interrupts.cc revision 8711
1/*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#include "arch/x86/regs/apic.hh"
41#include "arch/x86/interrupts.hh"
42#include "arch/x86/intmessage.hh"
43#include "cpu/base.hh"
44#include "debug/LocalApic.hh"
45#include "dev/x86/i82094aa.hh"
46#include "dev/x86/pc.hh"
47#include "dev/x86/south_bridge.hh"
48#include "mem/packet_access.hh"
49#include "sim/system.hh"
50
51int
52divideFromConf(uint32_t conf)
53{
54    // This figures out what division we want from the division configuration
55    // register in the local APIC. The encoding is a little odd but it can
56    // be deciphered fairly easily.
57    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
58    shift = (shift + 1) % 8;
59    return 1 << shift;
60}
61
62namespace X86ISA
63{
64
65ApicRegIndex
66decodeAddr(Addr paddr)
67{
68    ApicRegIndex regNum;
69    paddr &= ~mask(3);
70    switch (paddr)
71    {
72      case 0x20:
73        regNum = APIC_ID;
74        break;
75      case 0x30:
76        regNum = APIC_VERSION;
77        break;
78      case 0x80:
79        regNum = APIC_TASK_PRIORITY;
80        break;
81      case 0x90:
82        regNum = APIC_ARBITRATION_PRIORITY;
83        break;
84      case 0xA0:
85        regNum = APIC_PROCESSOR_PRIORITY;
86        break;
87      case 0xB0:
88        regNum = APIC_EOI;
89        break;
90      case 0xD0:
91        regNum = APIC_LOGICAL_DESTINATION;
92        break;
93      case 0xE0:
94        regNum = APIC_DESTINATION_FORMAT;
95        break;
96      case 0xF0:
97        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
98        break;
99      case 0x100:
100      case 0x108:
101      case 0x110:
102      case 0x118:
103      case 0x120:
104      case 0x128:
105      case 0x130:
106      case 0x138:
107      case 0x140:
108      case 0x148:
109      case 0x150:
110      case 0x158:
111      case 0x160:
112      case 0x168:
113      case 0x170:
114      case 0x178:
115        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
116        break;
117      case 0x180:
118      case 0x188:
119      case 0x190:
120      case 0x198:
121      case 0x1A0:
122      case 0x1A8:
123      case 0x1B0:
124      case 0x1B8:
125      case 0x1C0:
126      case 0x1C8:
127      case 0x1D0:
128      case 0x1D8:
129      case 0x1E0:
130      case 0x1E8:
131      case 0x1F0:
132      case 0x1F8:
133        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
134        break;
135      case 0x200:
136      case 0x208:
137      case 0x210:
138      case 0x218:
139      case 0x220:
140      case 0x228:
141      case 0x230:
142      case 0x238:
143      case 0x240:
144      case 0x248:
145      case 0x250:
146      case 0x258:
147      case 0x260:
148      case 0x268:
149      case 0x270:
150      case 0x278:
151        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
152        break;
153      case 0x280:
154        regNum = APIC_ERROR_STATUS;
155        break;
156      case 0x300:
157        regNum = APIC_INTERRUPT_COMMAND_LOW;
158        break;
159      case 0x310:
160        regNum = APIC_INTERRUPT_COMMAND_HIGH;
161        break;
162      case 0x320:
163        regNum = APIC_LVT_TIMER;
164        break;
165      case 0x330:
166        regNum = APIC_LVT_THERMAL_SENSOR;
167        break;
168      case 0x340:
169        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
170        break;
171      case 0x350:
172        regNum = APIC_LVT_LINT0;
173        break;
174      case 0x360:
175        regNum = APIC_LVT_LINT1;
176        break;
177      case 0x370:
178        regNum = APIC_LVT_ERROR;
179        break;
180      case 0x380:
181        regNum = APIC_INITIAL_COUNT;
182        break;
183      case 0x390:
184        regNum = APIC_CURRENT_COUNT;
185        break;
186      case 0x3E0:
187        regNum = APIC_DIVIDE_CONFIGURATION;
188        break;
189      default:
190        // A reserved register field.
191        panic("Accessed reserved register field %#x.\n", paddr);
192        break;
193    }
194    return regNum;
195}
196}
197
198Tick
199X86ISA::Interrupts::read(PacketPtr pkt)
200{
201    Addr offset = pkt->getAddr() - pioAddr;
202    //Make sure we're at least only accessing one register.
203    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
204        panic("Accessed more than one register at a time in the APIC!\n");
205    ApicRegIndex reg = decodeAddr(offset);
206    uint32_t val = htog(readReg(reg));
207    DPRINTF(LocalApic,
208            "Reading Local APIC register %d at offset %#x as %#x.\n",
209            reg, offset, val);
210    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
211    pkt->makeAtomicResponse();
212    return latency;
213}
214
215Tick
216X86ISA::Interrupts::write(PacketPtr pkt)
217{
218    Addr offset = pkt->getAddr() - pioAddr;
219    //Make sure we're at least only accessing one register.
220    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
221        panic("Accessed more than one register at a time in the APIC!\n");
222    ApicRegIndex reg = decodeAddr(offset);
223    uint32_t val = regs[reg];
224    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
225    DPRINTF(LocalApic,
226            "Writing Local APIC register %d at offset %#x as %#x.\n",
227            reg, offset, gtoh(val));
228    setReg(reg, gtoh(val));
229    pkt->makeAtomicResponse();
230    return latency;
231}
232void
233X86ISA::Interrupts::requestInterrupt(uint8_t vector,
234        uint8_t deliveryMode, bool level)
235{
236    /*
237     * Fixed and lowest-priority delivery mode interrupts are handled
238     * using the IRR/ISR registers, checking against the TPR, etc.
239     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
240     */
241    if (deliveryMode == DeliveryMode::Fixed ||
242            deliveryMode == DeliveryMode::LowestPriority) {
243        DPRINTF(LocalApic, "Interrupt is an %s.\n",
244                DeliveryMode::names[deliveryMode]);
245        // Queue up the interrupt in the IRR.
246        if (vector > IRRV)
247            IRRV = vector;
248        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
249            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
250            if (level) {
251                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
252            } else {
253                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
254            }
255        }
256    } else if (!DeliveryMode::isReserved(deliveryMode)) {
257        DPRINTF(LocalApic, "Interrupt is an %s.\n",
258                DeliveryMode::names[deliveryMode]);
259        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
260            pendingUnmaskableInt = pendingSmi = true;
261            smiVector = vector;
262        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
263            pendingUnmaskableInt = pendingNmi = true;
264            nmiVector = vector;
265        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
266            pendingExtInt = true;
267            extIntVector = vector;
268        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
269            pendingUnmaskableInt = pendingInit = true;
270            initVector = vector;
271        } else if (deliveryMode == DeliveryMode::SIPI &&
272                !pendingStartup && !startedUp) {
273            pendingUnmaskableInt = pendingStartup = true;
274            startupVector = vector;
275        }
276    }
277    cpu->wakeup();
278}
279
280
281void
282X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
283{
284    assert(newCPU);
285    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
286        panic("Local APICs can't be moved between CPUs"
287                " with different IDs.\n");
288    }
289    cpu = newCPU;
290    initialApicId = cpu->cpuId();
291    regs[APIC_ID] = (initialApicId << 24);
292}
293
294
295void
296X86ISA::Interrupts::init()
297{
298    //
299    // The local apic must register its address ranges on both its pio port
300    // via the basicpiodevice(piodevice) init() function and its int port
301    // that it inherited from IntDev.  Note IntDev is not a SimObject itself.
302    //
303    BasicPioDevice::init();
304    IntDev::init();
305
306    Pc * pc = dynamic_cast<Pc *>(platform);
307    assert(pc);
308    pc->southBridge->ioApic->registerLocalApic(initialApicId, this);
309}
310
311
312Tick
313X86ISA::Interrupts::recvMessage(PacketPtr pkt)
314{
315    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
316    assert(pkt->cmd == MemCmd::MessageReq);
317    switch(offset)
318    {
319      case 0:
320        {
321            TriggerIntMessage message = pkt->get<TriggerIntMessage>();
322            DPRINTF(LocalApic,
323                    "Got Trigger Interrupt message with vector %#x.\n",
324                    message.vector);
325
326            requestInterrupt(message.vector,
327                    message.deliveryMode, message.trigger);
328        }
329        break;
330      default:
331        panic("Local apic got unknown interrupt message at offset %#x.\n",
332                offset);
333        break;
334    }
335    pkt->makeAtomicResponse();
336    return latency;
337}
338
339
340Tick
341X86ISA::Interrupts::recvResponse(PacketPtr pkt)
342{
343    assert(!pkt->isError());
344    assert(pkt->cmd == MemCmd::MessageResp);
345    if (--pendingIPIs == 0) {
346        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
347        // Record that the ICR is now idle.
348        low.deliveryStatus = 0;
349        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
350    }
351    DPRINTF(LocalApic, "ICR is now idle.\n");
352    return 0;
353}
354
355
356AddrRangeList
357X86ISA::Interrupts::getAddrRanges()
358{
359    AddrRangeList ranges;
360    Range<Addr> range = RangeEx(x86LocalAPICAddress(initialApicId, 0),
361                                x86LocalAPICAddress(initialApicId, 0) +
362                                PageBytes);
363    ranges.push_back(range);
364    pioAddr = range.start;
365    return ranges;
366}
367
368
369AddrRangeList
370X86ISA::Interrupts::getIntAddrRange()
371{
372    AddrRangeList ranges;
373    ranges.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
374                             x86InterruptAddress(initialApicId, 0) +
375                             PhysAddrAPICRangeSize));
376    return ranges;
377}
378
379
380uint32_t
381X86ISA::Interrupts::readReg(ApicRegIndex reg)
382{
383    if (reg >= APIC_TRIGGER_MODE(0) &&
384            reg <= APIC_TRIGGER_MODE(15)) {
385        panic("Local APIC Trigger Mode registers are unimplemented.\n");
386    }
387    switch (reg) {
388      case APIC_ARBITRATION_PRIORITY:
389        panic("Local APIC Arbitration Priority register unimplemented.\n");
390        break;
391      case APIC_PROCESSOR_PRIORITY:
392        panic("Local APIC Processor Priority register unimplemented.\n");
393        break;
394      case APIC_ERROR_STATUS:
395        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
396        break;
397      case APIC_CURRENT_COUNT:
398        {
399            if (apicTimerEvent.scheduled()) {
400                assert(clock);
401                // Compute how many m5 ticks happen per count.
402                uint64_t ticksPerCount = clock *
403                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
404                // Compute how many m5 ticks are left.
405                uint64_t val = apicTimerEvent.when() - curTick();
406                // Turn that into a count.
407                val = (val + ticksPerCount - 1) / ticksPerCount;
408                return val;
409            } else {
410                return 0;
411            }
412        }
413      default:
414        break;
415    }
416    return regs[reg];
417}
418
419void
420X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
421{
422    uint32_t newVal = val;
423    if (reg >= APIC_IN_SERVICE(0) &&
424            reg <= APIC_IN_SERVICE(15)) {
425        panic("Local APIC In-Service registers are unimplemented.\n");
426    }
427    if (reg >= APIC_TRIGGER_MODE(0) &&
428            reg <= APIC_TRIGGER_MODE(15)) {
429        panic("Local APIC Trigger Mode registers are unimplemented.\n");
430    }
431    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
432            reg <= APIC_INTERRUPT_REQUEST(15)) {
433        panic("Local APIC Interrupt Request registers "
434                "are unimplemented.\n");
435    }
436    switch (reg) {
437      case APIC_ID:
438        newVal = val & 0xFF;
439        break;
440      case APIC_VERSION:
441        // The Local APIC Version register is read only.
442        return;
443      case APIC_TASK_PRIORITY:
444        newVal = val & 0xFF;
445        break;
446      case APIC_ARBITRATION_PRIORITY:
447        panic("Local APIC Arbitration Priority register unimplemented.\n");
448        break;
449      case APIC_PROCESSOR_PRIORITY:
450        panic("Local APIC Processor Priority register unimplemented.\n");
451        break;
452      case APIC_EOI:
453        // Remove the interrupt that just completed from the local apic state.
454        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
455        updateISRV();
456        return;
457      case APIC_LOGICAL_DESTINATION:
458        newVal = val & 0xFF000000;
459        break;
460      case APIC_DESTINATION_FORMAT:
461        newVal = val | 0x0FFFFFFF;
462        break;
463      case APIC_SPURIOUS_INTERRUPT_VECTOR:
464        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
465        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
466        if (val & (1 << 9))
467            warn("Focus processor checking not implemented.\n");
468        break;
469      case APIC_ERROR_STATUS:
470        {
471            if (regs[APIC_INTERNAL_STATE] & 0x1) {
472                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
473                newVal = 0;
474            } else {
475                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
476                return;
477            }
478
479        }
480        break;
481      case APIC_INTERRUPT_COMMAND_LOW:
482        {
483            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
484            // Check if we're already sending an IPI.
485            if (low.deliveryStatus) {
486                newVal = low;
487                break;
488            }
489            low = val;
490            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
491            // Record that an IPI is being sent.
492            low.deliveryStatus = 1;
493            TriggerIntMessage message = 0;
494            message.destination = high.destination;
495            message.vector = low.vector;
496            message.deliveryMode = low.deliveryMode;
497            message.destMode = low.destMode;
498            message.level = low.level;
499            message.trigger = low.trigger;
500            bool timing = sys->getMemoryMode() == Enums::timing;
501            // Be careful no updates of the delivery status bit get lost.
502            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
503            ApicList apics;
504            int numContexts = sys->numContexts();
505            switch (low.destShorthand) {
506              case 0:
507                if (message.deliveryMode == DeliveryMode::LowestPriority) {
508                    panic("Lowest priority delivery mode "
509                            "IPIs aren't implemented.\n");
510                }
511                if (message.destMode == 1) {
512                    int dest = message.destination;
513                    hack_once("Assuming logical destinations are 1 << id.\n");
514                    for (int i = 0; i < numContexts; i++) {
515                        if (dest & 0x1)
516                            apics.push_back(i);
517                        dest = dest >> 1;
518                    }
519                } else {
520                    if (message.destination == 0xFF) {
521                        for (int i = 0; i < numContexts; i++) {
522                            if (i == initialApicId) {
523                                requestInterrupt(message.vector,
524                                        message.deliveryMode, message.trigger);
525                            } else {
526                                apics.push_back(i);
527                            }
528                        }
529                    } else {
530                        if (message.destination == initialApicId) {
531                            requestInterrupt(message.vector,
532                                    message.deliveryMode, message.trigger);
533                        } else {
534                            apics.push_back(message.destination);
535                        }
536                    }
537                }
538                break;
539              case 1:
540                newVal = val;
541                requestInterrupt(message.vector,
542                        message.deliveryMode, message.trigger);
543                break;
544              case 2:
545                requestInterrupt(message.vector,
546                        message.deliveryMode, message.trigger);
547                // Fall through
548              case 3:
549                {
550                    for (int i = 0; i < numContexts; i++) {
551                        if (i != initialApicId) {
552                            apics.push_back(i);
553                        }
554                    }
555                }
556                break;
557            }
558            pendingIPIs += apics.size();
559            intPort->sendMessage(apics, message, timing);
560            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
561        }
562        break;
563      case APIC_LVT_TIMER:
564      case APIC_LVT_THERMAL_SENSOR:
565      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
566      case APIC_LVT_LINT0:
567      case APIC_LVT_LINT1:
568      case APIC_LVT_ERROR:
569        {
570            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
571            newVal = (val & ~readOnlyMask) |
572                     (regs[reg] & readOnlyMask);
573        }
574        break;
575      case APIC_INITIAL_COUNT:
576        {
577            assert(clock);
578            newVal = bits(val, 31, 0);
579            // Compute how many timer ticks we're being programmed for.
580            uint64_t newCount = newVal *
581                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
582            // Schedule on the edge of the next tick plus the new count.
583            Tick offset = curTick() % clock;
584            if (offset) {
585                reschedule(apicTimerEvent,
586                        curTick() + (newCount + 1) * clock - offset, true);
587            } else {
588                reschedule(apicTimerEvent,
589                        curTick() + newCount * clock, true);
590            }
591        }
592        break;
593      case APIC_CURRENT_COUNT:
594        //Local APIC Current Count register is read only.
595        return;
596      case APIC_DIVIDE_CONFIGURATION:
597        newVal = val & 0xB;
598        break;
599      default:
600        break;
601    }
602    regs[reg] = newVal;
603    return;
604}
605
606
607X86ISA::Interrupts::Interrupts(Params * p) :
608    BasicPioDevice(p), IntDev(this, p->int_latency), latency(p->pio_latency),
609    clock(0),
610    apicTimerEvent(this),
611    pendingSmi(false), smiVector(0),
612    pendingNmi(false), nmiVector(0),
613    pendingExtInt(false), extIntVector(0),
614    pendingInit(false), initVector(0),
615    pendingStartup(false), startupVector(0),
616    startedUp(false), pendingUnmaskableInt(false),
617    pendingIPIs(0), cpu(NULL)
618{
619    pioSize = PageBytes;
620    memset(regs, 0, sizeof(regs));
621    //Set the local apic DFR to the flat model.
622    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
623    ISRV = 0;
624    IRRV = 0;
625}
626
627
628bool
629X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
630{
631    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
632    if (pendingUnmaskableInt) {
633        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
634        return true;
635    }
636    if (rflags.intf) {
637        if (pendingExtInt) {
638            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
639            return true;
640        }
641        if (IRRV > ISRV && bits(IRRV, 7, 4) >
642               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
643            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
644            return true;
645        }
646    }
647    return false;
648}
649
650Fault
651X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
652{
653    assert(checkInterrupts(tc));
654    // These are all probably fairly uncommon, so we'll make them easier to
655    // check for.
656    if (pendingUnmaskableInt) {
657        if (pendingSmi) {
658            DPRINTF(LocalApic, "Generated SMI fault object.\n");
659            return new SystemManagementInterrupt();
660        } else if (pendingNmi) {
661            DPRINTF(LocalApic, "Generated NMI fault object.\n");
662            return new NonMaskableInterrupt(nmiVector);
663        } else if (pendingInit) {
664            DPRINTF(LocalApic, "Generated INIT fault object.\n");
665            return new InitInterrupt(initVector);
666        } else if (pendingStartup) {
667            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
668            return new StartupInterrupt(startupVector);
669        } else {
670            panic("pendingUnmaskableInt set, but no unmaskable "
671                    "ints were pending.\n");
672            return NoFault;
673        }
674    } else if (pendingExtInt) {
675        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
676        return new ExternalInterrupt(extIntVector);
677    } else {
678        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
679        // The only thing left are fixed and lowest priority interrupts.
680        return new ExternalInterrupt(IRRV);
681    }
682}
683
684void
685X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
686{
687    assert(checkInterrupts(tc));
688    if (pendingUnmaskableInt) {
689        if (pendingSmi) {
690            DPRINTF(LocalApic, "SMI sent to core.\n");
691            pendingSmi = false;
692        } else if (pendingNmi) {
693            DPRINTF(LocalApic, "NMI sent to core.\n");
694            pendingNmi = false;
695        } else if (pendingInit) {
696            DPRINTF(LocalApic, "Init sent to core.\n");
697            pendingInit = false;
698            startedUp = false;
699        } else if (pendingStartup) {
700            DPRINTF(LocalApic, "SIPI sent to core.\n");
701            pendingStartup = false;
702            startedUp = true;
703        }
704        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
705            pendingUnmaskableInt = false;
706    } else if (pendingExtInt) {
707        pendingExtInt = false;
708    } else {
709        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
710        // Mark the interrupt as "in service".
711        ISRV = IRRV;
712        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
713        // Clear it out of the IRR.
714        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
715        updateIRRV();
716    }
717}
718
719void
720X86ISA::Interrupts::serialize(std::ostream &os)
721{
722    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
723    SERIALIZE_SCALAR(clock);
724    SERIALIZE_SCALAR(pendingSmi);
725    SERIALIZE_SCALAR(smiVector);
726    SERIALIZE_SCALAR(pendingNmi);
727    SERIALIZE_SCALAR(nmiVector);
728    SERIALIZE_SCALAR(pendingExtInt);
729    SERIALIZE_SCALAR(extIntVector);
730    SERIALIZE_SCALAR(pendingInit);
731    SERIALIZE_SCALAR(initVector);
732    SERIALIZE_SCALAR(pendingStartup);
733    SERIALIZE_SCALAR(startupVector);
734    SERIALIZE_SCALAR(startedUp);
735    SERIALIZE_SCALAR(pendingUnmaskableInt);
736    SERIALIZE_SCALAR(pendingIPIs);
737    SERIALIZE_SCALAR(IRRV);
738    SERIALIZE_SCALAR(ISRV);
739    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
740    SERIALIZE_SCALAR(apicTimerEventScheduled);
741    Tick apicTimerEventTick = apicTimerEvent.when();
742    SERIALIZE_SCALAR(apicTimerEventTick);
743}
744
745void
746X86ISA::Interrupts::unserialize(Checkpoint *cp, const std::string &section)
747{
748    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
749    UNSERIALIZE_SCALAR(clock);
750    UNSERIALIZE_SCALAR(pendingSmi);
751    UNSERIALIZE_SCALAR(smiVector);
752    UNSERIALIZE_SCALAR(pendingNmi);
753    UNSERIALIZE_SCALAR(nmiVector);
754    UNSERIALIZE_SCALAR(pendingExtInt);
755    UNSERIALIZE_SCALAR(extIntVector);
756    UNSERIALIZE_SCALAR(pendingInit);
757    UNSERIALIZE_SCALAR(initVector);
758    UNSERIALIZE_SCALAR(pendingStartup);
759    UNSERIALIZE_SCALAR(startupVector);
760    UNSERIALIZE_SCALAR(startedUp);
761    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
762    UNSERIALIZE_SCALAR(pendingIPIs);
763    UNSERIALIZE_SCALAR(IRRV);
764    UNSERIALIZE_SCALAR(ISRV);
765    bool apicTimerEventScheduled;
766    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
767    if (apicTimerEventScheduled) {
768        Tick apicTimerEventTick;
769        UNSERIALIZE_SCALAR(apicTimerEventTick);
770        if (apicTimerEvent.scheduled()) {
771            reschedule(apicTimerEvent, apicTimerEventTick, true);
772        } else {
773            schedule(apicTimerEvent, apicTimerEventTick);
774        }
775    }
776}
777
778X86ISA::Interrupts *
779X86LocalApicParams::create()
780{
781    return new X86ISA::Interrupts(this);
782}
783