1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2008 The Hewlett-Packard Development Company
15 * All rights reserved.
16 *
17 * The license below extends only to copyright in the software and shall
18 * not be construed as granting a license to any other intellectual
19 * property including but not limited to intellectual property relating
20 * to a hardware implementation of the functionality of the software
21 * licensed hereunder.  You may use the software subject to the license
22 * terms below provided that you ensure that this notice is replicated
23 * unmodified and in its entirety in all distributions of the software,
24 * modified or unmodified, in source code or in binary form.
25 *
26 * Redistribution and use in source and binary forms, with or without
27 * modification, are permitted provided that the following conditions are
28 * met: redistributions of source code must retain the above copyright
29 * notice, this list of conditions and the following disclaimer;
30 * redistributions in binary form must reproduce the above copyright
31 * notice, this list of conditions and the following disclaimer in the
32 * documentation and/or other materials provided with the distribution;
33 * neither the name of the copyright holders nor the names of its
34 * contributors may be used to endorse or promote products derived from
35 * this software without specific prior written permission.
36 *
37 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
38 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
39 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
40 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
41 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
42 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
43 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
44 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
45 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
46 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
47 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
48 *
49 * Authors: Gabe Black
50 */
51
52#include "arch/x86/interrupts.hh"
53
54#include <memory>
55
56#include "arch/x86/intmessage.hh"
57#include "arch/x86/regs/apic.hh"
58#include "cpu/base.hh"
59#include "debug/LocalApic.hh"
60#include "dev/x86/i82094aa.hh"
61#include "dev/x86/pc.hh"
62#include "dev/x86/south_bridge.hh"
63#include "mem/packet_access.hh"
64#include "sim/full_system.hh"
65#include "sim/system.hh"
66
67int
68divideFromConf(uint32_t conf)
69{
70    // This figures out what division we want from the division configuration
71    // register in the local APIC. The encoding is a little odd but it can
72    // be deciphered fairly easily.
73    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
74    shift = (shift + 1) % 8;
75    return 1 << shift;
76}
77
78namespace X86ISA
79{
80
81ApicRegIndex
82decodeAddr(Addr paddr)
83{
84    ApicRegIndex regNum;
85    paddr &= ~mask(3);
86    switch (paddr)
87    {
88      case 0x20:
89        regNum = APIC_ID;
90        break;
91      case 0x30:
92        regNum = APIC_VERSION;
93        break;
94      case 0x80:
95        regNum = APIC_TASK_PRIORITY;
96        break;
97      case 0x90:
98        regNum = APIC_ARBITRATION_PRIORITY;
99        break;
100      case 0xA0:
101        regNum = APIC_PROCESSOR_PRIORITY;
102        break;
103      case 0xB0:
104        regNum = APIC_EOI;
105        break;
106      case 0xD0:
107        regNum = APIC_LOGICAL_DESTINATION;
108        break;
109      case 0xE0:
110        regNum = APIC_DESTINATION_FORMAT;
111        break;
112      case 0xF0:
113        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
114        break;
115      case 0x100:
116      case 0x110:
117      case 0x120:
118      case 0x130:
119      case 0x140:
120      case 0x150:
121      case 0x160:
122      case 0x170:
123        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x10);
124        break;
125      case 0x180:
126      case 0x190:
127      case 0x1A0:
128      case 0x1B0:
129      case 0x1C0:
130      case 0x1D0:
131      case 0x1E0:
132      case 0x1F0:
133        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x10);
134        break;
135      case 0x200:
136      case 0x210:
137      case 0x220:
138      case 0x230:
139      case 0x240:
140      case 0x250:
141      case 0x260:
142      case 0x270:
143        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x10);
144        break;
145      case 0x280:
146        regNum = APIC_ERROR_STATUS;
147        break;
148      case 0x300:
149        regNum = APIC_INTERRUPT_COMMAND_LOW;
150        break;
151      case 0x310:
152        regNum = APIC_INTERRUPT_COMMAND_HIGH;
153        break;
154      case 0x320:
155        regNum = APIC_LVT_TIMER;
156        break;
157      case 0x330:
158        regNum = APIC_LVT_THERMAL_SENSOR;
159        break;
160      case 0x340:
161        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
162        break;
163      case 0x350:
164        regNum = APIC_LVT_LINT0;
165        break;
166      case 0x360:
167        regNum = APIC_LVT_LINT1;
168        break;
169      case 0x370:
170        regNum = APIC_LVT_ERROR;
171        break;
172      case 0x380:
173        regNum = APIC_INITIAL_COUNT;
174        break;
175      case 0x390:
176        regNum = APIC_CURRENT_COUNT;
177        break;
178      case 0x3E0:
179        regNum = APIC_DIVIDE_CONFIGURATION;
180        break;
181      default:
182        // A reserved register field.
183        panic("Accessed reserved register field %#x.\n", paddr);
184        break;
185    }
186    return regNum;
187}
188}
189
190Tick
191X86ISA::Interrupts::read(PacketPtr pkt)
192{
193    Addr offset = pkt->getAddr() - pioAddr;
194    // Make sure we're at least only accessing one register.
195    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
196        panic("Accessed more than one register at a time in the APIC!\n");
197    ApicRegIndex reg = decodeAddr(offset);
198    uint32_t val = htog(readReg(reg));
199    DPRINTF(LocalApic,
200            "Reading Local APIC register %d at offset %#x as %#x.\n",
201            reg, offset, val);
202    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
203    pkt->makeAtomicResponse();
204    return pioDelay;
205}
206
207Tick
208X86ISA::Interrupts::write(PacketPtr pkt)
209{
210    Addr offset = pkt->getAddr() - pioAddr;
211    // Make sure we're at least only accessing one register.
212    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
213        panic("Accessed more than one register at a time in the APIC!\n");
214    ApicRegIndex reg = decodeAddr(offset);
215    uint32_t val = regs[reg];
216    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
217    DPRINTF(LocalApic,
218            "Writing Local APIC register %d at offset %#x as %#x.\n",
219            reg, offset, gtoh(val));
220    setReg(reg, gtoh(val));
221    pkt->makeAtomicResponse();
222    return pioDelay;
223}
224void
225X86ISA::Interrupts::requestInterrupt(uint8_t vector,
226        uint8_t deliveryMode, bool level)
227{
228    /*
229     * Fixed and lowest-priority delivery mode interrupts are handled
230     * using the IRR/ISR registers, checking against the TPR, etc.
231     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
232     */
233    if (deliveryMode == DeliveryMode::Fixed ||
234            deliveryMode == DeliveryMode::LowestPriority) {
235        DPRINTF(LocalApic, "Interrupt is an %s.\n",
236                DeliveryMode::names[deliveryMode]);
237        // Queue up the interrupt in the IRR.
238        if (vector > IRRV)
239            IRRV = vector;
240        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
241            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
242            if (level) {
243                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
244            } else {
245                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
246            }
247        }
248    } else if (!DeliveryMode::isReserved(deliveryMode)) {
249        DPRINTF(LocalApic, "Interrupt is an %s.\n",
250                DeliveryMode::names[deliveryMode]);
251        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
252            pendingUnmaskableInt = pendingSmi = true;
253            smiVector = vector;
254        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
255            pendingUnmaskableInt = pendingNmi = true;
256            nmiVector = vector;
257        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
258            pendingExtInt = true;
259            extIntVector = vector;
260        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
261            pendingUnmaskableInt = pendingInit = true;
262            initVector = vector;
263        } else if (deliveryMode == DeliveryMode::SIPI &&
264                !pendingStartup && !startedUp) {
265            pendingUnmaskableInt = pendingStartup = true;
266            startupVector = vector;
267        }
268    }
269    if (FullSystem)
270        cpu->wakeup(0);
271}
272
273
274void
275X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
276{
277    assert(newCPU);
278    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
279        panic("Local APICs can't be moved between CPUs"
280                " with different IDs.\n");
281    }
282    cpu = newCPU;
283    initialApicId = cpu->cpuId();
284    regs[APIC_ID] = (initialApicId << 24);
285    pioAddr = x86LocalAPICAddress(initialApicId, 0);
286}
287
288
289void
290X86ISA::Interrupts::init()
291{
292    //
293    // The local apic must register its address ranges on both its pio
294    // port via the basicpiodevice(piodevice) init() function and its
295    // int port that it inherited from IntDevice.  Note IntDevice is
296    // not a SimObject itself.
297    //
298    PioDevice::init();
299    IntDevice::init();
300
301    // the slave port has a range so inform the connected master
302    intSlavePort.sendRangeChange();
303}
304
305
306Tick
307X86ISA::Interrupts::recvMessage(PacketPtr pkt)
308{
309    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
310    assert(pkt->cmd == MemCmd::MessageReq);
311    switch(offset)
312    {
313      case 0:
314        {
315            TriggerIntMessage message = pkt->getRaw<TriggerIntMessage>();
316            DPRINTF(LocalApic,
317                    "Got Trigger Interrupt message with vector %#x.\n",
318                    message.vector);
319
320            requestInterrupt(message.vector,
321                    message.deliveryMode, message.trigger);
322        }
323        break;
324      default:
325        panic("Local apic got unknown interrupt message at offset %#x.\n",
326                offset);
327        break;
328    }
329    pkt->makeAtomicResponse();
330    return pioDelay;
331}
332
333
334bool
335X86ISA::Interrupts::recvResponse(PacketPtr pkt)
336{
337    assert(!pkt->isError());
338    assert(pkt->cmd == MemCmd::MessageResp);
339    if (--pendingIPIs == 0) {
340        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
341        // Record that the ICR is now idle.
342        low.deliveryStatus = 0;
343        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
344    }
345    DPRINTF(LocalApic, "ICR is now idle.\n");
346    return true;
347}
348
349
350AddrRangeList
351X86ISA::Interrupts::getAddrRanges() const
352{
353    assert(cpu);
354    AddrRangeList ranges;
355    ranges.push_back(RangeSize(pioAddr, PageBytes));
356    return ranges;
357}
358
359
360AddrRangeList
361X86ISA::Interrupts::getIntAddrRange() const
362{
363    AddrRangeList ranges;
364    ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
365                             x86InterruptAddress(initialApicId, 0) +
366                             PhysAddrAPICRangeSize));
367    return ranges;
368}
369
370
371uint32_t
372X86ISA::Interrupts::readReg(ApicRegIndex reg)
373{
374    if (reg >= APIC_TRIGGER_MODE(0) &&
375            reg <= APIC_TRIGGER_MODE(15)) {
376        panic("Local APIC Trigger Mode registers are unimplemented.\n");
377    }
378    switch (reg) {
379      case APIC_ARBITRATION_PRIORITY:
380        panic("Local APIC Arbitration Priority register unimplemented.\n");
381        break;
382      case APIC_PROCESSOR_PRIORITY:
383        panic("Local APIC Processor Priority register unimplemented.\n");
384        break;
385      case APIC_ERROR_STATUS:
386        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
387        break;
388      case APIC_CURRENT_COUNT:
389        {
390            if (apicTimerEvent.scheduled()) {
391                // Compute how many m5 ticks happen per count.
392                uint64_t ticksPerCount = clockPeriod() *
393                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
394                // Compute how many m5 ticks are left.
395                uint64_t val = apicTimerEvent.when() - curTick();
396                // Turn that into a count.
397                val = (val + ticksPerCount - 1) / ticksPerCount;
398                return val;
399            } else {
400                return 0;
401            }
402        }
403      default:
404        break;
405    }
406    return regs[reg];
407}
408
409void
410X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
411{
412    uint32_t newVal = val;
413    if (reg >= APIC_IN_SERVICE(0) &&
414            reg <= APIC_IN_SERVICE(15)) {
415        panic("Local APIC In-Service registers are unimplemented.\n");
416    }
417    if (reg >= APIC_TRIGGER_MODE(0) &&
418            reg <= APIC_TRIGGER_MODE(15)) {
419        panic("Local APIC Trigger Mode registers are unimplemented.\n");
420    }
421    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
422            reg <= APIC_INTERRUPT_REQUEST(15)) {
423        panic("Local APIC Interrupt Request registers "
424                "are unimplemented.\n");
425    }
426    switch (reg) {
427      case APIC_ID:
428        newVal = val & 0xFF;
429        break;
430      case APIC_VERSION:
431        // The Local APIC Version register is read only.
432        return;
433      case APIC_TASK_PRIORITY:
434        newVal = val & 0xFF;
435        break;
436      case APIC_ARBITRATION_PRIORITY:
437        panic("Local APIC Arbitration Priority register unimplemented.\n");
438        break;
439      case APIC_PROCESSOR_PRIORITY:
440        panic("Local APIC Processor Priority register unimplemented.\n");
441        break;
442      case APIC_EOI:
443        // Remove the interrupt that just completed from the local apic state.
444        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
445        updateISRV();
446        return;
447      case APIC_LOGICAL_DESTINATION:
448        newVal = val & 0xFF000000;
449        break;
450      case APIC_DESTINATION_FORMAT:
451        newVal = val | 0x0FFFFFFF;
452        break;
453      case APIC_SPURIOUS_INTERRUPT_VECTOR:
454        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
455        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
456        if (val & (1 << 9))
457            warn("Focus processor checking not implemented.\n");
458        break;
459      case APIC_ERROR_STATUS:
460        {
461            if (regs[APIC_INTERNAL_STATE] & 0x1) {
462                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
463                newVal = 0;
464            } else {
465                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
466                return;
467            }
468
469        }
470        break;
471      case APIC_INTERRUPT_COMMAND_LOW:
472        {
473            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
474            // Check if we're already sending an IPI.
475            if (low.deliveryStatus) {
476                newVal = low;
477                break;
478            }
479            low = val;
480            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
481            TriggerIntMessage message = 0;
482            message.destination = high.destination;
483            message.vector = low.vector;
484            message.deliveryMode = low.deliveryMode;
485            message.destMode = low.destMode;
486            message.level = low.level;
487            message.trigger = low.trigger;
488            ApicList apics;
489            int numContexts = sys->numContexts();
490            switch (low.destShorthand) {
491              case 0:
492                if (message.deliveryMode == DeliveryMode::LowestPriority) {
493                    panic("Lowest priority delivery mode "
494                            "IPIs aren't implemented.\n");
495                }
496                if (message.destMode == 1) {
497                    int dest = message.destination;
498                    hack_once("Assuming logical destinations are 1 << id.\n");
499                    for (int i = 0; i < numContexts; i++) {
500                        if (dest & 0x1)
501                            apics.push_back(i);
502                        dest = dest >> 1;
503                    }
504                } else {
505                    if (message.destination == 0xFF) {
506                        for (int i = 0; i < numContexts; i++) {
507                            if (i == initialApicId) {
508                                requestInterrupt(message.vector,
509                                        message.deliveryMode, message.trigger);
510                            } else {
511                                apics.push_back(i);
512                            }
513                        }
514                    } else {
515                        if (message.destination == initialApicId) {
516                            requestInterrupt(message.vector,
517                                    message.deliveryMode, message.trigger);
518                        } else {
519                            apics.push_back(message.destination);
520                        }
521                    }
522                }
523                break;
524              case 1:
525                newVal = val;
526                requestInterrupt(message.vector,
527                        message.deliveryMode, message.trigger);
528                break;
529              case 2:
530                requestInterrupt(message.vector,
531                        message.deliveryMode, message.trigger);
532                // Fall through
533              case 3:
534                {
535                    for (int i = 0; i < numContexts; i++) {
536                        if (i != initialApicId) {
537                            apics.push_back(i);
538                        }
539                    }
540                }
541                break;
542            }
543            // Record that an IPI is being sent if one actually is.
544            if (apics.size()) {
545                low.deliveryStatus = 1;
546                pendingIPIs += apics.size();
547            }
548            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
549            intMasterPort.sendMessage(apics, message, sys->isTimingMode());
550            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
551        }
552        break;
553      case APIC_LVT_TIMER:
554      case APIC_LVT_THERMAL_SENSOR:
555      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
556      case APIC_LVT_LINT0:
557      case APIC_LVT_LINT1:
558      case APIC_LVT_ERROR:
559        {
560            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
561            newVal = (val & ~readOnlyMask) |
562                     (regs[reg] & readOnlyMask);
563        }
564        break;
565      case APIC_INITIAL_COUNT:
566        {
567            newVal = bits(val, 31, 0);
568            // Compute how many timer ticks we're being programmed for.
569            uint64_t newCount = newVal *
570                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
571            // Schedule on the edge of the next tick plus the new count.
572            Tick offset = curTick() % clockPeriod();
573            if (offset) {
574                reschedule(apicTimerEvent,
575                           curTick() + (newCount + 1) *
576                           clockPeriod() - offset, true);
577            } else {
578                if (newCount)
579                    reschedule(apicTimerEvent,
580                               curTick() + newCount *
581                               clockPeriod(), true);
582            }
583        }
584        break;
585      case APIC_CURRENT_COUNT:
586        //Local APIC Current Count register is read only.
587        return;
588      case APIC_DIVIDE_CONFIGURATION:
589        newVal = val & 0xB;
590        break;
591      default:
592        break;
593    }
594    regs[reg] = newVal;
595    return;
596}
597
598
599X86ISA::Interrupts::Interrupts(Params * p)
600    : PioDevice(p), IntDevice(this, p->int_latency),
601      apicTimerEvent([this]{ processApicTimerEvent(); }, name()),
602      pendingSmi(false), smiVector(0),
603      pendingNmi(false), nmiVector(0),
604      pendingExtInt(false), extIntVector(0),
605      pendingInit(false), initVector(0),
606      pendingStartup(false), startupVector(0),
607      startedUp(false), pendingUnmaskableInt(false),
608      pendingIPIs(0), cpu(NULL),
609      intSlavePort(name() + ".int_slave", this, this),
610      pioDelay(p->pio_latency)
611{
612    memset(regs, 0, sizeof(regs));
613    //Set the local apic DFR to the flat model.
614    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
615    ISRV = 0;
616    IRRV = 0;
617}
618
619
620bool
621X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
622{
623    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
624    if (pendingUnmaskableInt) {
625        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
626        return true;
627    }
628    if (rflags.intf) {
629        if (pendingExtInt) {
630            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
631            return true;
632        }
633        if (IRRV > ISRV && bits(IRRV, 7, 4) >
634               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
635            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
636            return true;
637        }
638    }
639    return false;
640}
641
642bool
643X86ISA::Interrupts::checkInterruptsRaw() const
644{
645    return pendingUnmaskableInt || pendingExtInt ||
646        (IRRV > ISRV && bits(IRRV, 7, 4) >
647         bits(regs[APIC_TASK_PRIORITY], 7, 4));
648}
649
650Fault
651X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
652{
653    assert(checkInterrupts(tc));
654    // These are all probably fairly uncommon, so we'll make them easier to
655    // check for.
656    if (pendingUnmaskableInt) {
657        if (pendingSmi) {
658            DPRINTF(LocalApic, "Generated SMI fault object.\n");
659            return std::make_shared<SystemManagementInterrupt>();
660        } else if (pendingNmi) {
661            DPRINTF(LocalApic, "Generated NMI fault object.\n");
662            return std::make_shared<NonMaskableInterrupt>(nmiVector);
663        } else if (pendingInit) {
664            DPRINTF(LocalApic, "Generated INIT fault object.\n");
665            return std::make_shared<InitInterrupt>(initVector);
666        } else if (pendingStartup) {
667            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
668            return std::make_shared<StartupInterrupt>(startupVector);
669        } else {
670            panic("pendingUnmaskableInt set, but no unmaskable "
671                    "ints were pending.\n");
672            return NoFault;
673        }
674    } else if (pendingExtInt) {
675        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
676        return std::make_shared<ExternalInterrupt>(extIntVector);
677    } else {
678        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
679        // The only thing left are fixed and lowest priority interrupts.
680        return std::make_shared<ExternalInterrupt>(IRRV);
681    }
682}
683
684void
685X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
686{
687    assert(checkInterrupts(tc));
688    if (pendingUnmaskableInt) {
689        if (pendingSmi) {
690            DPRINTF(LocalApic, "SMI sent to core.\n");
691            pendingSmi = false;
692        } else if (pendingNmi) {
693            DPRINTF(LocalApic, "NMI sent to core.\n");
694            pendingNmi = false;
695        } else if (pendingInit) {
696            DPRINTF(LocalApic, "Init sent to core.\n");
697            pendingInit = false;
698            startedUp = false;
699        } else if (pendingStartup) {
700            DPRINTF(LocalApic, "SIPI sent to core.\n");
701            pendingStartup = false;
702            startedUp = true;
703        }
704        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
705            pendingUnmaskableInt = false;
706    } else if (pendingExtInt) {
707        pendingExtInt = false;
708    } else {
709        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
710        // Mark the interrupt as "in service".
711        ISRV = IRRV;
712        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
713        // Clear it out of the IRR.
714        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
715        updateIRRV();
716    }
717}
718
719void
720X86ISA::Interrupts::serialize(CheckpointOut &cp) const
721{
722    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
723    SERIALIZE_SCALAR(pendingSmi);
724    SERIALIZE_SCALAR(smiVector);
725    SERIALIZE_SCALAR(pendingNmi);
726    SERIALIZE_SCALAR(nmiVector);
727    SERIALIZE_SCALAR(pendingExtInt);
728    SERIALIZE_SCALAR(extIntVector);
729    SERIALIZE_SCALAR(pendingInit);
730    SERIALIZE_SCALAR(initVector);
731    SERIALIZE_SCALAR(pendingStartup);
732    SERIALIZE_SCALAR(startupVector);
733    SERIALIZE_SCALAR(startedUp);
734    SERIALIZE_SCALAR(pendingUnmaskableInt);
735    SERIALIZE_SCALAR(pendingIPIs);
736    SERIALIZE_SCALAR(IRRV);
737    SERIALIZE_SCALAR(ISRV);
738    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
739    SERIALIZE_SCALAR(apicTimerEventScheduled);
740    Tick apicTimerEventTick = apicTimerEvent.when();
741    SERIALIZE_SCALAR(apicTimerEventTick);
742}
743
744void
745X86ISA::Interrupts::unserialize(CheckpointIn &cp)
746{
747    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
748    UNSERIALIZE_SCALAR(pendingSmi);
749    UNSERIALIZE_SCALAR(smiVector);
750    UNSERIALIZE_SCALAR(pendingNmi);
751    UNSERIALIZE_SCALAR(nmiVector);
752    UNSERIALIZE_SCALAR(pendingExtInt);
753    UNSERIALIZE_SCALAR(extIntVector);
754    UNSERIALIZE_SCALAR(pendingInit);
755    UNSERIALIZE_SCALAR(initVector);
756    UNSERIALIZE_SCALAR(pendingStartup);
757    UNSERIALIZE_SCALAR(startupVector);
758    UNSERIALIZE_SCALAR(startedUp);
759    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
760    UNSERIALIZE_SCALAR(pendingIPIs);
761    UNSERIALIZE_SCALAR(IRRV);
762    UNSERIALIZE_SCALAR(ISRV);
763    bool apicTimerEventScheduled;
764    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
765    if (apicTimerEventScheduled) {
766        Tick apicTimerEventTick;
767        UNSERIALIZE_SCALAR(apicTimerEventTick);
768        if (apicTimerEvent.scheduled()) {
769            reschedule(apicTimerEvent, apicTimerEventTick, true);
770        } else {
771            schedule(apicTimerEvent, apicTimerEventTick);
772        }
773    }
774}
775
776X86ISA::Interrupts *
777X86LocalApicParams::create()
778{
779    return new X86ISA::Interrupts(this);
780}
781
782void
783X86ISA::Interrupts::processApicTimerEvent() {
784    if (triggerTimerInterrupt())
785        setReg(APIC_INITIAL_COUNT, readReg(APIC_INITIAL_COUNT));
786}
787