fetch_impl.hh revision 10331:ed05298e8566
1451SN/A/*
22212SN/A * Copyright (c) 2010-2014 ARM Limited
3451SN/A * All rights reserved.
4451SN/A *
5451SN/A * The license below extends only to copyright in the software and shall
6451SN/A * not be construed as granting a license to any other intellectual
7451SN/A * property including but not limited to intellectual property relating
8451SN/A * to a hardware implementation of the functionality of the software
9451SN/A * licensed hereunder.  You may use the software subject to the license
10451SN/A * terms below provided that you ensure that this notice is replicated
11451SN/A * unmodified and in its entirety in all distributions of the software,
12451SN/A * modified or unmodified, in source code or in binary form.
13451SN/A *
14451SN/A * Copyright (c) 2004-2006 The Regents of The University of Michigan
15451SN/A * All rights reserved.
16451SN/A *
17451SN/A * Redistribution and use in source and binary forms, with or without
18451SN/A * modification, are permitted provided that the following conditions are
19451SN/A * met: redistributions of source code must retain the above copyright
20451SN/A * notice, this list of conditions and the following disclaimer;
21451SN/A * redistributions in binary form must reproduce the above copyright
22451SN/A * notice, this list of conditions and the following disclaimer in the
23451SN/A * documentation and/or other materials provided with the distribution;
24451SN/A * neither the name of the copyright holders nor the names of its
25451SN/A * contributors may be used to endorse or promote products derived from
26451SN/A * this software without specific prior written permission.
272665Ssaidi@eecs.umich.edu *
282665Ssaidi@eecs.umich.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
292665Ssaidi@eecs.umich.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
302665Ssaidi@eecs.umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31451SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32451SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
332212SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
342212SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35451SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36451SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
371070SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
381070SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
391070SN/A *
402212SN/A * Authors: Kevin Lim
412212SN/A *          Korey Sewell
422212SN/A */
432212SN/A
442212SN/A#ifndef __CPU_O3_FETCH_IMPL_HH__
452212SN/A#define __CPU_O3_FETCH_IMPL_HH__
46451SN/A
47885SN/A#include <algorithm>
48885SN/A#include <cstring>
49885SN/A#include <list>
50885SN/A#include <map>
51885SN/A#include <queue>
522212SN/A
53451SN/A#include "arch/isa_traits.hh"
54451SN/A#include "arch/tlb.hh"
551885SN/A#include "arch/utility.hh"
561885SN/A#include "arch/vtophys.hh"
571885SN/A#include "base/random.hh"
581885SN/A#include "base/types.hh"
591885SN/A#include "config/the_isa.hh"
601885SN/A#include "cpu/base.hh"
611885SN/A//#include "cpu/checker/cpu.hh"
621885SN/A#include "cpu/o3/fetch.hh"
631885SN/A#include "cpu/exetrace.hh"
641885SN/A#include "debug/Activity.hh"
651885SN/A#include "debug/Drain.hh"
661885SN/A#include "debug/Fetch.hh"
671885SN/A#include "debug/O3PipeView.hh"
681885SN/A#include "mem/packet.hh"
691885SN/A#include "params/DerivO3CPU.hh"
701885SN/A#include "sim/byteswap.hh"
712212SN/A#include "sim/core.hh"
721855SN/A#include "sim/eventq.hh"
731855SN/A#include "sim/full_system.hh"
741855SN/A#include "sim/system.hh"
751855SN/A
761855SN/Ausing namespace std;
771855SN/A
781855SN/Atemplate<class Impl>
791855SN/ADefaultFetch<Impl>::DefaultFetch(O3CPU *_cpu, DerivO3CPUParams *params)
801855SN/A    : cpu(_cpu),
811855SN/A      decodeToFetchDelay(params->decodeToFetchDelay),
821855SN/A      renameToFetchDelay(params->renameToFetchDelay),
831855SN/A      iewToFetchDelay(params->iewToFetchDelay),
841855SN/A      commitToFetchDelay(params->commitToFetchDelay),
851855SN/A      fetchWidth(params->fetchWidth),
861855SN/A      decodeWidth(params->decodeWidth),
871855SN/A      retryPkt(NULL),
881855SN/A      retryTid(InvalidThreadID),
891855SN/A      cacheBlkSize(cpu->cacheLineSize()),
901855SN/A      fetchBufferSize(params->fetchBufferSize),
911855SN/A      fetchBufferMask(fetchBufferSize - 1),
921492SN/A      fetchQueueSize(params->fetchQueueSize),
93887SN/A      numThreads(params->numThreads),
94451SN/A      numFetchingThreads(params->smtNumFetchingThreads),
951492SN/A      finishTranslationEvent(this)
961492SN/A{
971492SN/A    if (numThreads > Impl::MaxThreads)
981070SN/A        fatal("numThreads (%d) is larger than compiled limit (%d),\n"
99887SN/A              "\tincrease MaxThreads in src/cpu/o3/impl.hh\n",
1001070SN/A              numThreads, static_cast<int>(Impl::MaxThreads));
1011070SN/A    if (fetchWidth > Impl::MaxWidth)
1021070SN/A        fatal("fetchWidth (%d) is larger than compiled limit (%d),\n"
103887SN/A             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
104885SN/A             fetchWidth, static_cast<int>(Impl::MaxWidth));
105887SN/A    if (fetchBufferSize > cacheBlkSize)
106887SN/A        fatal("fetch buffer size (%u bytes) is greater than the cache "
107885SN/A              "block size (%u bytes)\n", fetchBufferSize, cacheBlkSize);
108887SN/A    if (cacheBlkSize % fetchBufferSize)
1091070SN/A        fatal("cache block (%u bytes) is not a multiple of the "
1101070SN/A              "fetch buffer (%u bytes)\n", cacheBlkSize, fetchBufferSize);
1111070SN/A
1121070SN/A    std::string policy = params->smtFetchPolicy;
1131039SN/A
1141039SN/A    // Convert string to lowercase
1151070SN/A    std::transform(policy.begin(), policy.end(), policy.begin(),
1161070SN/A                   (int(*)(int)) tolower);
117887SN/A
118887SN/A    // Figure out fetch policy
1191885SN/A    if (policy == "singlethread") {
120841SN/A        fetchPolicy = SingleThread;
1211082SN/A        if (numThreads > 1)
1221082SN/A            panic("Invalid Fetch Policy for a SMT workload.");
1231082SN/A    } else if (policy == "roundrobin") {
1241082SN/A        fetchPolicy = RoundRobin;
1251067SN/A        DPRINTF(Fetch, "Fetch policy set to Round Robin\n");
1261067SN/A    } else if (policy == "branch") {
1271082SN/A        fetchPolicy = Branch;
1281082SN/A        DPRINTF(Fetch, "Fetch policy set to Branch Count\n");
1291082SN/A    } else if (policy == "iqcount") {
1301082SN/A        fetchPolicy = IQ;
1311082SN/A        DPRINTF(Fetch, "Fetch policy set to IQ count\n");
1321082SN/A    } else if (policy == "lsqcount") {
1331082SN/A        fetchPolicy = LSQ;
1341082SN/A        DPRINTF(Fetch, "Fetch policy set to LSQ count\n");
1351082SN/A    } else {
1361084SN/A        fatal("Invalid Fetch Policy. Options Are: {SingleThread,"
1371084SN/A              " RoundRobin,LSQcount,IQcount}\n");
1381082SN/A    }
1391070SN/A
1401070SN/A    // Get the size of an instruction.
141451SN/A    instSize = sizeof(TheISA::MachInst);
142451SN/A
1432212SN/A    for (int i = 0; i < Impl::MaxThreads; i++) {
1442212SN/A        decoder[i] = NULL;
145451SN/A        fetchBuffer[i] = NULL;
146803SN/A        fetchBufferPC[i] = 0;
147451SN/A        fetchBufferValid[i] = false;
148451SN/A    }
1492212SN/A
150    branchPred = params->branchPred;
151
152    for (ThreadID tid = 0; tid < numThreads; tid++) {
153        decoder[tid] = new TheISA::Decoder;
154        // Create space to buffer the cache line data,
155        // which may not hold the entire cache line.
156        fetchBuffer[tid] = new uint8_t[fetchBufferSize];
157    }
158}
159
160template <class Impl>
161std::string
162DefaultFetch<Impl>::name() const
163{
164    return cpu->name() + ".fetch";
165}
166
167template <class Impl>
168void
169DefaultFetch<Impl>::regProbePoints()
170{
171    ppFetch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Fetch");
172}
173
174template <class Impl>
175void
176DefaultFetch<Impl>::regStats()
177{
178    icacheStallCycles
179        .name(name() + ".icacheStallCycles")
180        .desc("Number of cycles fetch is stalled on an Icache miss")
181        .prereq(icacheStallCycles);
182
183    fetchedInsts
184        .name(name() + ".Insts")
185        .desc("Number of instructions fetch has processed")
186        .prereq(fetchedInsts);
187
188    fetchedBranches
189        .name(name() + ".Branches")
190        .desc("Number of branches that fetch encountered")
191        .prereq(fetchedBranches);
192
193    predictedBranches
194        .name(name() + ".predictedBranches")
195        .desc("Number of branches that fetch has predicted taken")
196        .prereq(predictedBranches);
197
198    fetchCycles
199        .name(name() + ".Cycles")
200        .desc("Number of cycles fetch has run and was not squashing or"
201              " blocked")
202        .prereq(fetchCycles);
203
204    fetchSquashCycles
205        .name(name() + ".SquashCycles")
206        .desc("Number of cycles fetch has spent squashing")
207        .prereq(fetchSquashCycles);
208
209    fetchTlbCycles
210        .name(name() + ".TlbCycles")
211        .desc("Number of cycles fetch has spent waiting for tlb")
212        .prereq(fetchTlbCycles);
213
214    fetchIdleCycles
215        .name(name() + ".IdleCycles")
216        .desc("Number of cycles fetch was idle")
217        .prereq(fetchIdleCycles);
218
219    fetchBlockedCycles
220        .name(name() + ".BlockedCycles")
221        .desc("Number of cycles fetch has spent blocked")
222        .prereq(fetchBlockedCycles);
223
224    fetchedCacheLines
225        .name(name() + ".CacheLines")
226        .desc("Number of cache lines fetched")
227        .prereq(fetchedCacheLines);
228
229    fetchMiscStallCycles
230        .name(name() + ".MiscStallCycles")
231        .desc("Number of cycles fetch has spent waiting on interrupts, or "
232              "bad addresses, or out of MSHRs")
233        .prereq(fetchMiscStallCycles);
234
235    fetchPendingDrainCycles
236        .name(name() + ".PendingDrainCycles")
237        .desc("Number of cycles fetch has spent waiting on pipes to drain")
238        .prereq(fetchPendingDrainCycles);
239
240    fetchNoActiveThreadStallCycles
241        .name(name() + ".NoActiveThreadStallCycles")
242        .desc("Number of stall cycles due to no active thread to fetch from")
243        .prereq(fetchNoActiveThreadStallCycles);
244
245    fetchPendingTrapStallCycles
246        .name(name() + ".PendingTrapStallCycles")
247        .desc("Number of stall cycles due to pending traps")
248        .prereq(fetchPendingTrapStallCycles);
249
250    fetchPendingQuiesceStallCycles
251        .name(name() + ".PendingQuiesceStallCycles")
252        .desc("Number of stall cycles due to pending quiesce instructions")
253        .prereq(fetchPendingQuiesceStallCycles);
254
255    fetchIcacheWaitRetryStallCycles
256        .name(name() + ".IcacheWaitRetryStallCycles")
257        .desc("Number of stall cycles due to full MSHR")
258        .prereq(fetchIcacheWaitRetryStallCycles);
259
260    fetchIcacheSquashes
261        .name(name() + ".IcacheSquashes")
262        .desc("Number of outstanding Icache misses that were squashed")
263        .prereq(fetchIcacheSquashes);
264
265    fetchTlbSquashes
266        .name(name() + ".ItlbSquashes")
267        .desc("Number of outstanding ITLB misses that were squashed")
268        .prereq(fetchTlbSquashes);
269
270    fetchNisnDist
271        .init(/* base value */ 0,
272              /* last value */ fetchWidth,
273              /* bucket size */ 1)
274        .name(name() + ".rateDist")
275        .desc("Number of instructions fetched each cycle (Total)")
276        .flags(Stats::pdf);
277
278    idleRate
279        .name(name() + ".idleRate")
280        .desc("Percent of cycles fetch was idle")
281        .prereq(idleRate);
282    idleRate = fetchIdleCycles * 100 / cpu->numCycles;
283
284    branchRate
285        .name(name() + ".branchRate")
286        .desc("Number of branch fetches per cycle")
287        .flags(Stats::total);
288    branchRate = fetchedBranches / cpu->numCycles;
289
290    fetchRate
291        .name(name() + ".rate")
292        .desc("Number of inst fetches per cycle")
293        .flags(Stats::total);
294    fetchRate = fetchedInsts / cpu->numCycles;
295}
296
297template<class Impl>
298void
299DefaultFetch<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *time_buffer)
300{
301    timeBuffer = time_buffer;
302
303    // Create wires to get information from proper places in time buffer.
304    fromDecode = timeBuffer->getWire(-decodeToFetchDelay);
305    fromRename = timeBuffer->getWire(-renameToFetchDelay);
306    fromIEW = timeBuffer->getWire(-iewToFetchDelay);
307    fromCommit = timeBuffer->getWire(-commitToFetchDelay);
308}
309
310template<class Impl>
311void
312DefaultFetch<Impl>::setActiveThreads(std::list<ThreadID> *at_ptr)
313{
314    activeThreads = at_ptr;
315}
316
317template<class Impl>
318void
319DefaultFetch<Impl>::setFetchQueue(TimeBuffer<FetchStruct> *ftb_ptr)
320{
321    // Create wire to write information to proper place in fetch time buf.
322    toDecode = ftb_ptr->getWire(0);
323}
324
325template<class Impl>
326void
327DefaultFetch<Impl>::startupStage()
328{
329    assert(priorityList.empty());
330    resetStage();
331
332    // Fetch needs to start fetching instructions at the very beginning,
333    // so it must start up in active state.
334    switchToActive();
335}
336
337template<class Impl>
338void
339DefaultFetch<Impl>::resetStage()
340{
341    numInst = 0;
342    interruptPending = false;
343    cacheBlocked = false;
344
345    priorityList.clear();
346
347    // Setup PC and nextPC with initial state.
348    for (ThreadID tid = 0; tid < numThreads; ++tid) {
349        fetchStatus[tid] = Running;
350        pc[tid] = cpu->pcState(tid);
351        fetchOffset[tid] = 0;
352        macroop[tid] = NULL;
353
354        delayedCommit[tid] = false;
355        memReq[tid] = NULL;
356
357        stalls[tid].decode = false;
358        stalls[tid].drain = false;
359
360        fetchBufferPC[tid] = 0;
361        fetchBufferValid[tid] = false;
362
363        fetchQueue[tid].clear();
364
365        priorityList.push_back(tid);
366    }
367
368    wroteToTimeBuffer = false;
369    _status = Inactive;
370}
371
372template<class Impl>
373void
374DefaultFetch<Impl>::processCacheCompletion(PacketPtr pkt)
375{
376    ThreadID tid = pkt->req->threadId();
377
378    DPRINTF(Fetch, "[tid:%u] Waking up from cache miss.\n", tid);
379    assert(!cpu->switchedOut());
380
381    // Only change the status if it's still waiting on the icache access
382    // to return.
383    if (fetchStatus[tid] != IcacheWaitResponse ||
384        pkt->req != memReq[tid]) {
385        ++fetchIcacheSquashes;
386        delete pkt->req;
387        delete pkt;
388        return;
389    }
390
391    memcpy(fetchBuffer[tid], pkt->getPtr<uint8_t>(), fetchBufferSize);
392    fetchBufferValid[tid] = true;
393
394    // Wake up the CPU (if it went to sleep and was waiting on
395    // this completion event).
396    cpu->wakeCPU();
397
398    DPRINTF(Activity, "[tid:%u] Activating fetch due to cache completion\n",
399            tid);
400
401    switchToActive();
402
403    // Only switch to IcacheAccessComplete if we're not stalled as well.
404    if (checkStall(tid)) {
405        fetchStatus[tid] = Blocked;
406    } else {
407        fetchStatus[tid] = IcacheAccessComplete;
408    }
409
410    pkt->req->setAccessLatency();
411    cpu->ppInstAccessComplete->notify(pkt);
412    // Reset the mem req to NULL.
413    delete pkt->req;
414    delete pkt;
415    memReq[tid] = NULL;
416}
417
418template <class Impl>
419void
420DefaultFetch<Impl>::drainResume()
421{
422    for (ThreadID i = 0; i < Impl::MaxThreads; ++i)
423        stalls[i].drain = false;
424}
425
426template <class Impl>
427void
428DefaultFetch<Impl>::drainSanityCheck() const
429{
430    assert(isDrained());
431    assert(retryPkt == NULL);
432    assert(retryTid == InvalidThreadID);
433    assert(!cacheBlocked);
434    assert(!interruptPending);
435
436    for (ThreadID i = 0; i < numThreads; ++i) {
437        assert(!memReq[i]);
438        assert(fetchStatus[i] == Idle || stalls[i].drain);
439    }
440
441    branchPred->drainSanityCheck();
442}
443
444template <class Impl>
445bool
446DefaultFetch<Impl>::isDrained() const
447{
448    /* Make sure that threads are either idle of that the commit stage
449     * has signaled that draining has completed by setting the drain
450     * stall flag. This effectively forces the pipeline to be disabled
451     * until the whole system is drained (simulation may continue to
452     * drain other components).
453     */
454    for (ThreadID i = 0; i < numThreads; ++i) {
455        // Verify fetch queues are drained
456        if (!fetchQueue[i].empty())
457            return false;
458
459        // Return false if not idle or drain stalled
460        if (fetchStatus[i] != Idle) {
461            if (fetchStatus[i] == Blocked && stalls[i].drain)
462                continue;
463            else
464                return false;
465        }
466    }
467
468    /* The pipeline might start up again in the middle of the drain
469     * cycle if the finish translation event is scheduled, so make
470     * sure that's not the case.
471     */
472    return !finishTranslationEvent.scheduled();
473}
474
475template <class Impl>
476void
477DefaultFetch<Impl>::takeOverFrom()
478{
479    assert(cpu->getInstPort().isConnected());
480    resetStage();
481
482}
483
484template <class Impl>
485void
486DefaultFetch<Impl>::drainStall(ThreadID tid)
487{
488    assert(cpu->isDraining());
489    assert(!stalls[tid].drain);
490    DPRINTF(Drain, "%i: Thread drained.\n", tid);
491    stalls[tid].drain = true;
492}
493
494template <class Impl>
495void
496DefaultFetch<Impl>::wakeFromQuiesce()
497{
498    DPRINTF(Fetch, "Waking up from quiesce\n");
499    // Hopefully this is safe
500    // @todo: Allow other threads to wake from quiesce.
501    fetchStatus[0] = Running;
502}
503
504template <class Impl>
505inline void
506DefaultFetch<Impl>::switchToActive()
507{
508    if (_status == Inactive) {
509        DPRINTF(Activity, "Activating stage.\n");
510
511        cpu->activateStage(O3CPU::FetchIdx);
512
513        _status = Active;
514    }
515}
516
517template <class Impl>
518inline void
519DefaultFetch<Impl>::switchToInactive()
520{
521    if (_status == Active) {
522        DPRINTF(Activity, "Deactivating stage.\n");
523
524        cpu->deactivateStage(O3CPU::FetchIdx);
525
526        _status = Inactive;
527    }
528}
529
530template <class Impl>
531void
532DefaultFetch<Impl>::deactivateThread(ThreadID tid)
533{
534    // Update priority list
535    auto thread_it = std::find(priorityList.begin(), priorityList.end(), tid);
536    if (thread_it != priorityList.end()) {
537        priorityList.erase(thread_it);
538    }
539}
540
541template <class Impl>
542bool
543DefaultFetch<Impl>::lookupAndUpdateNextPC(
544        DynInstPtr &inst, TheISA::PCState &nextPC)
545{
546    // Do branch prediction check here.
547    // A bit of a misnomer...next_PC is actually the current PC until
548    // this function updates it.
549    bool predict_taken;
550
551    if (!inst->isControl()) {
552        TheISA::advancePC(nextPC, inst->staticInst);
553        inst->setPredTarg(nextPC);
554        inst->setPredTaken(false);
555        return false;
556    }
557
558    ThreadID tid = inst->threadNumber;
559    predict_taken = branchPred->predict(inst->staticInst, inst->seqNum,
560                                        nextPC, tid);
561
562    if (predict_taken) {
563        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:  Branch predicted to be taken to %s.\n",
564                tid, inst->seqNum, nextPC);
565    } else {
566        DPRINTF(Fetch, "[tid:%i]: [sn:%i]:Branch predicted to be not taken.\n",
567                tid, inst->seqNum);
568    }
569
570    DPRINTF(Fetch, "[tid:%i]: [sn:%i] Branch predicted to go to %s.\n",
571            tid, inst->seqNum, nextPC);
572    inst->setPredTarg(nextPC);
573    inst->setPredTaken(predict_taken);
574
575    ++fetchedBranches;
576
577    if (predict_taken) {
578        ++predictedBranches;
579    }
580
581    return predict_taken;
582}
583
584template <class Impl>
585bool
586DefaultFetch<Impl>::fetchCacheLine(Addr vaddr, ThreadID tid, Addr pc)
587{
588    Fault fault = NoFault;
589
590    assert(!cpu->switchedOut());
591
592    // @todo: not sure if these should block translation.
593    //AlphaDep
594    if (cacheBlocked) {
595        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, cache blocked\n",
596                tid);
597        return false;
598    } else if (checkInterrupt(pc) && !delayedCommit[tid]) {
599        // Hold off fetch from getting new instructions when:
600        // Cache is blocked, or
601        // while an interrupt is pending and we're not in PAL mode, or
602        // fetch is switched out.
603        DPRINTF(Fetch, "[tid:%i] Can't fetch cache line, interrupt pending\n",
604                tid);
605        return false;
606    }
607
608    // Align the fetch address to the start of a fetch buffer segment.
609    Addr fetchBufferBlockPC = fetchBufferAlignPC(vaddr);
610
611    DPRINTF(Fetch, "[tid:%i] Fetching cache line %#x for addr %#x\n",
612            tid, fetchBufferBlockPC, vaddr);
613
614    // Setup the memReq to do a read of the first instruction's address.
615    // Set the appropriate read size and flags as well.
616    // Build request here.
617    RequestPtr mem_req =
618        new Request(tid, fetchBufferBlockPC, fetchBufferSize,
619                    Request::INST_FETCH, cpu->instMasterId(), pc,
620                    cpu->thread[tid]->contextId(), tid);
621
622    mem_req->taskId(cpu->taskId());
623
624    memReq[tid] = mem_req;
625
626    // Initiate translation of the icache block
627    fetchStatus[tid] = ItlbWait;
628    FetchTranslation *trans = new FetchTranslation(this);
629    cpu->itb->translateTiming(mem_req, cpu->thread[tid]->getTC(),
630                              trans, BaseTLB::Execute);
631    return true;
632}
633
634template <class Impl>
635void
636DefaultFetch<Impl>::finishTranslation(Fault fault, RequestPtr mem_req)
637{
638    ThreadID tid = mem_req->threadId();
639    Addr fetchBufferBlockPC = mem_req->getVaddr();
640
641    assert(!cpu->switchedOut());
642
643    // Wake up CPU if it was idle
644    cpu->wakeCPU();
645
646    if (fetchStatus[tid] != ItlbWait || mem_req != memReq[tid] ||
647        mem_req->getVaddr() != memReq[tid]->getVaddr()) {
648        DPRINTF(Fetch, "[tid:%i] Ignoring itlb completed after squash\n",
649                tid);
650        ++fetchTlbSquashes;
651        delete mem_req;
652        return;
653    }
654
655
656    // If translation was successful, attempt to read the icache block.
657    if (fault == NoFault) {
658        // Check that we're not going off into random memory
659        // If we have, just wait around for commit to squash something and put
660        // us on the right track
661        if (!cpu->system->isMemAddr(mem_req->getPaddr())) {
662            warn("Address %#x is outside of physical memory, stopping fetch\n",
663                    mem_req->getPaddr());
664            fetchStatus[tid] = NoGoodAddr;
665            delete mem_req;
666            memReq[tid] = NULL;
667            return;
668        }
669
670        // Build packet here.
671        PacketPtr data_pkt = new Packet(mem_req, MemCmd::ReadReq);
672        data_pkt->dataDynamicArray(new uint8_t[fetchBufferSize]);
673
674        fetchBufferPC[tid] = fetchBufferBlockPC;
675        fetchBufferValid[tid] = false;
676        DPRINTF(Fetch, "Fetch: Doing instruction read.\n");
677
678        fetchedCacheLines++;
679
680        // Access the cache.
681        if (!cpu->getInstPort().sendTimingReq(data_pkt)) {
682            assert(retryPkt == NULL);
683            assert(retryTid == InvalidThreadID);
684            DPRINTF(Fetch, "[tid:%i] Out of MSHRs!\n", tid);
685
686            fetchStatus[tid] = IcacheWaitRetry;
687            retryPkt = data_pkt;
688            retryTid = tid;
689            cacheBlocked = true;
690        } else {
691            DPRINTF(Fetch, "[tid:%i]: Doing Icache access.\n", tid);
692            DPRINTF(Activity, "[tid:%i]: Activity: Waiting on I-cache "
693                    "response.\n", tid);
694            lastIcacheStall[tid] = curTick();
695            fetchStatus[tid] = IcacheWaitResponse;
696        }
697    } else {
698        // Don't send an instruction to decode if we can't handle it.
699        if (!(numInst < fetchWidth) || !(fetchQueue[tid].size() < fetchQueueSize)) {
700            assert(!finishTranslationEvent.scheduled());
701            finishTranslationEvent.setFault(fault);
702            finishTranslationEvent.setReq(mem_req);
703            cpu->schedule(finishTranslationEvent,
704                          cpu->clockEdge(Cycles(1)));
705            return;
706        }
707        DPRINTF(Fetch, "[tid:%i] Got back req with addr %#x but expected %#x\n",
708                tid, mem_req->getVaddr(), memReq[tid]->getVaddr());
709        // Translation faulted, icache request won't be sent.
710        delete mem_req;
711        memReq[tid] = NULL;
712
713        // Send the fault to commit.  This thread will not do anything
714        // until commit handles the fault.  The only other way it can
715        // wake up is if a squash comes along and changes the PC.
716        TheISA::PCState fetchPC = pc[tid];
717
718        DPRINTF(Fetch, "[tid:%i]: Translation faulted, building noop.\n", tid);
719        // We will use a nop in ordier to carry the fault.
720        DynInstPtr instruction = buildInst(tid,
721                decoder[tid]->decode(TheISA::NoopMachInst, fetchPC.instAddr()),
722                NULL, fetchPC, fetchPC, false);
723
724        instruction->setPredTarg(fetchPC);
725        instruction->fault = fault;
726        wroteToTimeBuffer = true;
727
728        DPRINTF(Activity, "Activity this cycle.\n");
729        cpu->activityThisCycle();
730
731        fetchStatus[tid] = TrapPending;
732
733        DPRINTF(Fetch, "[tid:%i]: Blocked, need to handle the trap.\n", tid);
734        DPRINTF(Fetch, "[tid:%i]: fault (%s) detected @ PC %s.\n",
735                tid, fault->name(), pc[tid]);
736    }
737    _status = updateFetchStatus();
738}
739
740template <class Impl>
741inline void
742DefaultFetch<Impl>::doSquash(const TheISA::PCState &newPC,
743                             const DynInstPtr squashInst, ThreadID tid)
744{
745    DPRINTF(Fetch, "[tid:%i]: Squashing, setting PC to: %s.\n",
746            tid, newPC);
747
748    pc[tid] = newPC;
749    fetchOffset[tid] = 0;
750    if (squashInst && squashInst->pcState().instAddr() == newPC.instAddr())
751        macroop[tid] = squashInst->macroop;
752    else
753        macroop[tid] = NULL;
754    decoder[tid]->reset();
755
756    // Clear the icache miss if it's outstanding.
757    if (fetchStatus[tid] == IcacheWaitResponse) {
758        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding Icache miss.\n",
759                tid);
760        memReq[tid] = NULL;
761    } else if (fetchStatus[tid] == ItlbWait) {
762        DPRINTF(Fetch, "[tid:%i]: Squashing outstanding ITLB miss.\n",
763                tid);
764        memReq[tid] = NULL;
765    }
766
767    // Get rid of the retrying packet if it was from this thread.
768    if (retryTid == tid) {
769        assert(cacheBlocked);
770        if (retryPkt) {
771            delete retryPkt->req;
772            delete retryPkt;
773        }
774        retryPkt = NULL;
775        retryTid = InvalidThreadID;
776    }
777
778    fetchStatus[tid] = Squashing;
779
780    // Empty fetch queue
781    fetchQueue[tid].clear();
782
783    // microops are being squashed, it is not known wheather the
784    // youngest non-squashed microop was  marked delayed commit
785    // or not. Setting the flag to true ensures that the
786    // interrupts are not handled when they cannot be, though
787    // some opportunities to handle interrupts may be missed.
788    delayedCommit[tid] = true;
789
790    ++fetchSquashCycles;
791}
792
793template<class Impl>
794void
795DefaultFetch<Impl>::squashFromDecode(const TheISA::PCState &newPC,
796                                     const DynInstPtr squashInst,
797                                     const InstSeqNum seq_num, ThreadID tid)
798{
799    DPRINTF(Fetch, "[tid:%i]: Squashing from decode.\n", tid);
800
801    doSquash(newPC, squashInst, tid);
802
803    // Tell the CPU to remove any instructions that are in flight between
804    // fetch and decode.
805    cpu->removeInstsUntil(seq_num, tid);
806}
807
808template<class Impl>
809bool
810DefaultFetch<Impl>::checkStall(ThreadID tid) const
811{
812    bool ret_val = false;
813
814    if (cpu->contextSwitch) {
815        DPRINTF(Fetch,"[tid:%i]: Stalling for a context switch.\n",tid);
816        ret_val = true;
817    } else if (stalls[tid].drain) {
818        assert(cpu->isDraining());
819        DPRINTF(Fetch,"[tid:%i]: Drain stall detected.\n",tid);
820        ret_val = true;
821    }
822
823    return ret_val;
824}
825
826template<class Impl>
827typename DefaultFetch<Impl>::FetchStatus
828DefaultFetch<Impl>::updateFetchStatus()
829{
830    //Check Running
831    list<ThreadID>::iterator threads = activeThreads->begin();
832    list<ThreadID>::iterator end = activeThreads->end();
833
834    while (threads != end) {
835        ThreadID tid = *threads++;
836
837        if (fetchStatus[tid] == Running ||
838            fetchStatus[tid] == Squashing ||
839            fetchStatus[tid] == IcacheAccessComplete) {
840
841            if (_status == Inactive) {
842                DPRINTF(Activity, "[tid:%i]: Activating stage.\n",tid);
843
844                if (fetchStatus[tid] == IcacheAccessComplete) {
845                    DPRINTF(Activity, "[tid:%i]: Activating fetch due to cache"
846                            "completion\n",tid);
847                }
848
849                cpu->activateStage(O3CPU::FetchIdx);
850            }
851
852            return Active;
853        }
854    }
855
856    // Stage is switching from active to inactive, notify CPU of it.
857    if (_status == Active) {
858        DPRINTF(Activity, "Deactivating stage.\n");
859
860        cpu->deactivateStage(O3CPU::FetchIdx);
861    }
862
863    return Inactive;
864}
865
866template <class Impl>
867void
868DefaultFetch<Impl>::squash(const TheISA::PCState &newPC,
869                           const InstSeqNum seq_num, DynInstPtr squashInst,
870                           ThreadID tid)
871{
872    DPRINTF(Fetch, "[tid:%u]: Squash from commit.\n", tid);
873
874    doSquash(newPC, squashInst, tid);
875
876    // Tell the CPU to remove any instructions that are not in the ROB.
877    cpu->removeInstsNotInROB(tid);
878}
879
880template <class Impl>
881void
882DefaultFetch<Impl>::tick()
883{
884    list<ThreadID>::iterator threads = activeThreads->begin();
885    list<ThreadID>::iterator end = activeThreads->end();
886    bool status_change = false;
887
888    wroteToTimeBuffer = false;
889
890    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
891        issuePipelinedIfetch[i] = false;
892    }
893
894    while (threads != end) {
895        ThreadID tid = *threads++;
896
897        // Check the signals for each thread to determine the proper status
898        // for each thread.
899        bool updated_status = checkSignalsAndUpdate(tid);
900        status_change =  status_change || updated_status;
901    }
902
903    DPRINTF(Fetch, "Running stage.\n");
904
905    if (FullSystem) {
906        if (fromCommit->commitInfo[0].interruptPending) {
907            interruptPending = true;
908        }
909
910        if (fromCommit->commitInfo[0].clearInterrupt) {
911            interruptPending = false;
912        }
913    }
914
915    for (threadFetched = 0; threadFetched < numFetchingThreads;
916         threadFetched++) {
917        // Fetch each of the actively fetching threads.
918        fetch(status_change);
919    }
920
921    // Record number of instructions fetched this cycle for distribution.
922    fetchNisnDist.sample(numInst);
923
924    if (status_change) {
925        // Change the fetch stage status if there was a status change.
926        _status = updateFetchStatus();
927    }
928
929    // Issue the next I-cache request if possible.
930    for (ThreadID i = 0; i < Impl::MaxThreads; ++i) {
931        if (issuePipelinedIfetch[i]) {
932            pipelineIcacheAccesses(i);
933        }
934    }
935
936    // Send instructions enqueued into the fetch queue to decode.
937    // Limit rate by fetchWidth.  Stall if decode is stalled.
938    unsigned insts_to_decode = 0;
939    unsigned available_insts = 0;
940
941    for (auto tid : *activeThreads) {
942        if (!stalls[tid].decode) {
943            available_insts += fetchQueue[tid].size();
944        }
945    }
946
947    // Pick a random thread to start trying to grab instructions from
948    auto tid_itr = activeThreads->begin();
949    std::advance(tid_itr, random_mt.random<uint8_t>(0, activeThreads->size() - 1));
950
951    while (available_insts != 0 && insts_to_decode < decodeWidth) {
952        ThreadID tid = *tid_itr;
953        if (!stalls[tid].decode && !fetchQueue[tid].empty()) {
954            auto inst = fetchQueue[tid].front();
955            toDecode->insts[toDecode->size++] = inst;
956            DPRINTF(Fetch, "[tid:%i][sn:%i]: Sending instruction to decode from "
957                    "fetch queue. Fetch queue size: %i.\n",
958                    tid, inst->seqNum, fetchQueue[tid].size());
959
960            wroteToTimeBuffer = true;
961            fetchQueue[tid].pop_front();
962            insts_to_decode++;
963            available_insts--;
964        }
965
966        tid_itr++;
967        // Wrap around if at end of active threads list
968        if (tid_itr == activeThreads->end())
969            tid_itr = activeThreads->begin();
970    }
971
972    // If there was activity this cycle, inform the CPU of it.
973    if (wroteToTimeBuffer || cpu->contextSwitch) {
974        DPRINTF(Activity, "Activity this cycle.\n");
975
976        cpu->activityThisCycle();
977    }
978
979    // Reset the number of the instruction we've fetched.
980    numInst = 0;
981}
982
983template <class Impl>
984bool
985DefaultFetch<Impl>::checkSignalsAndUpdate(ThreadID tid)
986{
987    // Update the per thread stall statuses.
988    if (fromDecode->decodeBlock[tid]) {
989        stalls[tid].decode = true;
990    }
991
992    if (fromDecode->decodeUnblock[tid]) {
993        assert(stalls[tid].decode);
994        assert(!fromDecode->decodeBlock[tid]);
995        stalls[tid].decode = false;
996    }
997
998    // Check squash signals from commit.
999    if (fromCommit->commitInfo[tid].squash) {
1000
1001        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1002                "from commit.\n",tid);
1003        // In any case, squash.
1004        squash(fromCommit->commitInfo[tid].pc,
1005               fromCommit->commitInfo[tid].doneSeqNum,
1006               fromCommit->commitInfo[tid].squashInst, tid);
1007
1008        // If it was a branch mispredict on a control instruction, update the
1009        // branch predictor with that instruction, otherwise just kill the
1010        // invalid state we generated in after sequence number
1011        if (fromCommit->commitInfo[tid].mispredictInst &&
1012            fromCommit->commitInfo[tid].mispredictInst->isControl()) {
1013            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1014                              fromCommit->commitInfo[tid].pc,
1015                              fromCommit->commitInfo[tid].branchTaken,
1016                              tid);
1017        } else {
1018            branchPred->squash(fromCommit->commitInfo[tid].doneSeqNum,
1019                              tid);
1020        }
1021
1022        return true;
1023    } else if (fromCommit->commitInfo[tid].doneSeqNum) {
1024        // Update the branch predictor if it wasn't a squashed instruction
1025        // that was broadcasted.
1026        branchPred->update(fromCommit->commitInfo[tid].doneSeqNum, tid);
1027    }
1028
1029    // Check squash signals from decode.
1030    if (fromDecode->decodeInfo[tid].squash) {
1031        DPRINTF(Fetch, "[tid:%u]: Squashing instructions due to squash "
1032                "from decode.\n",tid);
1033
1034        // Update the branch predictor.
1035        if (fromDecode->decodeInfo[tid].branchMispredict) {
1036            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1037                              fromDecode->decodeInfo[tid].nextPC,
1038                              fromDecode->decodeInfo[tid].branchTaken,
1039                              tid);
1040        } else {
1041            branchPred->squash(fromDecode->decodeInfo[tid].doneSeqNum,
1042                              tid);
1043        }
1044
1045        if (fetchStatus[tid] != Squashing) {
1046
1047            DPRINTF(Fetch, "Squashing from decode with PC = %s\n",
1048                fromDecode->decodeInfo[tid].nextPC);
1049            // Squash unless we're already squashing
1050            squashFromDecode(fromDecode->decodeInfo[tid].nextPC,
1051                             fromDecode->decodeInfo[tid].squashInst,
1052                             fromDecode->decodeInfo[tid].doneSeqNum,
1053                             tid);
1054
1055            return true;
1056        }
1057    }
1058
1059    if (checkStall(tid) &&
1060        fetchStatus[tid] != IcacheWaitResponse &&
1061        fetchStatus[tid] != IcacheWaitRetry &&
1062        fetchStatus[tid] != ItlbWait &&
1063        fetchStatus[tid] != QuiescePending) {
1064        DPRINTF(Fetch, "[tid:%i]: Setting to blocked\n",tid);
1065
1066        fetchStatus[tid] = Blocked;
1067
1068        return true;
1069    }
1070
1071    if (fetchStatus[tid] == Blocked ||
1072        fetchStatus[tid] == Squashing) {
1073        // Switch status to running if fetch isn't being told to block or
1074        // squash this cycle.
1075        DPRINTF(Fetch, "[tid:%i]: Done squashing, switching to running.\n",
1076                tid);
1077
1078        fetchStatus[tid] = Running;
1079
1080        return true;
1081    }
1082
1083    // If we've reached this point, we have not gotten any signals that
1084    // cause fetch to change its status.  Fetch remains the same as before.
1085    return false;
1086}
1087
1088template<class Impl>
1089typename Impl::DynInstPtr
1090DefaultFetch<Impl>::buildInst(ThreadID tid, StaticInstPtr staticInst,
1091                              StaticInstPtr curMacroop, TheISA::PCState thisPC,
1092                              TheISA::PCState nextPC, bool trace)
1093{
1094    // Get a sequence number.
1095    InstSeqNum seq = cpu->getAndIncrementInstSeq();
1096
1097    // Create a new DynInst from the instruction fetched.
1098    DynInstPtr instruction =
1099        new DynInst(staticInst, curMacroop, thisPC, nextPC, seq, cpu);
1100    instruction->setTid(tid);
1101
1102    instruction->setASID(tid);
1103
1104    instruction->setThreadState(cpu->thread[tid]);
1105
1106    DPRINTF(Fetch, "[tid:%i]: Instruction PC %#x (%d) created "
1107            "[sn:%lli].\n", tid, thisPC.instAddr(),
1108            thisPC.microPC(), seq);
1109
1110    DPRINTF(Fetch, "[tid:%i]: Instruction is: %s\n", tid,
1111            instruction->staticInst->
1112            disassemble(thisPC.instAddr()));
1113
1114#if TRACING_ON
1115    if (trace) {
1116        instruction->traceData =
1117            cpu->getTracer()->getInstRecord(curTick(), cpu->tcBase(tid),
1118                    instruction->staticInst, thisPC, curMacroop);
1119    }
1120#else
1121    instruction->traceData = NULL;
1122#endif
1123
1124    // Add instruction to the CPU's list of instructions.
1125    instruction->setInstListIt(cpu->addInst(instruction));
1126
1127    // Write the instruction to the first slot in the queue
1128    // that heads to decode.
1129    assert(numInst < fetchWidth);
1130    fetchQueue[tid].push_back(instruction);
1131    assert(fetchQueue[tid].size() <= fetchQueueSize);
1132    DPRINTF(Fetch, "[tid:%i]: Fetch queue entry created (%i/%i).\n",
1133            tid, fetchQueue[tid].size(), fetchQueueSize);
1134    //toDecode->insts[toDecode->size++] = instruction;
1135
1136    // Keep track of if we can take an interrupt at this boundary
1137    delayedCommit[tid] = instruction->isDelayedCommit();
1138
1139    return instruction;
1140}
1141
1142template<class Impl>
1143void
1144DefaultFetch<Impl>::fetch(bool &status_change)
1145{
1146    //////////////////////////////////////////
1147    // Start actual fetch
1148    //////////////////////////////////////////
1149    ThreadID tid = getFetchingThread(fetchPolicy);
1150
1151    assert(!cpu->switchedOut());
1152
1153    if (tid == InvalidThreadID) {
1154        // Breaks looping condition in tick()
1155        threadFetched = numFetchingThreads;
1156
1157        if (numThreads == 1) {  // @todo Per-thread stats
1158            profileStall(0);
1159        }
1160
1161        return;
1162    }
1163
1164    DPRINTF(Fetch, "Attempting to fetch from [tid:%i]\n", tid);
1165
1166    // The current PC.
1167    TheISA::PCState thisPC = pc[tid];
1168
1169    Addr pcOffset = fetchOffset[tid];
1170    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1171
1172    bool inRom = isRomMicroPC(thisPC.microPC());
1173
1174    // If returning from the delay of a cache miss, then update the status
1175    // to running, otherwise do the cache access.  Possibly move this up
1176    // to tick() function.
1177    if (fetchStatus[tid] == IcacheAccessComplete) {
1178        DPRINTF(Fetch, "[tid:%i]: Icache miss is complete.\n", tid);
1179
1180        fetchStatus[tid] = Running;
1181        status_change = true;
1182    } else if (fetchStatus[tid] == Running) {
1183        // Align the fetch PC so its at the start of a fetch buffer segment.
1184        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1185
1186        // If buffer is no longer valid or fetchAddr has moved to point
1187        // to the next cache block, AND we have no remaining ucode
1188        // from a macro-op, then start fetch from icache.
1189        if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])
1190            && !inRom && !macroop[tid]) {
1191            DPRINTF(Fetch, "[tid:%i]: Attempting to translate and read "
1192                    "instruction, starting at PC %s.\n", tid, thisPC);
1193
1194            fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1195
1196            if (fetchStatus[tid] == IcacheWaitResponse)
1197                ++icacheStallCycles;
1198            else if (fetchStatus[tid] == ItlbWait)
1199                ++fetchTlbCycles;
1200            else
1201                ++fetchMiscStallCycles;
1202            return;
1203        } else if ((checkInterrupt(thisPC.instAddr()) && !delayedCommit[tid])) {
1204            // Stall CPU if an interrupt is posted and we're not issuing
1205            // an delayed commit micro-op currently (delayed commit instructions
1206            // are not interruptable by interrupts, only faults)
1207            ++fetchMiscStallCycles;
1208            DPRINTF(Fetch, "[tid:%i]: Fetch is stalled!\n", tid);
1209            return;
1210        }
1211    } else {
1212        if (fetchStatus[tid] == Idle) {
1213            ++fetchIdleCycles;
1214            DPRINTF(Fetch, "[tid:%i]: Fetch is idle!\n", tid);
1215        }
1216
1217        // Status is Idle, so fetch should do nothing.
1218        return;
1219    }
1220
1221    ++fetchCycles;
1222
1223    TheISA::PCState nextPC = thisPC;
1224
1225    StaticInstPtr staticInst = NULL;
1226    StaticInstPtr curMacroop = macroop[tid];
1227
1228    // If the read of the first instruction was successful, then grab the
1229    // instructions from the rest of the cache line and put them into the
1230    // queue heading to decode.
1231
1232    DPRINTF(Fetch, "[tid:%i]: Adding instructions to queue to "
1233            "decode.\n", tid);
1234
1235    // Need to keep track of whether or not a predicted branch
1236    // ended this fetch block.
1237    bool predictedBranch = false;
1238
1239    TheISA::MachInst *cacheInsts =
1240        reinterpret_cast<TheISA::MachInst *>(fetchBuffer[tid]);
1241
1242    const unsigned numInsts = fetchBufferSize / instSize;
1243    unsigned blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1244
1245    // Loop through instruction memory from the cache.
1246    // Keep issuing while fetchWidth is available and branch is not
1247    // predicted taken
1248    while (numInst < fetchWidth && fetchQueue[tid].size() < fetchQueueSize
1249           && !predictedBranch) {
1250        // We need to process more memory if we aren't going to get a
1251        // StaticInst from the rom, the current macroop, or what's already
1252        // in the decoder.
1253        bool needMem = !inRom && !curMacroop &&
1254            !decoder[tid]->instReady();
1255        fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1256        Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1257
1258        if (needMem) {
1259            // If buffer is no longer valid or fetchAddr has moved to point
1260            // to the next cache block then start fetch from icache.
1261            if (!fetchBufferValid[tid] ||
1262                fetchBufferBlockPC != fetchBufferPC[tid])
1263                break;
1264
1265            if (blkOffset >= numInsts) {
1266                // We need to process more memory, but we've run out of the
1267                // current block.
1268                break;
1269            }
1270
1271            if (ISA_HAS_DELAY_SLOT && pcOffset == 0) {
1272                // Walk past any annulled delay slot instructions.
1273                Addr pcAddr = thisPC.instAddr() & BaseCPU::PCMask;
1274                while (fetchAddr != pcAddr && blkOffset < numInsts) {
1275                    blkOffset++;
1276                    fetchAddr += instSize;
1277                }
1278                if (blkOffset >= numInsts)
1279                    break;
1280            }
1281
1282            MachInst inst = TheISA::gtoh(cacheInsts[blkOffset]);
1283            decoder[tid]->moreBytes(thisPC, fetchAddr, inst);
1284
1285            if (decoder[tid]->needMoreBytes()) {
1286                blkOffset++;
1287                fetchAddr += instSize;
1288                pcOffset += instSize;
1289            }
1290        }
1291
1292        // Extract as many instructions and/or microops as we can from
1293        // the memory we've processed so far.
1294        do {
1295            if (!(curMacroop || inRom)) {
1296                if (decoder[tid]->instReady()) {
1297                    staticInst = decoder[tid]->decode(thisPC);
1298
1299                    // Increment stat of fetched instructions.
1300                    ++fetchedInsts;
1301
1302                    if (staticInst->isMacroop()) {
1303                        curMacroop = staticInst;
1304                    } else {
1305                        pcOffset = 0;
1306                    }
1307                } else {
1308                    // We need more bytes for this instruction so blkOffset and
1309                    // pcOffset will be updated
1310                    break;
1311                }
1312            }
1313            // Whether we're moving to a new macroop because we're at the
1314            // end of the current one, or the branch predictor incorrectly
1315            // thinks we are...
1316            bool newMacro = false;
1317            if (curMacroop || inRom) {
1318                if (inRom) {
1319                    staticInst = cpu->microcodeRom.fetchMicroop(
1320                            thisPC.microPC(), curMacroop);
1321                } else {
1322                    staticInst = curMacroop->fetchMicroop(thisPC.microPC());
1323                }
1324                newMacro |= staticInst->isLastMicroop();
1325            }
1326
1327            DynInstPtr instruction =
1328                buildInst(tid, staticInst, curMacroop,
1329                          thisPC, nextPC, true);
1330
1331            ppFetch->notify(instruction);
1332            numInst++;
1333
1334#if TRACING_ON
1335            if (DTRACE(O3PipeView)) {
1336                instruction->fetchTick = curTick();
1337            }
1338#endif
1339
1340            nextPC = thisPC;
1341
1342            // If we're branching after this instruction, quit fetching
1343            // from the same block.
1344            predictedBranch |= thisPC.branching();
1345            predictedBranch |=
1346                lookupAndUpdateNextPC(instruction, nextPC);
1347            if (predictedBranch) {
1348                DPRINTF(Fetch, "Branch detected with PC = %s\n", thisPC);
1349            }
1350
1351            newMacro |= thisPC.instAddr() != nextPC.instAddr();
1352
1353            // Move to the next instruction, unless we have a branch.
1354            thisPC = nextPC;
1355            inRom = isRomMicroPC(thisPC.microPC());
1356
1357            if (newMacro) {
1358                fetchAddr = thisPC.instAddr() & BaseCPU::PCMask;
1359                blkOffset = (fetchAddr - fetchBufferPC[tid]) / instSize;
1360                pcOffset = 0;
1361                curMacroop = NULL;
1362            }
1363
1364            if (instruction->isQuiesce()) {
1365                DPRINTF(Fetch,
1366                        "Quiesce instruction encountered, halting fetch!");
1367                fetchStatus[tid] = QuiescePending;
1368                status_change = true;
1369                break;
1370            }
1371        } while ((curMacroop || decoder[tid]->instReady()) &&
1372                 numInst < fetchWidth &&
1373                 fetchQueue[tid].size() < fetchQueueSize);
1374    }
1375
1376    if (predictedBranch) {
1377        DPRINTF(Fetch, "[tid:%i]: Done fetching, predicted branch "
1378                "instruction encountered.\n", tid);
1379    } else if (numInst >= fetchWidth) {
1380        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached fetch bandwidth "
1381                "for this cycle.\n", tid);
1382    } else if (blkOffset >= fetchBufferSize) {
1383        DPRINTF(Fetch, "[tid:%i]: Done fetching, reached the end of the"
1384                "fetch buffer.\n", tid);
1385    }
1386
1387    macroop[tid] = curMacroop;
1388    fetchOffset[tid] = pcOffset;
1389
1390    if (numInst > 0) {
1391        wroteToTimeBuffer = true;
1392    }
1393
1394    pc[tid] = thisPC;
1395
1396    // pipeline a fetch if we're crossing a fetch buffer boundary and not in
1397    // a state that would preclude fetching
1398    fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1399    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1400    issuePipelinedIfetch[tid] = fetchBufferBlockPC != fetchBufferPC[tid] &&
1401        fetchStatus[tid] != IcacheWaitResponse &&
1402        fetchStatus[tid] != ItlbWait &&
1403        fetchStatus[tid] != IcacheWaitRetry &&
1404        fetchStatus[tid] != QuiescePending &&
1405        !curMacroop;
1406}
1407
1408template<class Impl>
1409void
1410DefaultFetch<Impl>::recvRetry()
1411{
1412    if (retryPkt != NULL) {
1413        assert(cacheBlocked);
1414        assert(retryTid != InvalidThreadID);
1415        assert(fetchStatus[retryTid] == IcacheWaitRetry);
1416
1417        if (cpu->getInstPort().sendTimingReq(retryPkt)) {
1418            fetchStatus[retryTid] = IcacheWaitResponse;
1419            retryPkt = NULL;
1420            retryTid = InvalidThreadID;
1421            cacheBlocked = false;
1422        }
1423    } else {
1424        assert(retryTid == InvalidThreadID);
1425        // Access has been squashed since it was sent out.  Just clear
1426        // the cache being blocked.
1427        cacheBlocked = false;
1428    }
1429}
1430
1431///////////////////////////////////////
1432//                                   //
1433//  SMT FETCH POLICY MAINTAINED HERE //
1434//                                   //
1435///////////////////////////////////////
1436template<class Impl>
1437ThreadID
1438DefaultFetch<Impl>::getFetchingThread(FetchPriority &fetch_priority)
1439{
1440    if (numThreads > 1) {
1441        switch (fetch_priority) {
1442
1443          case SingleThread:
1444            return 0;
1445
1446          case RoundRobin:
1447            return roundRobin();
1448
1449          case IQ:
1450            return iqCount();
1451
1452          case LSQ:
1453            return lsqCount();
1454
1455          case Branch:
1456            return branchCount();
1457
1458          default:
1459            return InvalidThreadID;
1460        }
1461    } else {
1462        list<ThreadID>::iterator thread = activeThreads->begin();
1463        if (thread == activeThreads->end()) {
1464            return InvalidThreadID;
1465        }
1466
1467        ThreadID tid = *thread;
1468
1469        if (fetchStatus[tid] == Running ||
1470            fetchStatus[tid] == IcacheAccessComplete ||
1471            fetchStatus[tid] == Idle) {
1472            return tid;
1473        } else {
1474            return InvalidThreadID;
1475        }
1476    }
1477}
1478
1479
1480template<class Impl>
1481ThreadID
1482DefaultFetch<Impl>::roundRobin()
1483{
1484    list<ThreadID>::iterator pri_iter = priorityList.begin();
1485    list<ThreadID>::iterator end      = priorityList.end();
1486
1487    ThreadID high_pri;
1488
1489    while (pri_iter != end) {
1490        high_pri = *pri_iter;
1491
1492        assert(high_pri <= numThreads);
1493
1494        if (fetchStatus[high_pri] == Running ||
1495            fetchStatus[high_pri] == IcacheAccessComplete ||
1496            fetchStatus[high_pri] == Idle) {
1497
1498            priorityList.erase(pri_iter);
1499            priorityList.push_back(high_pri);
1500
1501            return high_pri;
1502        }
1503
1504        pri_iter++;
1505    }
1506
1507    return InvalidThreadID;
1508}
1509
1510template<class Impl>
1511ThreadID
1512DefaultFetch<Impl>::iqCount()
1513{
1514    std::priority_queue<unsigned> PQ;
1515    std::map<unsigned, ThreadID> threadMap;
1516
1517    list<ThreadID>::iterator threads = activeThreads->begin();
1518    list<ThreadID>::iterator end = activeThreads->end();
1519
1520    while (threads != end) {
1521        ThreadID tid = *threads++;
1522        unsigned iqCount = fromIEW->iewInfo[tid].iqCount;
1523
1524        PQ.push(iqCount);
1525        threadMap[iqCount] = tid;
1526    }
1527
1528    while (!PQ.empty()) {
1529        ThreadID high_pri = threadMap[PQ.top()];
1530
1531        if (fetchStatus[high_pri] == Running ||
1532            fetchStatus[high_pri] == IcacheAccessComplete ||
1533            fetchStatus[high_pri] == Idle)
1534            return high_pri;
1535        else
1536            PQ.pop();
1537
1538    }
1539
1540    return InvalidThreadID;
1541}
1542
1543template<class Impl>
1544ThreadID
1545DefaultFetch<Impl>::lsqCount()
1546{
1547    std::priority_queue<unsigned> PQ;
1548    std::map<unsigned, ThreadID> threadMap;
1549
1550    list<ThreadID>::iterator threads = activeThreads->begin();
1551    list<ThreadID>::iterator end = activeThreads->end();
1552
1553    while (threads != end) {
1554        ThreadID tid = *threads++;
1555        unsigned ldstqCount = fromIEW->iewInfo[tid].ldstqCount;
1556
1557        PQ.push(ldstqCount);
1558        threadMap[ldstqCount] = tid;
1559    }
1560
1561    while (!PQ.empty()) {
1562        ThreadID high_pri = threadMap[PQ.top()];
1563
1564        if (fetchStatus[high_pri] == Running ||
1565            fetchStatus[high_pri] == IcacheAccessComplete ||
1566            fetchStatus[high_pri] == Idle)
1567            return high_pri;
1568        else
1569            PQ.pop();
1570    }
1571
1572    return InvalidThreadID;
1573}
1574
1575template<class Impl>
1576ThreadID
1577DefaultFetch<Impl>::branchCount()
1578{
1579#if 0
1580    list<ThreadID>::iterator thread = activeThreads->begin();
1581    assert(thread != activeThreads->end());
1582    ThreadID tid = *thread;
1583#endif
1584
1585    panic("Branch Count Fetch policy unimplemented\n");
1586    return InvalidThreadID;
1587}
1588
1589template<class Impl>
1590void
1591DefaultFetch<Impl>::pipelineIcacheAccesses(ThreadID tid)
1592{
1593    if (!issuePipelinedIfetch[tid]) {
1594        return;
1595    }
1596
1597    // The next PC to access.
1598    TheISA::PCState thisPC = pc[tid];
1599
1600    if (isRomMicroPC(thisPC.microPC())) {
1601        return;
1602    }
1603
1604    Addr pcOffset = fetchOffset[tid];
1605    Addr fetchAddr = (thisPC.instAddr() + pcOffset) & BaseCPU::PCMask;
1606
1607    // Align the fetch PC so its at the start of a fetch buffer segment.
1608    Addr fetchBufferBlockPC = fetchBufferAlignPC(fetchAddr);
1609
1610    // Unless buffer already got the block, fetch it from icache.
1611    if (!(fetchBufferValid[tid] && fetchBufferBlockPC == fetchBufferPC[tid])) {
1612        DPRINTF(Fetch, "[tid:%i]: Issuing a pipelined I-cache access, "
1613                "starting at PC %s.\n", tid, thisPC);
1614
1615        fetchCacheLine(fetchAddr, tid, thisPC.instAddr());
1616    }
1617}
1618
1619template<class Impl>
1620void
1621DefaultFetch<Impl>::profileStall(ThreadID tid) {
1622    DPRINTF(Fetch,"There are no more threads available to fetch from.\n");
1623
1624    // @todo Per-thread stats
1625
1626    if (stalls[tid].drain) {
1627        ++fetchPendingDrainCycles;
1628        DPRINTF(Fetch, "Fetch is waiting for a drain!\n");
1629    } else if (activeThreads->empty()) {
1630        ++fetchNoActiveThreadStallCycles;
1631        DPRINTF(Fetch, "Fetch has no active thread!\n");
1632    } else if (fetchStatus[tid] == Blocked) {
1633        ++fetchBlockedCycles;
1634        DPRINTF(Fetch, "[tid:%i]: Fetch is blocked!\n", tid);
1635    } else if (fetchStatus[tid] == Squashing) {
1636        ++fetchSquashCycles;
1637        DPRINTF(Fetch, "[tid:%i]: Fetch is squashing!\n", tid);
1638    } else if (fetchStatus[tid] == IcacheWaitResponse) {
1639        ++icacheStallCycles;
1640        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting cache response!\n",
1641                tid);
1642    } else if (fetchStatus[tid] == ItlbWait) {
1643        ++fetchTlbCycles;
1644        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting ITLB walk to "
1645                "finish!\n", tid);
1646    } else if (fetchStatus[tid] == TrapPending) {
1647        ++fetchPendingTrapStallCycles;
1648        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending trap!\n",
1649                tid);
1650    } else if (fetchStatus[tid] == QuiescePending) {
1651        ++fetchPendingQuiesceStallCycles;
1652        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for a pending quiesce "
1653                "instruction!\n", tid);
1654    } else if (fetchStatus[tid] == IcacheWaitRetry) {
1655        ++fetchIcacheWaitRetryStallCycles;
1656        DPRINTF(Fetch, "[tid:%i]: Fetch is waiting for an I-cache retry!\n",
1657                tid);
1658    } else if (fetchStatus[tid] == NoGoodAddr) {
1659            DPRINTF(Fetch, "[tid:%i]: Fetch predicted non-executable address\n",
1660                    tid);
1661    } else {
1662        DPRINTF(Fetch, "[tid:%i]: Unexpected fetch stall reason (Status: %i).\n",
1663             tid, fetchStatus[tid]);
1664    }
1665}
1666
1667#endif//__CPU_O3_FETCH_IMPL_HH__
1668