting the flag to true ensures that the
787    // interrupts are not handled when they cannot be, though
788    // some opportunities to handle interrupts may be missed.
789    delayedCommit[tid] = true;
790
791    ++fetchSquashCycles;
792}
793
794template<class Impl>
795void
796DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
797                                     const DynInstPtr squashInst,
798                                     const InstSeqNum seq_num, ThreadID tid)
799{
800    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
801
802    doSquash(newPC, squashInst, tid);
803
804    // Tell the CPU to remove any instructions that are in flight between
805    // fetch and decode.
806    cpu->removeInstsUntil(seq_num, tid);
807}
808
809template<class Impl>
810bool
811DefaultFetch<Impl>::checkStall(ThreadID tid) const
812{
813    bool ret_val = false;
814
815    if (stalls[tid].drain) {
816        assert(cpu->isDraining());
817        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
818        ret_val = true;
819    }
820
821    return ret_val;
822}
823
824template<class Impl>
825typename DefaultFetch<Impl>::FetchStatus
826DefaultFetch<Impl>::updateFetchStatus()
827{
828    //Check Running
829    list<ThreadID>::iterator threads = activeThreads->begin();
830    list<ThreadID>::iterator end = activeThreads->end();
831
832    while (threads != end) {
833        ThreadID tid = *threads++;
834
835        if (fetchStatus[tid] == Running ||
836            fetchStatus[tid] == Squashing ||
837            fetchStatus[tid] == IcacheAccessComplete) {
838
839            if (_status == Inactive) {
840                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
841
842                if (fetchStatus[tid] == IcacheAccessComplete) {
843                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
844                            "completion\n",tid);
845                }
846
847                cpu->activateStage(O3CPU::FetchIdx);
848            }
849
850            return Active;
851        }
852    }
853
854    // Stage is switching from active to inactive, notify CPU of it.
855    if (_status == Active) {
856        DPRINTF(Activity, "Deactivating stage.\n");
857
858        cpu->deactivateStage(O3CPU::FetchIdx);
859    }
860
861    return Inactive;
862}
863
864template <class Impl>
865void
866DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
867                           const InstSeqNum seq_num, DynInstPtr squashInst,
868                           ThreadID tid)
869{
870    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
871
872    doSquash(newPC, squashInst, tid);
873
874    // Tell the CPU to remove any instructions that are not in the ROB.
875    cpu->removeInstsNotInROB(tid);
876}
877
878template <class Impl>
879void
880DefaultFetch<Impl>::tick()
881{
882    list<ThreadID>::iterator threads = activeThreads->begin();
883    list<ThreadID>::iterator end = activeThreads->end();
884    bool status_change = false;
885
886    wroteToTimeBuffer = false;
887
888    for (ThreadID i = 0; i < numThreads; ++i) {
889        issuePipelinedIfetch[i] = false;
890    }
891
892    while (threads != end) {
893        ThreadID tid = *threads++;
894
895        // Check the signals for each thread to determine the proper status
896        // for each thread.
897        bool updated_status = checkSignalsAndUpdate(tid);
898        status_change =  status_change || updated_status;
899    }
900
901    DPRINTF(Fetch, "Running stage.\n");
902
903    if (FullSystem) {
904        if (fromCommit->commitInfo[0].interruptPending) {
905            interruptPending = true;
906        }
907
908        if (fromCommit->commitInfo[0].clearInterrupt) {
909            interruptPending = false;
910        }
911    }
912
913    for (threadFetched = 0; threadFetched < numFetchingThreads;
914         threadFetched++) {
915        // Fetch each of the actively fetching threads.
916        fetch(status_change);
917    }
918
919    // Record number of instructions fetched this cycle for distribution.
920    fetchNisnDist.sample(numInst);
921
922    if (status_change) {
923        // Change the fetch stage status if there was a status change.
924        _status = updateFetchStatus();
925    }
926
927    // Issue the next I-cache request if possible.
928    for (ThreadID i = 0; i < numThreads; ++i) {
929        if (issuePipelinedIfetch[i]) {
930            pipelineIcacheAccesses(i);
931        }
932    }
933
934    // Send instructions enqueued into the fetch queue to decode.
935    // Limit rate by fetchWidth.  Stall if decode is stalled.
936    unsigned insts_to_decode = 0;
937    unsigned available_insts = 0;
938
939    for (auto tid : *activeThreads) {
940        if (!stalls[tid].decode) {
941            available_insts += fetchQueue[tid].size();
942        }
943    }
944
945    // Pick a random thread to start trying to grab instructions from
946    auto tid_itr = activeThreads->begin();
947    std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
948
949    while (available_insts != 0 && insts_to_decode < decodeWidth) {
950        ThreadID tid = *tid_itr;
951        if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
952            auto inst = fetchQueue[tid].front();
953            toDecode->insts[toDecode->size++] = inst;
954            DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
955                    "fetch queue. Fetch queue size: %i.\n",
956                    tid, inst->seqNum, fetchQueue[tid].size());
957
958            wroteToTimeBuffer = true;
959            fetchQueue[tid].pop_front();
960            insts_to_decode++;
961            available_insts--;
962        }
963
964        tid_itr++;
965        // Wrap around if at end of active threads list
966        if (tid_itr == activeThreads->end())
967            tid_itr = activeThreads->begin();
968    }
969
970    // If there was activity this cycle, inform the CPU of it.
971    if (wroteToTimeBuffer) {
972        DPRINTF(Activity, "Activity this cycle.\n");
973        cpu->activityThisCycle();
974    }
975
976    // Reset the number of the instruction we've fetched.
977    numInst = 0;
978}
979
980template <class Impl>
981bool
982DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
983{
984    // Update the per thread stall statuses.
985    if (fromDecode->decodeBlock[tid]) {
986        stalls[tid].decode = true;
987    }
988
989    if (fromDecode->decodeUnblock[tid]) {
990        assert(stalls[tid].decode);
991        assert(!fromDecode->decodeBlock[tid]);
992        stalls[tid].decode = false;
993    }
994
995    // Check squash signals from commit.
996    if (fromCommit->commitInfo[tid].squash) {
997
998        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
999                "from commit.\n",tid);
1000        // In any case, squash.
1001        squash(fromCommit->commitInfo[tid].pc,
1002               fromCommit->commitInfo[tid].doneSeqNum,
1003               fromCommit->commitInfo[tid].squashInst, tid);
1004
1005        // If it was a branch mispredict on a control instruction, update the
1006        // branch predictor with that instruction, otherwise just kill the
1007        // invalid state we generated in after sequence number
1008        if (fromCommit->commitInfo[tid].mispredictInst &&
1009            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1010            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1011                              fromCommit->commitInfo[tid].pc,
1012                              fromCommit->commitInfo[tid].branchTaken,
1013                              tid);
1014        } else {
1015            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1016                              tid);
1017        }
1018
1019        return true;
1020    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1021        // Update the branch predictor if it wasn't a squashed instruction
1022        // that was broadcasted.
1023        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1024    }
1025
1026    // Check squash signals from decode.
1027    if (fromDecode->decodeInfo[tid].squash) {
1028        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1029                "from decode.\n",tid);
1030
1031        // Update the branch predictor.
1032        if (fromDecode->decodeInfo[tid].branchMispredict) {
1033            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1034                              fromDecode->decodeInfo[tid].nextPC,
1035                              fromDecode->decodeInfo[tid].branchTaken,
1036                              tid);
1037        } else {
1038            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1039                              tid);
1040        }
1041
1042        if (fetchStatus[tid] != Squashing) {
1043
1044            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1045                fromDecode->decodeInfo[tid].nextPC);
1046            // Squash unless we're already squashing
1047            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1048                             fromDecode->decodeInfo[tid].squashInst,
1049                             fromDecode->decodeInfo[tid].doneSeqNum,
1050                             tid);
1051
1052            return true;
1053        }
1054    }
1055
1056    if (checkStall(tid) &&
1057        fetchStatus[tid] != IcacheWaitResponse &&
1058        fetchStatus[tid] != IcacheWaitRetry &&
1059        fetchStatus[tid] != ItlbWait &&
1060        fetchStatus[tid] != QuiescePending) {
1061        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1062
1063        fetchStatus[tid] = Blocked;
1064
1065        return true;
1066    }
1067
1068    if (fetchStatus[tid] == Blocked ||
1069        fetchStatus[tid] == Squashing) {
1070        // Switch status to running if fetch isn't being told to block or
1071        // squash this cycle.
1072        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1073                tid);
1074
1075        fetchStatus[tid] = Running;
1076
1077        return true;
1078    }
1079
1080    // If we've reached this point, we have not gotten any signals that
1081    // cause fetch to change its status.  Fetch remains the same as before.
1082    return false;
1083}
1084
1085template<class Impl>
1086typename Impl::DynInstPtr
1087DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1088                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1089                              TheISA::PCState nextPC, bool trace)
1090{
1091    // Get a sequence number.
1092    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1093
1094    // Create a new DynInst from the instruction fetched.
1095    DynInstPtr instruction =
1096        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1097    instruction->setTid(tid);
1098
1099    instruction->setASID(tid);
1100
1101    instruction->setThreadState(cpu->thread[tid]);
1102
1103    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1104            "[sn:%lli].\n", tid, thisPC.instAddr(),
1105            thisPC.microPC(), seq);
1106
1107    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1108            instruction->staticInst->
1109            disassemble(thisPC.instAddr()));
1110
1111#if TRACING_ON
1112    if (trace) {
1113        instruction->traceData =
1114            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1115                    instruction->staticInst, thisPC, curMacroop);
1116    }
1117#else
1118    instruction->traceData = NULL;
1119#endif
1120
1121    // Add instruction to the CPU's list of instructions.
1122    instruction->setInstListIt(cpu->addInst(instruction));
1123
1124    // Write the instruction to the first slot in the queue
1125    // that heads to decode.
1126    assert(numInst < fetchWidth);
1127    fetchQueue[tid].push_back(instruction);
1128    assert(fetchQueue[tid].size() <= fetchQueueSize);
1129    DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1130            tid, fetchQueue[tid].size(), fetchQueueSize);
1131    //toDecode->insts[toDecode->size++] = instruction;
1132
1133    // Keep track of if we can take an interrupt at this boundary
1134    delayedCommit[tid] = instruction->isDelayedCommit();
1135
1136    return instruction;
1137}
1138
1139template<class Impl>
1140void
1141DefaultFetch<Impl>::fetch(bool &status_change)
1142{
1143    //////////////////////////////////////////
1144    // Start actual fetch
1145    //////////////////////////////////////////
1146    ThreadID tid = getFetchingThread(fetchPolicy);
1147
1148    assert(!cpu->switchedOut());
1149
1150    if (tid == InvalidThreadID) {
1151        // Breaks looping condition in tick()
1152        threadFetched = numFetchingThreads;
1153
1154        if (numThreads == 1) {  // @todo Per-thread stats
1155            profileStall(0);
1156        }
1157
1158        return;
1159    }
1160
1161    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1162
1163    // The current PC.
1164    TheISA::PCState thisPC = pc[tid];
1165
1166    Addr pcOffset = fetchOffset[tid];
1167    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1168
1169    bool inRom = isRomMicroPC(thisPC.microPC());
1170
1171    // If returning from the delay of a cache miss, then update the status
1172    // to running, otherwise do the cache access.  Possibly move this up
1173    // to tick() function.
1174    if (fetchStatus[tid] == IcacheAccessComplete) {
1175        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1176
1177        fetchStatus[tid] = Running;
1178        status_change = true;
1179    } else if (fetchStatus[tid] == Running) {
1180        // Align the fetch PC so its at the start of a fetch buffer segment.
1181        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1182
1183        // If buffer is no longer valid or fetchAddr has moved to point
1184        // to the next cache block, AND we have no remaining ucode
1185        // from a macro-op, then start fetch from icache.
1186        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1187            && !inRom && !macroop[tid]) {
1188            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1189                    "instruction, starting at PC %s.\n", tid, thisPC);
1190
1191            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1192
1193            if (fetchStatus[tid] == IcacheWaitResponse)
1194                ++icacheStallCycles;
1195            else if (fetchStatus[tid] == ItlbWait)
1196                ++fetchTlbCycles;
1197            else
1198                ++fetchMiscStallCycles;
1199            return;
1200        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1201            // Stall CPU if an interrupt is posted and we're not issuing
1202            // an delayed commit micro-op currently (delayed commit instructions
1203            // are not interruptable by interrupts, only faults)
1204            ++fetchMiscStallCycles;
1205            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1206            return;
1207        }
1208    } else {
1209        if (fetchStatus[tid] == Idle) {
1210            ++fetchIdleCycles;
1211            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1212        }
1213
1214        // Status is Idle, so fetch should do nothing.
1215        return;
1216    }
1217
1218    ++fetchCycles;
1219
1220    TheISA::PCState nextPC = thisPC;
1221
1222    StaticInstPtr staticInst = NULL;
1223    StaticInstPtr curMacroop = macroop[tid];
1224
1225    // If the read of the first instruction was successful, then grab the
1226    // instructions from the rest of the cache line and put them into the
1227    // queue heading to decode.
1228
1229    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1230            "decode.\n", tid);
1231
1232    // Need to keep track of whether or not a predicted branch
1233    // ended this fetch block.
1234    bool predictedBranch = false;
1235
1236    // Need to halt fetch if quiesce instruction detected
1237    bool quiesce = false;
1238
1239    TheISA::MachInst *cacheInsts =
1240        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1241
1242    const unsigned numInsts = fetchBufferSize / instSize;
1243    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1244
1245    // Loop through instruction memory from the cache.
1246    // Keep issuing while fetchWidth is available and branch is not
1247    // predicted taken
1248    while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1249           && !predictedBranch && !quiesce) {
1250        // We need to process more memory if we aren't going to get a
1251        // StaticInst from the rom, the current macroop, or what's already
1252        // in the decoder.
1253        bool needMem = !inRom && !curMacroop &&
1254            !decoder[tid]->instReady();
1255        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1256        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1257
1258        if (needMem) {
1259            // If buffer is no longer valid or fetchAddr has moved to point
1260            // to the next cache block then start fetch from icache.
1261            if (!fetchBufferValid[tid] ||
1262                fetchBufferBlockPC != fetchBufferPC[tid])
1263                break;
1264
1265            if (blkOffset >= numInsts) {
1266                // We need to process more memory, but we've run out of the
1267                // current block.
1268                break;
1269            }
1270
1271            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1272                // Walk past any annulled delay slot instructions.
1273                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1274                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1275                    blkOffset++;
1276                    fetchAddr += instSize;
1277                }
1278                if (blkOffset >= numInsts)
1279                    break;
1280            }
1281
1282            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1283            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1284
1285            if (decoder[tid]->needMoreBytes()) {
1286                blkOffset++;
1287                fetchAddr += instSize;
1288                pcOffset += instSize;
1289            }
1290        }
1291
1292        // Extract as many instructions and/or microops as we can from
1293        // the memory we've processed so far.
1294        do {
1295            if (!(curMacroop || inRom)) {
1296                if (decoder[tid]->instReady()) {
1297                    staticInst = decoder[tid]->decode(thisPC);
1298
1299                    // Increment stat of fetched instructions.
1300                    ++fetchedInsts;
1301
1302                    if (staticInst->isMacroop()) {
1303                        curMacroop = staticInst;
1304                    } else {
1305                        pcOffset = 0;
1306                    }
1307                } else {
1308                    // We need more bytes for this instruction so blkOffset and
1309                    // pcOffset will be updated
1310                    break;
1311                }
1312            }
1313            // Whether we're moving to a new macroop because we're at the
1314            // end of the current one, or the branch predictor incorrectly
1315            // thinks we are...
1316            bool newMacro = false;
1317            if (curMacroop || inRom) {
1318                if (inRom) {
1319                    staticInst = cpu->microcodeRom.fetchMicroop(
1320                            thisPC.microPC(), curMacroop);
1321                } else {
1322                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1323                }
1324                newMacro |= staticInst->isLastMicroop();
1325            }
1326
1327            DynInstPtr instruction =
1328                buildInst(tid, staticInst, curMacroop,
1329                          thisPC, nextPC, true);
1330
1331            ppFetch->notify(instruction);
1332            numInst++;
1333
1334#if TRACING_ON
1335            if (DTRACE(O3PipeView)) {
1336                instruction->fetchTick = curTick();
1337            }
1338#endif
1339
1340            nextPC = thisPC;
1341
1342            // If we're branching after this instruction, quit fetching
1343            // from the same block.
1344            predictedBranch |= thisPC.branching();
1345            predictedBranch |=
1346                lookupAndUpdateNextPC(instruction, nextPC);
1347            if (predictedBranch) {
1348                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1349            }
1350
1351            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1352
1353            // Move to the next instruction, unless we have a branch.
1354            thisPC = nextPC;
1355            inRom = isRomMicroPC(thisPC.microPC());
1356
1357            if (newMacro) {
1358                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1359                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1360                pcOffset = 0;
1361                curMacroop = NULL;
1362            }
1363
1364            if (instruction->isQuiesce()) {
1365                DPRINTF(Fetch,
1366                        "Quiesce instruction encountered, halting fetch!\n");
1367                fetchStatus[tid] = QuiescePending;
1368                status_change = true;
1369                quiesce = true;
1370                break;
1371            }
1372        } while ((curMacroop || decoder[tid]->instReady()) &&
1373                 numInst < fetchWidth &&
1374                 fetchQueue[tid].size() < fetchQueueSize);
1375
1376        // Re-evaluate whether the next instruction to fetch is in micro-op ROM
1377        // or not.
1378        inRom = isRomMicroPC(thisPC.microPC());
1379    }
1380
1381    if (predictedBranch) {
1382        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1383                "instruction encountered.\n", tid);
1384    } else if (numInst >= fetchWidth) {
1385        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1386                "for this cycle.\n", tid);
1387    } else if (blkOffset >= fetchBufferSize) {
1388        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1389                "fetch buffer.\n", tid);
1390    }
1391
1392    macroop[tid] = curMacroop;
1393    fetchOffset[tid] = pcOffset;
1394
1395    if (numInst > 0) {
1396        wroteToTimeBuffer = true;
1397    }
1398
1399    pc[tid] = thisPC;
1400
1401    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1402    // a state that would preclude fetching
1403    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1404    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1405    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1406        fetchStatus[tid] != IcacheWaitResponse &&
1407        fetchStatus[tid] != ItlbWait &&
1408        fetchStatus[tid] != IcacheWaitRetry &&
1409        fetchStatus[tid] != QuiescePending &&
1410        !curMacroop;
1411}
1412
1413template<class Impl>
1414void
1415DefaultFetch<Impl>::recvReqRetry()
1416{
1417    if (retryPkt != NULL) {
1418        assert(cacheBlocked);
1419        assert(retryTid != InvalidThreadID);
1420        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1421
1422        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1423            fetchStatus[retryTid] = IcacheWaitResponse;
1424            retryPkt = NULL;
1425            retryTid = InvalidThreadID;
1426            cacheBlocked = false;
1427        }
1428    } else {
1429        assert(retryTid == InvalidThreadID);
1430        // Access has been squashed since it was sent out.  Just clear
1431        // the cache being blocked.
1432        cacheBlocked = false;
1433    }
1434}
1435
1436///////////////////////////////////////
1437//                                   //
1438//  SMT FETCH POLICY MAINTAINED HERE //
1439//                                   //
1440///////////////////////////////////////
1441template<class Impl>
1442ThreadID
1443DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1444{
1445    if (numThreads > 1) {
1446        switch (fetch_priority) {
1447
1448          case SingleThread:
1449            return 0;
1450
1451          case RoundRobin:
1452            return roundRobin();
1453
1454          case IQ:
1455            return iqCount();
1456
1457          case LSQ:
1458            return lsqCount();
1459
1460          case Branch:
1461            return branchCount();
1462
1463          default:
1464            return InvalidThreadID;
1465        }
1466    } else {
1467        list<ThreadID>::iterator thread = activeThreads->begin();
1468        if (thread == activeThreads->end()) {
1469            return InvalidThreadID;
1470        }
1471
1472        ThreadID tid = *thread;
1473
1474        if (fetchStatus[tid] == Running ||
1475            fetchStatus[tid] == IcacheAccessComplete ||
1476            fetchStatus[tid] == Idle) {
1477            return tid;
1478        } else {
1479            return InvalidThreadID;
1480        }
1481    }
1482}
1483
1484
1485template<class Impl>
1486ThreadID
1487DefaultFetch<Impl>::roundRobin()
1488{
1489    list<ThreadID>::iterator pri_iter = priorityList.begin();
1490    list<ThreadID>::iterator end      = priorityList.end();
1491
1492    ThreadID high_pri;
1493
1494    while (pri_iter != end) {
1495        high_pri = *pri_iter;
1496
1497        assert(high_pri <= numThreads);
1498
1499        if (fetchStatus[high_pri] == Running ||
1500            fetchStatus[high_pri] == IcacheAccessComplete ||
1501            fetchStatus[high_pri] == Idle) {
1502
1503            priorityList.erase(pri_iter);
1504            priorityList.push_back(high_pri);
1505
1506            return high_pri;
1507        }
1508
1509        pri_iter++;
1510    }
1511
1512    return InvalidThreadID;
1513}
1514
1515template<class Impl>
1516ThreadID
1517DefaultFetch<Impl>::iqCount()
1518{
1519    //sorted from lowest->highest
1520    std::priority_queue<unsigned,vector<unsigned>,
1521                        std::greater<unsigned> > PQ;
1522    std::map<unsigned, ThreadID> threadMap;
1523
1524    list<ThreadID>::iterator threads = activeThreads->begin();
1525    list<ThreadID>::iterator end = activeThreads->end();
1526
1527    while (threads != end) {
1528        ThreadID tid = *threads++;
1529        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1530
1531        //we can potentially get tid collisions if two threads
1532        //have the same iqCount, but this should be rare.
1533        PQ.push(iqCount);
1534        threadMap[iqCount] = tid;
1535    }
1536
1537    while (!PQ.empty()) {
1538        ThreadID high_pri = threadMap[PQ.top()];
1539
1540        if (fetchStatus[high_pri] == Running ||
1541            fetchStatus[high_pri] == IcacheAccessComplete ||
1542            fetchStatus[high_pri] == Idle)
1543            return high_pri;
1544        else
1545            PQ.pop();
1546
1547    }
1548
1549    return InvalidThreadID;
1550}
1551
1552template<class Impl>
1553ThreadID
1554DefaultFetch<Impl>::lsqCount()
1555{
1556    //sorted from lowest->highest
1557    std::priority_queue<unsigned,vector<unsigned>,
1558                        std::greater<unsigned> > PQ;
1559    std::map<unsigned, ThreadID> threadMap;
1560
1561    list<ThreadID>::iterator threads = activeThreads->begin();
1562    list<ThreadID>::iterator end = activeThreads->end();
1563
1564    while (threads != end) {
1565        ThreadID tid = *threads++;
1566        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1567
1568        //we can potentially get tid collisions if two threads
1569        //have the same iqCount, but this should be rare.
1570        PQ.push(ldstqCount);
1571        threadMap[ldstqCount] = tid;
1572    }
1573
1574    while (!PQ.empty()) {
1575        ThreadID high_pri = threadMap[PQ.top()];
1576
1577        if (fetchStatus[high_pri] == Running ||
1578            fetchStatus[high_pri] == IcacheAccessComplete ||
1579            fetchStatus[high_pri] == Idle)
1580            return high_pri;
1581        else
1582            PQ.pop();
1583    }
1584
1585    return InvalidThreadID;
1586}
1587
1588template<class Impl>
1589ThreadID
1590DefaultFetch<Impl>::branchCount()
1591{
1592#if 0
1593    list<ThreadID>::iterator thread = activeThreads->begin();
1594    assert(thread != activeThreads->end());
1595    ThreadID tid = *thread;
1596#endif
1597
1598    panic("Branch Count Fetch policy unimplemented\n");
1599    return InvalidThreadID;
1600}
1601
1602template<class Impl>
1603void
1604DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1605{
1606    if (!issuePipelinedIfetch[tid]) {
1607        return;
1608    }
1609
1610    // The next PC to access.
1611    TheISA::PCState thisPC = pc[tid];
1612
1613    if (isRomMicroPC(thisPC.microPC())) {
1614        return;
1615    }
1616
1617    Addr pcOffset = fetchOffset[tid];
1618    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1619
1620    // Align the fetch PC so its at the start of a fetch buffer segment.
1621    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1622
1623    // Unless buffer already got the block, fetch it from icache.
1624    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1625        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1626                "starting at PC %s.\n", tid, thisPC);
1627
1628        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1629    }
1630}
1631
1632template<class Impl>
1633void
1634DefaultFetch<Impl>::profileStall(ThreadID tid) {
1635    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1636
1637    // @todo Per-thread stats
1638
1639    if (stalls[tid].drain) {
1640        ++fetchPendingDrainCycles;
1641        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1642    } else if (activeThreads->empty()) {
1643        ++fetchNoActiveThreadStallCycles;
1644        DPRINTF(Fetch, "Fetch has no active thread!\n");
1645    } else if (fetchStatus[tid] == Blocked) {
1646        ++fetchBlockedCycles;
1647        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1648    } else if (fetchStatus[tid] == Squashing) {
1649        ++fetchSquashCycles;
1650        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1651    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1652        ++icacheStallCycles;
1653        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1654                tid);
1655    } else if (fetchStatus[tid] == ItlbWait) {
1656        ++fetchTlbCycles;
1657        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1658                "finish!\n", tid);
1659    } else if (fetchStatus[tid] == TrapPending) {
1660        ++fetchPendingTrapStallCycles;
1661        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1662                tid);
1663    } else if (fetchStatus[tid] == QuiescePending) {
1664        ++fetchPendingQuiesceStallCycles;
1665        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1666                "instruction!\n", tid);
1667    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1668        ++fetchIcacheWaitRetryStallCycles;
1669        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1670                tid);
1671    } else if (fetchStatus[tid] == NoGoodAddr) {
1672            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1673                    tid);
1674    } else {
1675        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1676             tid, fetchStatus[tid]);
1677    }
1678}
1679
1680#endif//__CPU_O3_FETCH_IMPL_HH__
1681