pipeline.cc revision 11567
1/*
2 * Copyright (c) 2013-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andrew Bardsley
38 */
39
40#include <algorithm>
41
42#include "cpu/minor/decode.hh"
43#include "cpu/minor/execute.hh"
44#include "cpu/minor/fetch1.hh"
45#include "cpu/minor/fetch2.hh"
46#include "cpu/minor/pipeline.hh"
47#include "debug/Drain.hh"
48#include "debug/MinorCPU.hh"
49#include "debug/MinorTrace.hh"
50#include "debug/Quiesce.hh"
51
52namespace Minor
53{
54
55Pipeline::Pipeline(MinorCPU &cpu_, MinorCPUParams &params) :
56    Ticked(cpu_, &(cpu_.BaseCPU::numCycles)),
57    cpu(cpu_),
58    allow_idling(params.enableIdling),
59    f1ToF2(cpu.name() + ".f1ToF2", "lines",
60        params.fetch1ToFetch2ForwardDelay),
61    f2ToF1(cpu.name() + ".f2ToF1", "prediction",
62        params.fetch1ToFetch2BackwardDelay, true),
63    f2ToD(cpu.name() + ".f2ToD", "insts",
64        params.fetch2ToDecodeForwardDelay),
65    dToE(cpu.name() + ".dToE", "insts",
66        params.decodeToExecuteForwardDelay),
67    eToF1(cpu.name() + ".eToF1", "branch",
68        params.executeBranchDelay),
69    execute(cpu.name() + ".execute", cpu, params,
70        dToE.output(), eToF1.input()),
71    decode(cpu.name() + ".decode", cpu, params,
72        f2ToD.output(), dToE.input(), execute.inputBuffer),
73    fetch2(cpu.name() + ".fetch2", cpu, params,
74        f1ToF2.output(), eToF1.output(), f2ToF1.input(), f2ToD.input(),
75        decode.inputBuffer),
76    fetch1(cpu.name() + ".fetch1", cpu, params,
77        eToF1.output(), f1ToF2.input(), f2ToF1.output(), fetch2.inputBuffer),
78    activityRecorder(cpu.name() + ".activity", Num_StageId,
79        /* The max depth of inter-stage FIFOs */
80        std::max(params.fetch1ToFetch2ForwardDelay,
81        std::max(params.fetch2ToDecodeForwardDelay,
82        std::max(params.decodeToExecuteForwardDelay,
83        params.executeBranchDelay)))),
84    needToSignalDrained(false)
85{
86    if (params.fetch1ToFetch2ForwardDelay < 1) {
87        fatal("%s: fetch1ToFetch2ForwardDelay must be >= 1 (%d)\n",
88            cpu.name(), params.fetch1ToFetch2ForwardDelay);
89    }
90
91    if (params.fetch2ToDecodeForwardDelay < 1) {
92        fatal("%s: fetch2ToDecodeForwardDelay must be >= 1 (%d)\n",
93            cpu.name(), params.fetch2ToDecodeForwardDelay);
94    }
95
96    if (params.decodeToExecuteForwardDelay < 1) {
97        fatal("%s: decodeToExecuteForwardDelay must be >= 1 (%d)\n",
98            cpu.name(), params.decodeToExecuteForwardDelay);
99    }
100
101    if (params.executeBranchDelay < 1) {
102        fatal("%s: executeBranchDelay must be >= 1\n",
103            cpu.name(), params.executeBranchDelay);
104    }
105}
106
107void
108Pipeline::minorTrace() const
109{
110    fetch1.minorTrace();
111    f1ToF2.minorTrace();
112    f2ToF1.minorTrace();
113    fetch2.minorTrace();
114    f2ToD.minorTrace();
115    decode.minorTrace();
116    dToE.minorTrace();
117    execute.minorTrace();
118    eToF1.minorTrace();
119    activityRecorder.minorTrace();
120}
121
122void
123Pipeline::evaluate()
124{
125    /* Note that it's important to evaluate the stages in order to allow
126     *  'immediate', 0-time-offset TimeBuffer activity to be visible from
127     *  later stages to earlier ones in the same cycle */
128    execute.evaluate();
129    decode.evaluate();
130    fetch2.evaluate();
131    fetch1.evaluate();
132
133    if (DTRACE(MinorTrace))
134        minorTrace();
135
136    /* Update the time buffers after the stages */
137    f1ToF2.evaluate();
138    f2ToF1.evaluate();
139    f2ToD.evaluate();
140    dToE.evaluate();
141    eToF1.evaluate();
142
143    /* The activity recorder must be be called after all the stages and
144     *  before the idler (which acts on the advice of the activity recorder */
145    activityRecorder.evaluate();
146
147    if (allow_idling) {
148        /* Become idle if we can but are not draining */
149        if (!activityRecorder.active() && !needToSignalDrained) {
150            DPRINTF(Quiesce, "Suspending as the processor is idle\n");
151            stop();
152        }
153
154        /* Deactivate all stages.  Note that the stages *could*
155         *  activate and deactivate themselves but that's fraught
156         *  with additional difficulty.
157         *  As organised herre */
158        activityRecorder.deactivateStage(Pipeline::CPUStageId);
159        activityRecorder.deactivateStage(Pipeline::Fetch1StageId);
160        activityRecorder.deactivateStage(Pipeline::Fetch2StageId);
161        activityRecorder.deactivateStage(Pipeline::DecodeStageId);
162        activityRecorder.deactivateStage(Pipeline::ExecuteStageId);
163    }
164
165    if (needToSignalDrained) /* Must be draining */
166    {
167        DPRINTF(Drain, "Still draining\n");
168        if (isDrained()) {
169            DPRINTF(Drain, "Signalling end of draining\n");
170            cpu.signalDrainDone();
171            needToSignalDrained = false;
172            stop();
173        }
174    }
175}
176
177MinorCPU::MinorCPUPort &
178Pipeline::getInstPort()
179{
180    return fetch1.getIcachePort();
181}
182
183MinorCPU::MinorCPUPort &
184Pipeline::getDataPort()
185{
186    return execute.getDcachePort();
187}
188
189void
190Pipeline::wakeupFetch(ThreadID tid)
191{
192    fetch1.wakeupFetch(tid);
193}
194
195bool
196Pipeline::drain()
197{
198    DPRINTF(MinorCPU, "Draining pipeline by halting inst fetches. "
199        " Execution should drain naturally\n");
200
201    execute.drain();
202
203    /* Make sure that needToSignalDrained isn't accidentally set if we
204     *  are 'pre-drained' */
205    bool drained = isDrained();
206    needToSignalDrained = !drained;
207
208    return drained;
209}
210
211void
212Pipeline::drainResume()
213{
214    DPRINTF(Drain, "Drain resume\n");
215
216    for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
217        fetch1.wakeupFetch(tid);
218    }
219
220    execute.drainResume();
221}
222
223bool
224Pipeline::isDrained()
225{
226    bool fetch1_drained = fetch1.isDrained();
227    bool fetch2_drained = fetch2.isDrained();
228    bool decode_drained = decode.isDrained();
229    bool execute_drained = execute.isDrained();
230
231    bool f1_to_f2_drained = f1ToF2.empty();
232    bool f2_to_f1_drained = f2ToF1.empty();
233    bool f2_to_d_drained = f2ToD.empty();
234    bool d_to_e_drained = dToE.empty();
235
236    bool ret = fetch1_drained && fetch2_drained &&
237        decode_drained && execute_drained &&
238        f1_to_f2_drained && f2_to_f1_drained &&
239        f2_to_d_drained && d_to_e_drained;
240
241    DPRINTF(MinorCPU, "Pipeline undrained stages state:%s%s%s%s%s%s%s%s\n",
242        (fetch1_drained ? "" : " Fetch1"),
243        (fetch2_drained ? "" : " Fetch2"),
244        (decode_drained ? "" : " Decode"),
245        (execute_drained ? "" : " Execute"),
246        (f1_to_f2_drained ? "" : " F1->F2"),
247        (f2_to_f1_drained ? "" : " F2->F1"),
248        (f2_to_d_drained ? "" : " F2->D"),
249        (d_to_e_drained ? "" : " D->E")
250        );
251
252    return ret;
253}
254
255}
256