1/*
2 * Copyright (c) 2013-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andrew Bardsley
38 */
39
40#include "cpu/minor/pipeline.hh"
41
42#include <algorithm>
43
44#include "cpu/minor/decode.hh"
45#include "cpu/minor/execute.hh"
46#include "cpu/minor/fetch1.hh"
47#include "cpu/minor/fetch2.hh"
48#include "debug/Drain.hh"
49#include "debug/MinorCPU.hh"
50#include "debug/MinorTrace.hh"
51#include "debug/Quiesce.hh"
52
53namespace Minor
54{
55
56Pipeline::Pipeline(MinorCPU &cpu_, MinorCPUParams &params) :
57    Ticked(cpu_, &(cpu_.BaseCPU::numCycles)),
58    cpu(cpu_),
59    allow_idling(params.enableIdling),
60    f1ToF2(cpu.name() + ".f1ToF2", "lines",
61        params.fetch1ToFetch2ForwardDelay),
62    f2ToF1(cpu.name() + ".f2ToF1", "prediction",
63        params.fetch1ToFetch2BackwardDelay, true),
64    f2ToD(cpu.name() + ".f2ToD", "insts",
65        params.fetch2ToDecodeForwardDelay),
66    dToE(cpu.name() + ".dToE", "insts",
67        params.decodeToExecuteForwardDelay),
68    eToF1(cpu.name() + ".eToF1", "branch",
69        params.executeBranchDelay),
70    execute(cpu.name() + ".execute", cpu, params,
71        dToE.output(), eToF1.input()),
72    decode(cpu.name() + ".decode", cpu, params,
73        f2ToD.output(), dToE.input(), execute.inputBuffer),
74    fetch2(cpu.name() + ".fetch2", cpu, params,
75        f1ToF2.output(), eToF1.output(), f2ToF1.input(), f2ToD.input(),
76        decode.inputBuffer),
77    fetch1(cpu.name() + ".fetch1", cpu, params,
78        eToF1.output(), f1ToF2.input(), f2ToF1.output(), fetch2.inputBuffer),
79    activityRecorder(cpu.name() + ".activity", Num_StageId,
80        /* The max depth of inter-stage FIFOs */
81        std::max(params.fetch1ToFetch2ForwardDelay,
82        std::max(params.fetch2ToDecodeForwardDelay,
83        std::max(params.decodeToExecuteForwardDelay,
84        params.executeBranchDelay)))),
85    needToSignalDrained(false)
86{
87    if (params.fetch1ToFetch2ForwardDelay < 1) {
88        fatal("%s: fetch1ToFetch2ForwardDelay must be >= 1 (%d)\n",
89            cpu.name(), params.fetch1ToFetch2ForwardDelay);
90    }
91
92    if (params.fetch2ToDecodeForwardDelay < 1) {
93        fatal("%s: fetch2ToDecodeForwardDelay must be >= 1 (%d)\n",
94            cpu.name(), params.fetch2ToDecodeForwardDelay);
95    }
96
97    if (params.decodeToExecuteForwardDelay < 1) {
98        fatal("%s: decodeToExecuteForwardDelay must be >= 1 (%d)\n",
99            cpu.name(), params.decodeToExecuteForwardDelay);
100    }
101
102    if (params.executeBranchDelay < 1) {
103        fatal("%s: executeBranchDelay must be >= 1\n",
104            cpu.name(), params.executeBranchDelay);
105    }
106}
107
108void
109Pipeline::regStats()
110{
111    Ticked::regStats();
112
113    fetch2.regStats();
114}
115
116void
117Pipeline::minorTrace() const
118{
119    fetch1.minorTrace();
120    f1ToF2.minorTrace();
121    f2ToF1.minorTrace();
122    fetch2.minorTrace();
123    f2ToD.minorTrace();
124    decode.minorTrace();
125    dToE.minorTrace();
126    execute.minorTrace();
127    eToF1.minorTrace();
128    activityRecorder.minorTrace();
129}
130
131void
132Pipeline::evaluate()
133{
134    /* Note that it's important to evaluate the stages in order to allow
135     *  'immediate', 0-time-offset TimeBuffer activity to be visible from
136     *  later stages to earlier ones in the same cycle */
137    execute.evaluate();
138    decode.evaluate();
139    fetch2.evaluate();
140    fetch1.evaluate();
141
142    if (DTRACE(MinorTrace))
143        minorTrace();
144
145    /* Update the time buffers after the stages */
146    f1ToF2.evaluate();
147    f2ToF1.evaluate();
148    f2ToD.evaluate();
149    dToE.evaluate();
150    eToF1.evaluate();
151
152    /* The activity recorder must be be called after all the stages and
153     *  before the idler (which acts on the advice of the activity recorder */
154    activityRecorder.evaluate();
155
156    if (allow_idling) {
157        /* Become idle if we can but are not draining */
158        if (!activityRecorder.active() && !needToSignalDrained) {
159            DPRINTF(Quiesce, "Suspending as the processor is idle\n");
160            stop();
161        }
162
163        /* Deactivate all stages.  Note that the stages *could*
164         *  activate and deactivate themselves but that's fraught
165         *  with additional difficulty.
166         *  As organised herre */
167        activityRecorder.deactivateStage(Pipeline::CPUStageId);
168        activityRecorder.deactivateStage(Pipeline::Fetch1StageId);
169        activityRecorder.deactivateStage(Pipeline::Fetch2StageId);
170        activityRecorder.deactivateStage(Pipeline::DecodeStageId);
171        activityRecorder.deactivateStage(Pipeline::ExecuteStageId);
172    }
173
174    if (needToSignalDrained) /* Must be draining */
175    {
176        DPRINTF(Drain, "Still draining\n");
177        if (isDrained()) {
178            DPRINTF(Drain, "Signalling end of draining\n");
179            cpu.signalDrainDone();
180            needToSignalDrained = false;
181            stop();
182        }
183    }
184}
185
186MinorCPU::MinorCPUPort &
187Pipeline::getInstPort()
188{
189    return fetch1.getIcachePort();
190}
191
192MinorCPU::MinorCPUPort &
193Pipeline::getDataPort()
194{
195    return execute.getDcachePort();
196}
197
198void
199Pipeline::wakeupFetch(ThreadID tid)
200{
201    fetch1.wakeupFetch(tid);
202}
203
204bool
205Pipeline::drain()
206{
207    DPRINTF(MinorCPU, "Draining pipeline by halting inst fetches. "
208        " Execution should drain naturally\n");
209
210    execute.drain();
211
212    /* Make sure that needToSignalDrained isn't accidentally set if we
213     *  are 'pre-drained' */
214    bool drained = isDrained();
215    needToSignalDrained = !drained;
216
217    return drained;
218}
219
220void
221Pipeline::drainResume()
222{
223    DPRINTF(Drain, "Drain resume\n");
224
225    for (ThreadID tid = 0; tid < cpu.numThreads; tid++) {
226        fetch1.wakeupFetch(tid);
227    }
228
229    execute.drainResume();
230}
231
232bool
233Pipeline::isDrained()
234{
235    bool fetch1_drained = fetch1.isDrained();
236    bool fetch2_drained = fetch2.isDrained();
237    bool decode_drained = decode.isDrained();
238    bool execute_drained = execute.isDrained();
239
240    bool f1_to_f2_drained = f1ToF2.empty();
241    bool f2_to_f1_drained = f2ToF1.empty();
242    bool f2_to_d_drained = f2ToD.empty();
243    bool d_to_e_drained = dToE.empty();
244
245    bool ret = fetch1_drained && fetch2_drained &&
246        decode_drained && execute_drained &&
247        f1_to_f2_drained && f2_to_f1_drained &&
248        f2_to_d_drained && d_to_e_drained;
249
250    DPRINTF(MinorCPU, "Pipeline undrained stages state:%s%s%s%s%s%s%s%s\n",
251        (fetch1_drained ? "" : " Fetch1"),
252        (fetch2_drained ? "" : " Fetch2"),
253        (decode_drained ? "" : " Decode"),
254        (execute_drained ? "" : " Execute"),
255        (f1_to_f2_drained ? "" : " F1->F2"),
256        (f2_to_f1_drained ? "" : " F2->F1"),
257        (f2_to_d_drained ? "" : " F2->D"),
258        (d_to_e_drained ? "" : " D->E")
259        );
260
261    return ret;
262}
263
264}
265