interrupts.cc revision 8745
1/*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#include "arch/x86/regs/apic.hh"
41#include "arch/x86/interrupts.hh"
42#include "arch/x86/intmessage.hh"
43#include "cpu/base.hh"
44#include "debug/LocalApic.hh"
45#include "dev/x86/i82094aa.hh"
46#include "dev/x86/pc.hh"
47#include "dev/x86/south_bridge.hh"
48#include "mem/packet_access.hh"
49#include "sim/system.hh"
50
51int
52divideFromConf(uint32_t conf)
53{
54    // This figures out what division we want from the division configuration
55    // register in the local APIC. The encoding is a little odd but it can
56    // be deciphered fairly easily.
57    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
58    shift = (shift + 1) % 8;
59    return 1 << shift;
60}
61
62namespace X86ISA
63{
64
65ApicRegIndex
66decodeAddr(Addr paddr)
67{
68    ApicRegIndex regNum;
69    paddr &= ~mask(3);
70    switch (paddr)
71    {
72      case 0x20:
73        regNum = APIC_ID;
74        break;
75      case 0x30:
76        regNum = APIC_VERSION;
77        break;
78      case 0x80:
79        regNum = APIC_TASK_PRIORITY;
80        break;
81      case 0x90:
82        regNum = APIC_ARBITRATION_PRIORITY;
83        break;
84      case 0xA0:
85        regNum = APIC_PROCESSOR_PRIORITY;
86        break;
87      case 0xB0:
88        regNum = APIC_EOI;
89        break;
90      case 0xD0:
91        regNum = APIC_LOGICAL_DESTINATION;
92        break;
93      case 0xE0:
94        regNum = APIC_DESTINATION_FORMAT;
95        break;
96      case 0xF0:
97        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
98        break;
99      case 0x100:
100      case 0x108:
101      case 0x110:
102      case 0x118:
103      case 0x120:
104      case 0x128:
105      case 0x130:
106      case 0x138:
107      case 0x140:
108      case 0x148:
109      case 0x150:
110      case 0x158:
111      case 0x160:
112      case 0x168:
113      case 0x170:
114      case 0x178:
115        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
116        break;
117      case 0x180:
118      case 0x188:
119      case 0x190:
120      case 0x198:
121      case 0x1A0:
122      case 0x1A8:
123      case 0x1B0:
124      case 0x1B8:
125      case 0x1C0:
126      case 0x1C8:
127      case 0x1D0:
128      case 0x1D8:
129      case 0x1E0:
130      case 0x1E8:
131      case 0x1F0:
132      case 0x1F8:
133        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
134        break;
135      case 0x200:
136      case 0x208:
137      case 0x210:
138      case 0x218:
139      case 0x220:
140      case 0x228:
141      case 0x230:
142      case 0x238:
143      case 0x240:
144      case 0x248:
145      case 0x250:
146      case 0x258:
147      case 0x260:
148      case 0x268:
149      case 0x270:
150      case 0x278:
151        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
152        break;
153      case 0x280:
154        regNum = APIC_ERROR_STATUS;
155        break;
156      case 0x300:
157        regNum = APIC_INTERRUPT_COMMAND_LOW;
158        break;
159      case 0x310:
160        regNum = APIC_INTERRUPT_COMMAND_HIGH;
161        break;
162      case 0x320:
163        regNum = APIC_LVT_TIMER;
164        break;
165      case 0x330:
166        regNum = APIC_LVT_THERMAL_SENSOR;
167        break;
168      case 0x340:
169        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
170        break;
171      case 0x350:
172        regNum = APIC_LVT_LINT0;
173        break;
174      case 0x360:
175        regNum = APIC_LVT_LINT1;
176        break;
177      case 0x370:
178        regNum = APIC_LVT_ERROR;
179        break;
180      case 0x380:
181        regNum = APIC_INITIAL_COUNT;
182        break;
183      case 0x390:
184        regNum = APIC_CURRENT_COUNT;
185        break;
186      case 0x3E0:
187        regNum = APIC_DIVIDE_CONFIGURATION;
188        break;
189      default:
190        // A reserved register field.
191        panic("Accessed reserved register field %#x.\n", paddr);
192        break;
193    }
194    return regNum;
195}
196}
197
198Tick
199X86ISA::Interrupts::read(PacketPtr pkt)
200{
201    Addr offset = pkt->getAddr() - pioAddr;
202    //Make sure we're at least only accessing one register.
203    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
204        panic("Accessed more than one register at a time in the APIC!\n");
205    ApicRegIndex reg = decodeAddr(offset);
206    uint32_t val = htog(readReg(reg));
207    DPRINTF(LocalApic,
208            "Reading Local APIC register %d at offset %#x as %#x.\n",
209            reg, offset, val);
210    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
211    pkt->makeAtomicResponse();
212    return latency;
213}
214
215Tick
216X86ISA::Interrupts::write(PacketPtr pkt)
217{
218    Addr offset = pkt->getAddr() - pioAddr;
219    //Make sure we're at least only accessing one register.
220    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
221        panic("Accessed more than one register at a time in the APIC!\n");
222    ApicRegIndex reg = decodeAddr(offset);
223    uint32_t val = regs[reg];
224    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
225    DPRINTF(LocalApic,
226            "Writing Local APIC register %d at offset %#x as %#x.\n",
227            reg, offset, gtoh(val));
228    setReg(reg, gtoh(val));
229    pkt->makeAtomicResponse();
230    return latency;
231}
232void
233X86ISA::Interrupts::requestInterrupt(uint8_t vector,
234        uint8_t deliveryMode, bool level)
235{
236    /*
237     * Fixed and lowest-priority delivery mode interrupts are handled
238     * using the IRR/ISR registers, checking against the TPR, etc.
239     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
240     */
241    if (deliveryMode == DeliveryMode::Fixed ||
242            deliveryMode == DeliveryMode::LowestPriority) {
243        DPRINTF(LocalApic, "Interrupt is an %s.\n",
244                DeliveryMode::names[deliveryMode]);
245        // Queue up the interrupt in the IRR.
246        if (vector > IRRV)
247            IRRV = vector;
248        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
249            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
250            if (level) {
251                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
252            } else {
253                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
254            }
255        }
256    } else if (!DeliveryMode::isReserved(deliveryMode)) {
257        DPRINTF(LocalApic, "Interrupt is an %s.\n",
258                DeliveryMode::names[deliveryMode]);
259        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
260            pendingUnmaskableInt = pendingSmi = true;
261            smiVector = vector;
262        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
263            pendingUnmaskableInt = pendingNmi = true;
264            nmiVector = vector;
265        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
266            pendingExtInt = true;
267            extIntVector = vector;
268        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
269            pendingUnmaskableInt = pendingInit = true;
270            initVector = vector;
271        } else if (deliveryMode == DeliveryMode::SIPI &&
272                !pendingStartup && !startedUp) {
273            pendingUnmaskableInt = pendingStartup = true;
274            startupVector = vector;
275        }
276    }
277#if FULL_SYSTEM //XXX CPU has no wakeup method in SE mode.
278    cpu->wakeup();
279#endif
280}
281
282
283void
284X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
285{
286    assert(newCPU);
287    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
288        panic("Local APICs can't be moved between CPUs"
289                " with different IDs.\n");
290    }
291    cpu = newCPU;
292    initialApicId = cpu->cpuId();
293    regs[APIC_ID] = (initialApicId << 24);
294}
295
296
297void
298X86ISA::Interrupts::init()
299{
300    //
301    // The local apic must register its address ranges on both its pio port
302    // via the basicpiodevice(piodevice) init() function and its int port
303    // that it inherited from IntDev.  Note IntDev is not a SimObject itself.
304    //
305    BasicPioDevice::init();
306    IntDev::init();
307#if FULL_SYSTEM
308    Pc * pc = dynamic_cast<Pc *>(platform);
309    assert(pc);
310    pc->southBridge->ioApic->registerLocalApic(initialApicId, this);
311#endif
312}
313
314
315Tick
316X86ISA::Interrupts::recvMessage(PacketPtr pkt)
317{
318    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
319    assert(pkt->cmd == MemCmd::MessageReq);
320    switch(offset)
321    {
322      case 0:
323        {
324            TriggerIntMessage message = pkt->get<TriggerIntMessage>();
325            DPRINTF(LocalApic,
326                    "Got Trigger Interrupt message with vector %#x.\n",
327                    message.vector);
328
329            requestInterrupt(message.vector,
330                    message.deliveryMode, message.trigger);
331        }
332        break;
333      default:
334        panic("Local apic got unknown interrupt message at offset %#x.\n",
335                offset);
336        break;
337    }
338    pkt->makeAtomicResponse();
339    return latency;
340}
341
342
343Tick
344X86ISA::Interrupts::recvResponse(PacketPtr pkt)
345{
346    assert(!pkt->isError());
347    assert(pkt->cmd == MemCmd::MessageResp);
348    if (--pendingIPIs == 0) {
349        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
350        // Record that the ICR is now idle.
351        low.deliveryStatus = 0;
352        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
353    }
354    DPRINTF(LocalApic, "ICR is now idle.\n");
355    return 0;
356}
357
358
359void
360X86ISA::Interrupts::addressRanges(AddrRangeList &range_list)
361{
362    range_list.clear();
363    Range<Addr> range = RangeEx(x86LocalAPICAddress(initialApicId, 0),
364                                x86LocalAPICAddress(initialApicId, 0) +
365                                PageBytes);
366    range_list.push_back(range);
367    pioAddr = range.start;
368}
369
370
371void
372X86ISA::Interrupts::getIntAddrRange(AddrRangeList &range_list)
373{
374    range_list.clear();
375    range_list.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
376                x86InterruptAddress(initialApicId, 0) +
377                PhysAddrAPICRangeSize));
378}
379
380
381uint32_t
382X86ISA::Interrupts::readReg(ApicRegIndex reg)
383{
384    if (reg >= APIC_TRIGGER_MODE(0) &&
385            reg <= APIC_TRIGGER_MODE(15)) {
386        panic("Local APIC Trigger Mode registers are unimplemented.\n");
387    }
388    switch (reg) {
389      case APIC_ARBITRATION_PRIORITY:
390        panic("Local APIC Arbitration Priority register unimplemented.\n");
391        break;
392      case APIC_PROCESSOR_PRIORITY:
393        panic("Local APIC Processor Priority register unimplemented.\n");
394        break;
395      case APIC_ERROR_STATUS:
396        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
397        break;
398      case APIC_CURRENT_COUNT:
399        {
400            if (apicTimerEvent.scheduled()) {
401                assert(clock);
402                // Compute how many m5 ticks happen per count.
403                uint64_t ticksPerCount = clock *
404                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
405                // Compute how many m5 ticks are left.
406                uint64_t val = apicTimerEvent.when() - curTick();
407                // Turn that into a count.
408                val = (val + ticksPerCount - 1) / ticksPerCount;
409                return val;
410            } else {
411                return 0;
412            }
413        }
414      default:
415        break;
416    }
417    return regs[reg];
418}
419
420void
421X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
422{
423    uint32_t newVal = val;
424    if (reg >= APIC_IN_SERVICE(0) &&
425            reg <= APIC_IN_SERVICE(15)) {
426        panic("Local APIC In-Service registers are unimplemented.\n");
427    }
428    if (reg >= APIC_TRIGGER_MODE(0) &&
429            reg <= APIC_TRIGGER_MODE(15)) {
430        panic("Local APIC Trigger Mode registers are unimplemented.\n");
431    }
432    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
433            reg <= APIC_INTERRUPT_REQUEST(15)) {
434        panic("Local APIC Interrupt Request registers "
435                "are unimplemented.\n");
436    }
437    switch (reg) {
438      case APIC_ID:
439        newVal = val & 0xFF;
440        break;
441      case APIC_VERSION:
442        // The Local APIC Version register is read only.
443        return;
444      case APIC_TASK_PRIORITY:
445        newVal = val & 0xFF;
446        break;
447      case APIC_ARBITRATION_PRIORITY:
448        panic("Local APIC Arbitration Priority register unimplemented.\n");
449        break;
450      case APIC_PROCESSOR_PRIORITY:
451        panic("Local APIC Processor Priority register unimplemented.\n");
452        break;
453      case APIC_EOI:
454        // Remove the interrupt that just completed from the local apic state.
455        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
456        updateISRV();
457        return;
458      case APIC_LOGICAL_DESTINATION:
459        newVal = val & 0xFF000000;
460        break;
461      case APIC_DESTINATION_FORMAT:
462        newVal = val | 0x0FFFFFFF;
463        break;
464      case APIC_SPURIOUS_INTERRUPT_VECTOR:
465        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
466        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
467        if (val & (1 << 9))
468            warn("Focus processor checking not implemented.\n");
469        break;
470      case APIC_ERROR_STATUS:
471        {
472            if (regs[APIC_INTERNAL_STATE] & 0x1) {
473                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
474                newVal = 0;
475            } else {
476                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
477                return;
478            }
479
480        }
481        break;
482      case APIC_INTERRUPT_COMMAND_LOW:
483        {
484            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
485            // Check if we're already sending an IPI.
486            if (low.deliveryStatus) {
487                newVal = low;
488                break;
489            }
490            low = val;
491            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
492            // Record that an IPI is being sent.
493            low.deliveryStatus = 1;
494            TriggerIntMessage message = 0;
495            message.destination = high.destination;
496            message.vector = low.vector;
497            message.deliveryMode = low.deliveryMode;
498            message.destMode = low.destMode;
499            message.level = low.level;
500            message.trigger = low.trigger;
501            bool timing = sys->getMemoryMode() == Enums::timing;
502            // Be careful no updates of the delivery status bit get lost.
503            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
504            ApicList apics;
505            int numContexts = sys->numContexts();
506            switch (low.destShorthand) {
507              case 0:
508                if (message.deliveryMode == DeliveryMode::LowestPriority) {
509                    panic("Lowest priority delivery mode "
510                            "IPIs aren't implemented.\n");
511                }
512                if (message.destMode == 1) {
513                    int dest = message.destination;
514                    hack_once("Assuming logical destinations are 1 << id.\n");
515                    for (int i = 0; i < numContexts; i++) {
516                        if (dest & 0x1)
517                            apics.push_back(i);
518                        dest = dest >> 1;
519                    }
520                } else {
521                    if (message.destination == 0xFF) {
522                        for (int i = 0; i < numContexts; i++) {
523                            if (i == initialApicId) {
524                                requestInterrupt(message.vector,
525                                        message.deliveryMode, message.trigger);
526                            } else {
527                                apics.push_back(i);
528                            }
529                        }
530                    } else {
531                        if (message.destination == initialApicId) {
532                            requestInterrupt(message.vector,
533                                    message.deliveryMode, message.trigger);
534                        } else {
535                            apics.push_back(message.destination);
536                        }
537                    }
538                }
539                break;
540              case 1:
541                newVal = val;
542                requestInterrupt(message.vector,
543                        message.deliveryMode, message.trigger);
544                break;
545              case 2:
546                requestInterrupt(message.vector,
547                        message.deliveryMode, message.trigger);
548                // Fall through
549              case 3:
550                {
551                    for (int i = 0; i < numContexts; i++) {
552                        if (i != initialApicId) {
553                            apics.push_back(i);
554                        }
555                    }
556                }
557                break;
558            }
559            pendingIPIs += apics.size();
560            intPort->sendMessage(apics, message, timing);
561            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
562        }
563        break;
564      case APIC_LVT_TIMER:
565      case APIC_LVT_THERMAL_SENSOR:
566      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
567      case APIC_LVT_LINT0:
568      case APIC_LVT_LINT1:
569      case APIC_LVT_ERROR:
570        {
571            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
572            newVal = (val & ~readOnlyMask) |
573                     (regs[reg] & readOnlyMask);
574        }
575        break;
576      case APIC_INITIAL_COUNT:
577        {
578            assert(clock);
579            newVal = bits(val, 31, 0);
580            // Compute how many timer ticks we're being programmed for.
581            uint64_t newCount = newVal *
582                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
583            // Schedule on the edge of the next tick plus the new count.
584            Tick offset = curTick() % clock;
585            if (offset) {
586                reschedule(apicTimerEvent,
587                        curTick() + (newCount + 1) * clock - offset, true);
588            } else {
589                reschedule(apicTimerEvent,
590                        curTick() + newCount * clock, true);
591            }
592        }
593        break;
594      case APIC_CURRENT_COUNT:
595        //Local APIC Current Count register is read only.
596        return;
597      case APIC_DIVIDE_CONFIGURATION:
598        newVal = val & 0xB;
599        break;
600      default:
601        break;
602    }
603    regs[reg] = newVal;
604    return;
605}
606
607
608X86ISA::Interrupts::Interrupts(Params * p) :
609    BasicPioDevice(p), IntDev(this, p->int_latency), latency(p->pio_latency),
610    clock(0),
611    apicTimerEvent(this),
612    pendingSmi(false), smiVector(0),
613    pendingNmi(false), nmiVector(0),
614    pendingExtInt(false), extIntVector(0),
615    pendingInit(false), initVector(0),
616    pendingStartup(false), startupVector(0),
617    startedUp(false), pendingUnmaskableInt(false),
618    pendingIPIs(0), cpu(NULL)
619#if FULL_SYSTEM
620    , platform(p->platform)
621#endif
622{
623    pioSize = PageBytes;
624    memset(regs, 0, sizeof(regs));
625    //Set the local apic DFR to the flat model.
626    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
627    ISRV = 0;
628    IRRV = 0;
629}
630
631
632bool
633X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
634{
635    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
636    if (pendingUnmaskableInt) {
637        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
638        return true;
639    }
640    if (rflags.intf) {
641        if (pendingExtInt) {
642            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
643            return true;
644        }
645        if (IRRV > ISRV && bits(IRRV, 7, 4) >
646               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
647            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
648            return true;
649        }
650    }
651    return false;
652}
653
654Fault
655X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
656{
657    assert(checkInterrupts(tc));
658    // These are all probably fairly uncommon, so we'll make them easier to
659    // check for.
660    if (pendingUnmaskableInt) {
661        if (pendingSmi) {
662            DPRINTF(LocalApic, "Generated SMI fault object.\n");
663            return new SystemManagementInterrupt();
664        } else if (pendingNmi) {
665            DPRINTF(LocalApic, "Generated NMI fault object.\n");
666            return new NonMaskableInterrupt(nmiVector);
667        } else if (pendingInit) {
668            DPRINTF(LocalApic, "Generated INIT fault object.\n");
669            return new InitInterrupt(initVector);
670        } else if (pendingStartup) {
671            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
672            return new StartupInterrupt(startupVector);
673        } else {
674            panic("pendingUnmaskableInt set, but no unmaskable "
675                    "ints were pending.\n");
676            return NoFault;
677        }
678    } else if (pendingExtInt) {
679        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
680        return new ExternalInterrupt(extIntVector);
681    } else {
682        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
683        // The only thing left are fixed and lowest priority interrupts.
684        return new ExternalInterrupt(IRRV);
685    }
686}
687
688void
689X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
690{
691    assert(checkInterrupts(tc));
692    if (pendingUnmaskableInt) {
693        if (pendingSmi) {
694            DPRINTF(LocalApic, "SMI sent to core.\n");
695            pendingSmi = false;
696        } else if (pendingNmi) {
697            DPRINTF(LocalApic, "NMI sent to core.\n");
698            pendingNmi = false;
699        } else if (pendingInit) {
700            DPRINTF(LocalApic, "Init sent to core.\n");
701            pendingInit = false;
702            startedUp = false;
703        } else if (pendingStartup) {
704            DPRINTF(LocalApic, "SIPI sent to core.\n");
705            pendingStartup = false;
706            startedUp = true;
707        }
708        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
709            pendingUnmaskableInt = false;
710    } else if (pendingExtInt) {
711        pendingExtInt = false;
712    } else {
713        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
714        // Mark the interrupt as "in service".
715        ISRV = IRRV;
716        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
717        // Clear it out of the IRR.
718        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
719        updateIRRV();
720    }
721}
722
723void
724X86ISA::Interrupts::serialize(std::ostream &os)
725{
726    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
727    SERIALIZE_SCALAR(clock);
728    SERIALIZE_SCALAR(pendingSmi);
729    SERIALIZE_SCALAR(smiVector);
730    SERIALIZE_SCALAR(pendingNmi);
731    SERIALIZE_SCALAR(nmiVector);
732    SERIALIZE_SCALAR(pendingExtInt);
733    SERIALIZE_SCALAR(extIntVector);
734    SERIALIZE_SCALAR(pendingInit);
735    SERIALIZE_SCALAR(initVector);
736    SERIALIZE_SCALAR(pendingStartup);
737    SERIALIZE_SCALAR(startupVector);
738    SERIALIZE_SCALAR(startedUp);
739    SERIALIZE_SCALAR(pendingUnmaskableInt);
740    SERIALIZE_SCALAR(pendingIPIs);
741    SERIALIZE_SCALAR(IRRV);
742    SERIALIZE_SCALAR(ISRV);
743    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
744    SERIALIZE_SCALAR(apicTimerEventScheduled);
745    Tick apicTimerEventTick = apicTimerEvent.when();
746    SERIALIZE_SCALAR(apicTimerEventTick);
747}
748
749void
750X86ISA::Interrupts::unserialize(Checkpoint *cp, const std::string &section)
751{
752    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
753    UNSERIALIZE_SCALAR(clock);
754    UNSERIALIZE_SCALAR(pendingSmi);
755    UNSERIALIZE_SCALAR(smiVector);
756    UNSERIALIZE_SCALAR(pendingNmi);
757    UNSERIALIZE_SCALAR(nmiVector);
758    UNSERIALIZE_SCALAR(pendingExtInt);
759    UNSERIALIZE_SCALAR(extIntVector);
760    UNSERIALIZE_SCALAR(pendingInit);
761    UNSERIALIZE_SCALAR(initVector);
762    UNSERIALIZE_SCALAR(pendingStartup);
763    UNSERIALIZE_SCALAR(startupVector);
764    UNSERIALIZE_SCALAR(startedUp);
765    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
766    UNSERIALIZE_SCALAR(pendingIPIs);
767    UNSERIALIZE_SCALAR(IRRV);
768    UNSERIALIZE_SCALAR(ISRV);
769    bool apicTimerEventScheduled;
770    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
771    if (apicTimerEventScheduled) {
772        Tick apicTimerEventTick;
773        UNSERIALIZE_SCALAR(apicTimerEventTick);
774        if (apicTimerEvent.scheduled()) {
775            reschedule(apicTimerEvent, apicTimerEventTick, true);
776        } else {
777            schedule(apicTimerEvent, apicTimerEventTick);
778        }
779    }
780}
781
782X86ISA::Interrupts *
783X86LocalApicParams::create()
784{
785    return new X86ISA::Interrupts(this);
786}
787