interrupts.cc revision 8746:42d3554b1c35
1/*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#include "arch/x86/regs/apic.hh"
41#include "arch/x86/interrupts.hh"
42#include "arch/x86/intmessage.hh"
43#include "cpu/base.hh"
44#include "debug/LocalApic.hh"
45#include "dev/x86/i82094aa.hh"
46#include "dev/x86/pc.hh"
47#include "dev/x86/south_bridge.hh"
48#include "mem/packet_access.hh"
49#include "sim/system.hh"
50
51int
52divideFromConf(uint32_t conf)
53{
54    // This figures out what division we want from the division configuration
55    // register in the local APIC. The encoding is a little odd but it can
56    // be deciphered fairly easily.
57    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
58    shift = (shift + 1) % 8;
59    return 1 << shift;
60}
61
62namespace X86ISA
63{
64
65ApicRegIndex
66decodeAddr(Addr paddr)
67{
68    ApicRegIndex regNum;
69    paddr &= ~mask(3);
70    switch (paddr)
71    {
72      case 0x20:
73        regNum = APIC_ID;
74        break;
75      case 0x30:
76        regNum = APIC_VERSION;
77        break;
78      case 0x80:
79        regNum = APIC_TASK_PRIORITY;
80        break;
81      case 0x90:
82        regNum = APIC_ARBITRATION_PRIORITY;
83        break;
84      case 0xA0:
85        regNum = APIC_PROCESSOR_PRIORITY;
86        break;
87      case 0xB0:
88        regNum = APIC_EOI;
89        break;
90      case 0xD0:
91        regNum = APIC_LOGICAL_DESTINATION;
92        break;
93      case 0xE0:
94        regNum = APIC_DESTINATION_FORMAT;
95        break;
96      case 0xF0:
97        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
98        break;
99      case 0x100:
100      case 0x108:
101      case 0x110:
102      case 0x118:
103      case 0x120:
104      case 0x128:
105      case 0x130:
106      case 0x138:
107      case 0x140:
108      case 0x148:
109      case 0x150:
110      case 0x158:
111      case 0x160:
112      case 0x168:
113      case 0x170:
114      case 0x178:
115        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
116        break;
117      case 0x180:
118      case 0x188:
119      case 0x190:
120      case 0x198:
121      case 0x1A0:
122      case 0x1A8:
123      case 0x1B0:
124      case 0x1B8:
125      case 0x1C0:
126      case 0x1C8:
127      case 0x1D0:
128      case 0x1D8:
129      case 0x1E0:
130      case 0x1E8:
131      case 0x1F0:
132      case 0x1F8:
133        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
134        break;
135      case 0x200:
136      case 0x208:
137      case 0x210:
138      case 0x218:
139      case 0x220:
140      case 0x228:
141      case 0x230:
142      case 0x238:
143      case 0x240:
144      case 0x248:
145      case 0x250:
146      case 0x258:
147      case 0x260:
148      case 0x268:
149      case 0x270:
150      case 0x278:
151        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
152        break;
153      case 0x280:
154        regNum = APIC_ERROR_STATUS;
155        break;
156      case 0x300:
157        regNum = APIC_INTERRUPT_COMMAND_LOW;
158        break;
159      case 0x310:
160        regNum = APIC_INTERRUPT_COMMAND_HIGH;
161        break;
162      case 0x320:
163        regNum = APIC_LVT_TIMER;
164        break;
165      case 0x330:
166        regNum = APIC_LVT_THERMAL_SENSOR;
167        break;
168      case 0x340:
169        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
170        break;
171      case 0x350:
172        regNum = APIC_LVT_LINT0;
173        break;
174      case 0x360:
175        regNum = APIC_LVT_LINT1;
176        break;
177      case 0x370:
178        regNum = APIC_LVT_ERROR;
179        break;
180      case 0x380:
181        regNum = APIC_INITIAL_COUNT;
182        break;
183      case 0x390:
184        regNum = APIC_CURRENT_COUNT;
185        break;
186      case 0x3E0:
187        regNum = APIC_DIVIDE_CONFIGURATION;
188        break;
189      default:
190        // A reserved register field.
191        panic("Accessed reserved register field %#x.\n", paddr);
192        break;
193    }
194    return regNum;
195}
196}
197
198Tick
199X86ISA::Interrupts::read(PacketPtr pkt)
200{
201    Addr offset = pkt->getAddr() - pioAddr;
202    //Make sure we're at least only accessing one register.
203    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
204        panic("Accessed more than one register at a time in the APIC!\n");
205    ApicRegIndex reg = decodeAddr(offset);
206    uint32_t val = htog(readReg(reg));
207    DPRINTF(LocalApic,
208            "Reading Local APIC register %d at offset %#x as %#x.\n",
209            reg, offset, val);
210    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
211    pkt->makeAtomicResponse();
212    return latency;
213}
214
215Tick
216X86ISA::Interrupts::write(PacketPtr pkt)
217{
218    Addr offset = pkt->getAddr() - pioAddr;
219    //Make sure we're at least only accessing one register.
220    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
221        panic("Accessed more than one register at a time in the APIC!\n");
222    ApicRegIndex reg = decodeAddr(offset);
223    uint32_t val = regs[reg];
224    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
225    DPRINTF(LocalApic,
226            "Writing Local APIC register %d at offset %#x as %#x.\n",
227            reg, offset, gtoh(val));
228    setReg(reg, gtoh(val));
229    pkt->makeAtomicResponse();
230    return latency;
231}
232void
233X86ISA::Interrupts::requestInterrupt(uint8_t vector,
234        uint8_t deliveryMode, bool level)
235{
236    /*
237     * Fixed and lowest-priority delivery mode interrupts are handled
238     * using the IRR/ISR registers, checking against the TPR, etc.
239     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
240     */
241    if (deliveryMode == DeliveryMode::Fixed ||
242            deliveryMode == DeliveryMode::LowestPriority) {
243        DPRINTF(LocalApic, "Interrupt is an %s.\n",
244                DeliveryMode::names[deliveryMode]);
245        // Queue up the interrupt in the IRR.
246        if (vector > IRRV)
247            IRRV = vector;
248        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
249            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
250            if (level) {
251                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
252            } else {
253                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
254            }
255        }
256    } else if (!DeliveryMode::isReserved(deliveryMode)) {
257        DPRINTF(LocalApic, "Interrupt is an %s.\n",
258                DeliveryMode::names[deliveryMode]);
259        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
260            pendingUnmaskableInt = pendingSmi = true;
261            smiVector = vector;
262        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
263            pendingUnmaskableInt = pendingNmi = true;
264            nmiVector = vector;
265        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
266            pendingExtInt = true;
267            extIntVector = vector;
268        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
269            pendingUnmaskableInt = pendingInit = true;
270            initVector = vector;
271        } else if (deliveryMode == DeliveryMode::SIPI &&
272                !pendingStartup && !startedUp) {
273            pendingUnmaskableInt = pendingStartup = true;
274            startupVector = vector;
275        }
276    }
277#if FULL_SYSTEM //XXX CPU has no wakeup method in SE mode.
278    cpu->wakeup();
279#endif
280}
281
282
283void
284X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
285{
286    assert(newCPU);
287    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
288        panic("Local APICs can't be moved between CPUs"
289                " with different IDs.\n");
290    }
291    cpu = newCPU;
292    initialApicId = cpu->cpuId();
293    regs[APIC_ID] = (initialApicId << 24);
294}
295
296
297void
298X86ISA::Interrupts::init()
299{
300    //
301    // The local apic must register its address ranges on both its pio port
302    // via the basicpiodevice(piodevice) init() function and its int port
303    // that it inherited from IntDev.  Note IntDev is not a SimObject itself.
304    //
305    BasicPioDevice::init();
306    IntDev::init();
307}
308
309
310Tick
311X86ISA::Interrupts::recvMessage(PacketPtr pkt)
312{
313    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
314    assert(pkt->cmd == MemCmd::MessageReq);
315    switch(offset)
316    {
317      case 0:
318        {
319            TriggerIntMessage message = pkt->get<TriggerIntMessage>();
320            DPRINTF(LocalApic,
321                    "Got Trigger Interrupt message with vector %#x.\n",
322                    message.vector);
323
324            requestInterrupt(message.vector,
325                    message.deliveryMode, message.trigger);
326        }
327        break;
328      default:
329        panic("Local apic got unknown interrupt message at offset %#x.\n",
330                offset);
331        break;
332    }
333    pkt->makeAtomicResponse();
334    return latency;
335}
336
337
338Tick
339X86ISA::Interrupts::recvResponse(PacketPtr pkt)
340{
341    assert(!pkt->isError());
342    assert(pkt->cmd == MemCmd::MessageResp);
343    if (--pendingIPIs == 0) {
344        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
345        // Record that the ICR is now idle.
346        low.deliveryStatus = 0;
347        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
348    }
349    DPRINTF(LocalApic, "ICR is now idle.\n");
350    return 0;
351}
352
353
354void
355X86ISA::Interrupts::addressRanges(AddrRangeList &range_list)
356{
357    range_list.clear();
358    Range<Addr> range = RangeEx(x86LocalAPICAddress(initialApicId, 0),
359                                x86LocalAPICAddress(initialApicId, 0) +
360                                PageBytes);
361    range_list.push_back(range);
362    pioAddr = range.start;
363}
364
365
366void
367X86ISA::Interrupts::getIntAddrRange(AddrRangeList &range_list)
368{
369    range_list.clear();
370    range_list.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
371                x86InterruptAddress(initialApicId, 0) +
372                PhysAddrAPICRangeSize));
373}
374
375
376uint32_t
377X86ISA::Interrupts::readReg(ApicRegIndex reg)
378{
379    if (reg >= APIC_TRIGGER_MODE(0) &&
380            reg <= APIC_TRIGGER_MODE(15)) {
381        panic("Local APIC Trigger Mode registers are unimplemented.\n");
382    }
383    switch (reg) {
384      case APIC_ARBITRATION_PRIORITY:
385        panic("Local APIC Arbitration Priority register unimplemented.\n");
386        break;
387      case APIC_PROCESSOR_PRIORITY:
388        panic("Local APIC Processor Priority register unimplemented.\n");
389        break;
390      case APIC_ERROR_STATUS:
391        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
392        break;
393      case APIC_CURRENT_COUNT:
394        {
395            if (apicTimerEvent.scheduled()) {
396                assert(clock);
397                // Compute how many m5 ticks happen per count.
398                uint64_t ticksPerCount = clock *
399                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
400                // Compute how many m5 ticks are left.
401                uint64_t val = apicTimerEvent.when() - curTick();
402                // Turn that into a count.
403                val = (val + ticksPerCount - 1) / ticksPerCount;
404                return val;
405            } else {
406                return 0;
407            }
408        }
409      default:
410        break;
411    }
412    return regs[reg];
413}
414
415void
416X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
417{
418    uint32_t newVal = val;
419    if (reg >= APIC_IN_SERVICE(0) &&
420            reg <= APIC_IN_SERVICE(15)) {
421        panic("Local APIC In-Service registers are unimplemented.\n");
422    }
423    if (reg >= APIC_TRIGGER_MODE(0) &&
424            reg <= APIC_TRIGGER_MODE(15)) {
425        panic("Local APIC Trigger Mode registers are unimplemented.\n");
426    }
427    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
428            reg <= APIC_INTERRUPT_REQUEST(15)) {
429        panic("Local APIC Interrupt Request registers "
430                "are unimplemented.\n");
431    }
432    switch (reg) {
433      case APIC_ID:
434        newVal = val & 0xFF;
435        break;
436      case APIC_VERSION:
437        // The Local APIC Version register is read only.
438        return;
439      case APIC_TASK_PRIORITY:
440        newVal = val & 0xFF;
441        break;
442      case APIC_ARBITRATION_PRIORITY:
443        panic("Local APIC Arbitration Priority register unimplemented.\n");
444        break;
445      case APIC_PROCESSOR_PRIORITY:
446        panic("Local APIC Processor Priority register unimplemented.\n");
447        break;
448      case APIC_EOI:
449        // Remove the interrupt that just completed from the local apic state.
450        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
451        updateISRV();
452        return;
453      case APIC_LOGICAL_DESTINATION:
454        newVal = val & 0xFF000000;
455        break;
456      case APIC_DESTINATION_FORMAT:
457        newVal = val | 0x0FFFFFFF;
458        break;
459      case APIC_SPURIOUS_INTERRUPT_VECTOR:
460        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
461        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
462        if (val & (1 << 9))
463            warn("Focus processor checking not implemented.\n");
464        break;
465      case APIC_ERROR_STATUS:
466        {
467            if (regs[APIC_INTERNAL_STATE] & 0x1) {
468                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
469                newVal = 0;
470            } else {
471                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
472                return;
473            }
474
475        }
476        break;
477      case APIC_INTERRUPT_COMMAND_LOW:
478        {
479            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
480            // Check if we're already sending an IPI.
481            if (low.deliveryStatus) {
482                newVal = low;
483                break;
484            }
485            low = val;
486            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
487            // Record that an IPI is being sent.
488            low.deliveryStatus = 1;
489            TriggerIntMessage message = 0;
490            message.destination = high.destination;
491            message.vector = low.vector;
492            message.deliveryMode = low.deliveryMode;
493            message.destMode = low.destMode;
494            message.level = low.level;
495            message.trigger = low.trigger;
496            bool timing = sys->getMemoryMode() == Enums::timing;
497            // Be careful no updates of the delivery status bit get lost.
498            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
499            ApicList apics;
500            int numContexts = sys->numContexts();
501            switch (low.destShorthand) {
502              case 0:
503                if (message.deliveryMode == DeliveryMode::LowestPriority) {
504                    panic("Lowest priority delivery mode "
505                            "IPIs aren't implemented.\n");
506                }
507                if (message.destMode == 1) {
508                    int dest = message.destination;
509                    hack_once("Assuming logical destinations are 1 << id.\n");
510                    for (int i = 0; i < numContexts; i++) {
511                        if (dest & 0x1)
512                            apics.push_back(i);
513                        dest = dest >> 1;
514                    }
515                } else {
516                    if (message.destination == 0xFF) {
517                        for (int i = 0; i < numContexts; i++) {
518                            if (i == initialApicId) {
519                                requestInterrupt(message.vector,
520                                        message.deliveryMode, message.trigger);
521                            } else {
522                                apics.push_back(i);
523                            }
524                        }
525                    } else {
526                        if (message.destination == initialApicId) {
527                            requestInterrupt(message.vector,
528                                    message.deliveryMode, message.trigger);
529                        } else {
530                            apics.push_back(message.destination);
531                        }
532                    }
533                }
534                break;
535              case 1:
536                newVal = val;
537                requestInterrupt(message.vector,
538                        message.deliveryMode, message.trigger);
539                break;
540              case 2:
541                requestInterrupt(message.vector,
542                        message.deliveryMode, message.trigger);
543                // Fall through
544              case 3:
545                {
546                    for (int i = 0; i < numContexts; i++) {
547                        if (i != initialApicId) {
548                            apics.push_back(i);
549                        }
550                    }
551                }
552                break;
553            }
554            pendingIPIs += apics.size();
555            intPort->sendMessage(apics, message, timing);
556            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
557        }
558        break;
559      case APIC_LVT_TIMER:
560      case APIC_LVT_THERMAL_SENSOR:
561      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
562      case APIC_LVT_LINT0:
563      case APIC_LVT_LINT1:
564      case APIC_LVT_ERROR:
565        {
566            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
567            newVal = (val & ~readOnlyMask) |
568                     (regs[reg] & readOnlyMask);
569        }
570        break;
571      case APIC_INITIAL_COUNT:
572        {
573            assert(clock);
574            newVal = bits(val, 31, 0);
575            // Compute how many timer ticks we're being programmed for.
576            uint64_t newCount = newVal *
577                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
578            // Schedule on the edge of the next tick plus the new count.
579            Tick offset = curTick() % clock;
580            if (offset) {
581                reschedule(apicTimerEvent,
582                        curTick() + (newCount + 1) * clock - offset, true);
583            } else {
584                reschedule(apicTimerEvent,
585                        curTick() + newCount * clock, true);
586            }
587        }
588        break;
589      case APIC_CURRENT_COUNT:
590        //Local APIC Current Count register is read only.
591        return;
592      case APIC_DIVIDE_CONFIGURATION:
593        newVal = val & 0xB;
594        break;
595      default:
596        break;
597    }
598    regs[reg] = newVal;
599    return;
600}
601
602
603X86ISA::Interrupts::Interrupts(Params * p) :
604    BasicPioDevice(p), IntDev(this, p->int_latency), latency(p->pio_latency),
605    clock(0),
606    apicTimerEvent(this),
607    pendingSmi(false), smiVector(0),
608    pendingNmi(false), nmiVector(0),
609    pendingExtInt(false), extIntVector(0),
610    pendingInit(false), initVector(0),
611    pendingStartup(false), startupVector(0),
612    startedUp(false), pendingUnmaskableInt(false),
613    pendingIPIs(0), cpu(NULL)
614{
615    pioSize = PageBytes;
616    memset(regs, 0, sizeof(regs));
617    //Set the local apic DFR to the flat model.
618    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
619    ISRV = 0;
620    IRRV = 0;
621}
622
623
624bool
625X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
626{
627    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
628    if (pendingUnmaskableInt) {
629        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
630        return true;
631    }
632    if (rflags.intf) {
633        if (pendingExtInt) {
634            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
635            return true;
636        }
637        if (IRRV > ISRV && bits(IRRV, 7, 4) >
638               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
639            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
640            return true;
641        }
642    }
643    return false;
644}
645
646Fault
647X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
648{
649    assert(checkInterrupts(tc));
650    // These are all probably fairly uncommon, so we'll make them easier to
651    // check for.
652    if (pendingUnmaskableInt) {
653        if (pendingSmi) {
654            DPRINTF(LocalApic, "Generated SMI fault object.\n");
655            return new SystemManagementInterrupt();
656        } else if (pendingNmi) {
657            DPRINTF(LocalApic, "Generated NMI fault object.\n");
658            return new NonMaskableInterrupt(nmiVector);
659        } else if (pendingInit) {
660            DPRINTF(LocalApic, "Generated INIT fault object.\n");
661            return new InitInterrupt(initVector);
662        } else if (pendingStartup) {
663            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
664            return new StartupInterrupt(startupVector);
665        } else {
666            panic("pendingUnmaskableInt set, but no unmaskable "
667                    "ints were pending.\n");
668            return NoFault;
669        }
670    } else if (pendingExtInt) {
671        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
672        return new ExternalInterrupt(extIntVector);
673    } else {
674        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
675        // The only thing left are fixed and lowest priority interrupts.
676        return new ExternalInterrupt(IRRV);
677    }
678}
679
680void
681X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
682{
683    assert(checkInterrupts(tc));
684    if (pendingUnmaskableInt) {
685        if (pendingSmi) {
686            DPRINTF(LocalApic, "SMI sent to core.\n");
687            pendingSmi = false;
688        } else if (pendingNmi) {
689            DPRINTF(LocalApic, "NMI sent to core.\n");
690            pendingNmi = false;
691        } else if (pendingInit) {
692            DPRINTF(LocalApic, "Init sent to core.\n");
693            pendingInit = false;
694            startedUp = false;
695        } else if (pendingStartup) {
696            DPRINTF(LocalApic, "SIPI sent to core.\n");
697            pendingStartup = false;
698            startedUp = true;
699        }
700        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
701            pendingUnmaskableInt = false;
702    } else if (pendingExtInt) {
703        pendingExtInt = false;
704    } else {
705        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
706        // Mark the interrupt as "in service".
707        ISRV = IRRV;
708        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
709        // Clear it out of the IRR.
710        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
711        updateIRRV();
712    }
713}
714
715void
716X86ISA::Interrupts::serialize(std::ostream &os)
717{
718    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
719    SERIALIZE_SCALAR(clock);
720    SERIALIZE_SCALAR(pendingSmi);
721    SERIALIZE_SCALAR(smiVector);
722    SERIALIZE_SCALAR(pendingNmi);
723    SERIALIZE_SCALAR(nmiVector);
724    SERIALIZE_SCALAR(pendingExtInt);
725    SERIALIZE_SCALAR(extIntVector);
726    SERIALIZE_SCALAR(pendingInit);
727    SERIALIZE_SCALAR(initVector);
728    SERIALIZE_SCALAR(pendingStartup);
729    SERIALIZE_SCALAR(startupVector);
730    SERIALIZE_SCALAR(startedUp);
731    SERIALIZE_SCALAR(pendingUnmaskableInt);
732    SERIALIZE_SCALAR(pendingIPIs);
733    SERIALIZE_SCALAR(IRRV);
734    SERIALIZE_SCALAR(ISRV);
735    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
736    SERIALIZE_SCALAR(apicTimerEventScheduled);
737    Tick apicTimerEventTick = apicTimerEvent.when();
738    SERIALIZE_SCALAR(apicTimerEventTick);
739}
740
741void
742X86ISA::Interrupts::unserialize(Checkpoint *cp, const std::string &section)
743{
744    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
745    UNSERIALIZE_SCALAR(clock);
746    UNSERIALIZE_SCALAR(pendingSmi);
747    UNSERIALIZE_SCALAR(smiVector);
748    UNSERIALIZE_SCALAR(pendingNmi);
749    UNSERIALIZE_SCALAR(nmiVector);
750    UNSERIALIZE_SCALAR(pendingExtInt);
751    UNSERIALIZE_SCALAR(extIntVector);
752    UNSERIALIZE_SCALAR(pendingInit);
753    UNSERIALIZE_SCALAR(initVector);
754    UNSERIALIZE_SCALAR(pendingStartup);
755    UNSERIALIZE_SCALAR(startupVector);
756    UNSERIALIZE_SCALAR(startedUp);
757    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
758    UNSERIALIZE_SCALAR(pendingIPIs);
759    UNSERIALIZE_SCALAR(IRRV);
760    UNSERIALIZE_SCALAR(ISRV);
761    bool apicTimerEventScheduled;
762    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
763    if (apicTimerEventScheduled) {
764        Tick apicTimerEventTick;
765        UNSERIALIZE_SCALAR(apicTimerEventTick);
766        if (apicTimerEvent.scheduled()) {
767            reschedule(apicTimerEvent, apicTimerEventTick, true);
768        } else {
769            schedule(apicTimerEvent, apicTimerEventTick);
770        }
771    }
772}
773
774X86ISA::Interrupts *
775X86LocalApicParams::create()
776{
777    return new X86ISA::Interrupts(this);
778}
779