interrupts.cc revision 8232
1/*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 */
39
40#include "arch/x86/regs/apic.hh"
41#include "arch/x86/interrupts.hh"
42#include "arch/x86/intmessage.hh"
43#include "cpu/base.hh"
44#include "debug/LocalApic.hh"
45#include "dev/x86/i82094aa.hh"
46#include "dev/x86/pc.hh"
47#include "dev/x86/south_bridge.hh"
48#include "mem/packet_access.hh"
49#include "sim/system.hh"
50
51int
52divideFromConf(uint32_t conf)
53{
54    // This figures out what division we want from the division configuration
55    // register in the local APIC. The encoding is a little odd but it can
56    // be deciphered fairly easily.
57    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
58    shift = (shift + 1) % 8;
59    return 1 << shift;
60}
61
62namespace X86ISA
63{
64
65ApicRegIndex
66decodeAddr(Addr paddr)
67{
68    ApicRegIndex regNum;
69    paddr &= ~mask(3);
70    switch (paddr)
71    {
72      case 0x20:
73        regNum = APIC_ID;
74        break;
75      case 0x30:
76        regNum = APIC_VERSION;
77        break;
78      case 0x80:
79        regNum = APIC_TASK_PRIORITY;
80        break;
81      case 0x90:
82        regNum = APIC_ARBITRATION_PRIORITY;
83        break;
84      case 0xA0:
85        regNum = APIC_PROCESSOR_PRIORITY;
86        break;
87      case 0xB0:
88        regNum = APIC_EOI;
89        break;
90      case 0xD0:
91        regNum = APIC_LOGICAL_DESTINATION;
92        break;
93      case 0xE0:
94        regNum = APIC_DESTINATION_FORMAT;
95        break;
96      case 0xF0:
97        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
98        break;
99      case 0x100:
100      case 0x108:
101      case 0x110:
102      case 0x118:
103      case 0x120:
104      case 0x128:
105      case 0x130:
106      case 0x138:
107      case 0x140:
108      case 0x148:
109      case 0x150:
110      case 0x158:
111      case 0x160:
112      case 0x168:
113      case 0x170:
114      case 0x178:
115        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
116        break;
117      case 0x180:
118      case 0x188:
119      case 0x190:
120      case 0x198:
121      case 0x1A0:
122      case 0x1A8:
123      case 0x1B0:
124      case 0x1B8:
125      case 0x1C0:
126      case 0x1C8:
127      case 0x1D0:
128      case 0x1D8:
129      case 0x1E0:
130      case 0x1E8:
131      case 0x1F0:
132      case 0x1F8:
133        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
134        break;
135      case 0x200:
136      case 0x208:
137      case 0x210:
138      case 0x218:
139      case 0x220:
140      case 0x228:
141      case 0x230:
142      case 0x238:
143      case 0x240:
144      case 0x248:
145      case 0x250:
146      case 0x258:
147      case 0x260:
148      case 0x268:
149      case 0x270:
150      case 0x278:
151        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
152        break;
153      case 0x280:
154        regNum = APIC_ERROR_STATUS;
155        break;
156      case 0x300:
157        regNum = APIC_INTERRUPT_COMMAND_LOW;
158        break;
159      case 0x310:
160        regNum = APIC_INTERRUPT_COMMAND_HIGH;
161        break;
162      case 0x320:
163        regNum = APIC_LVT_TIMER;
164        break;
165      case 0x330:
166        regNum = APIC_LVT_THERMAL_SENSOR;
167        break;
168      case 0x340:
169        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
170        break;
171      case 0x350:
172        regNum = APIC_LVT_LINT0;
173        break;
174      case 0x360:
175        regNum = APIC_LVT_LINT1;
176        break;
177      case 0x370:
178        regNum = APIC_LVT_ERROR;
179        break;
180      case 0x380:
181        regNum = APIC_INITIAL_COUNT;
182        break;
183      case 0x390:
184        regNum = APIC_CURRENT_COUNT;
185        break;
186      case 0x3E0:
187        regNum = APIC_DIVIDE_CONFIGURATION;
188        break;
189      default:
190        // A reserved register field.
191        panic("Accessed reserved register field %#x.\n", paddr);
192        break;
193    }
194    return regNum;
195}
196}
197
198Tick
199X86ISA::Interrupts::read(PacketPtr pkt)
200{
201    Addr offset = pkt->getAddr() - pioAddr;
202    //Make sure we're at least only accessing one register.
203    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
204        panic("Accessed more than one register at a time in the APIC!\n");
205    ApicRegIndex reg = decodeAddr(offset);
206    uint32_t val = htog(readReg(reg));
207    DPRINTF(LocalApic,
208            "Reading Local APIC register %d at offset %#x as %#x.\n",
209            reg, offset, val);
210    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
211    pkt->makeAtomicResponse();
212    return latency;
213}
214
215Tick
216X86ISA::Interrupts::write(PacketPtr pkt)
217{
218    Addr offset = pkt->getAddr() - pioAddr;
219    //Make sure we're at least only accessing one register.
220    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
221        panic("Accessed more than one register at a time in the APIC!\n");
222    ApicRegIndex reg = decodeAddr(offset);
223    uint32_t val = regs[reg];
224    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
225    DPRINTF(LocalApic,
226            "Writing Local APIC register %d at offset %#x as %#x.\n",
227            reg, offset, gtoh(val));
228    setReg(reg, gtoh(val));
229    pkt->makeAtomicResponse();
230    return latency;
231}
232void
233X86ISA::Interrupts::requestInterrupt(uint8_t vector,
234        uint8_t deliveryMode, bool level)
235{
236    /*
237     * Fixed and lowest-priority delivery mode interrupts are handled
238     * using the IRR/ISR registers, checking against the TPR, etc.
239     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
240     */
241    if (deliveryMode == DeliveryMode::Fixed ||
242            deliveryMode == DeliveryMode::LowestPriority) {
243        DPRINTF(LocalApic, "Interrupt is an %s.\n",
244                DeliveryMode::names[deliveryMode]);
245        // Queue up the interrupt in the IRR.
246        if (vector > IRRV)
247            IRRV = vector;
248        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
249            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
250            if (level) {
251                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
252            } else {
253                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
254            }
255        }
256    } else if (!DeliveryMode::isReserved(deliveryMode)) {
257        DPRINTF(LocalApic, "Interrupt is an %s.\n",
258                DeliveryMode::names[deliveryMode]);
259        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
260            pendingUnmaskableInt = pendingSmi = true;
261            smiVector = vector;
262        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
263            pendingUnmaskableInt = pendingNmi = true;
264            nmiVector = vector;
265        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
266            pendingExtInt = true;
267            extIntVector = vector;
268        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
269            pendingUnmaskableInt = pendingInit = true;
270            initVector = vector;
271        } else if (deliveryMode == DeliveryMode::SIPI &&
272                !pendingStartup && !startedUp) {
273            pendingUnmaskableInt = pendingStartup = true;
274            startupVector = vector;
275        }
276    }
277    cpu->wakeup();
278}
279
280
281void
282X86ISA::Interrupts::setCPU(BaseCPU * newCPU)
283{
284    assert(newCPU);
285    if (cpu != NULL && cpu->cpuId() != newCPU->cpuId()) {
286        panic("Local APICs can't be moved between CPUs"
287                " with different IDs.\n");
288    }
289    cpu = newCPU;
290    initialApicId = cpu->cpuId();
291    regs[APIC_ID] = (initialApicId << 24);
292}
293
294
295void
296X86ISA::Interrupts::init()
297{
298    //
299    // The local apic must register its address ranges on both its pio port
300    // via the basicpiodevice(piodevice) init() function and its int port
301    // that it inherited from IntDev.  Note IntDev is not a SimObject itself.
302    //
303    BasicPioDevice::init();
304    IntDev::init();
305
306    Pc * pc = dynamic_cast<Pc *>(platform);
307    assert(pc);
308    pc->southBridge->ioApic->registerLocalApic(initialApicId, this);
309}
310
311
312Tick
313X86ISA::Interrupts::recvMessage(PacketPtr pkt)
314{
315    Addr offset = pkt->getAddr() - x86InterruptAddress(initialApicId, 0);
316    assert(pkt->cmd == MemCmd::MessageReq);
317    switch(offset)
318    {
319      case 0:
320        {
321            TriggerIntMessage message = pkt->get<TriggerIntMessage>();
322            DPRINTF(LocalApic,
323                    "Got Trigger Interrupt message with vector %#x.\n",
324                    message.vector);
325
326            requestInterrupt(message.vector,
327                    message.deliveryMode, message.trigger);
328        }
329        break;
330      default:
331        panic("Local apic got unknown interrupt message at offset %#x.\n",
332                offset);
333        break;
334    }
335    pkt->makeAtomicResponse();
336    return latency;
337}
338
339
340Tick
341X86ISA::Interrupts::recvResponse(PacketPtr pkt)
342{
343    assert(!pkt->isError());
344    assert(pkt->cmd == MemCmd::MessageResp);
345    if (--pendingIPIs == 0) {
346        InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
347        // Record that the ICR is now idle.
348        low.deliveryStatus = 0;
349        regs[APIC_INTERRUPT_COMMAND_LOW] = low;
350    }
351    DPRINTF(LocalApic, "ICR is now idle.\n");
352    return 0;
353}
354
355
356void
357X86ISA::Interrupts::addressRanges(AddrRangeList &range_list)
358{
359    range_list.clear();
360    Range<Addr> range = RangeEx(x86LocalAPICAddress(initialApicId, 0),
361                                x86LocalAPICAddress(initialApicId, 0) +
362                                PageBytes);
363    range_list.push_back(range);
364    pioAddr = range.start;
365}
366
367
368void
369X86ISA::Interrupts::getIntAddrRange(AddrRangeList &range_list)
370{
371    range_list.clear();
372    range_list.push_back(RangeEx(x86InterruptAddress(initialApicId, 0),
373                x86InterruptAddress(initialApicId, 0) +
374                PhysAddrAPICRangeSize));
375}
376
377
378uint32_t
379X86ISA::Interrupts::readReg(ApicRegIndex reg)
380{
381    if (reg >= APIC_TRIGGER_MODE(0) &&
382            reg <= APIC_TRIGGER_MODE(15)) {
383        panic("Local APIC Trigger Mode registers are unimplemented.\n");
384    }
385    switch (reg) {
386      case APIC_ARBITRATION_PRIORITY:
387        panic("Local APIC Arbitration Priority register unimplemented.\n");
388        break;
389      case APIC_PROCESSOR_PRIORITY:
390        panic("Local APIC Processor Priority register unimplemented.\n");
391        break;
392      case APIC_ERROR_STATUS:
393        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
394        break;
395      case APIC_CURRENT_COUNT:
396        {
397            if (apicTimerEvent.scheduled()) {
398                assert(clock);
399                // Compute how many m5 ticks happen per count.
400                uint64_t ticksPerCount = clock *
401                    divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]);
402                // Compute how many m5 ticks are left.
403                uint64_t val = apicTimerEvent.when() - curTick();
404                // Turn that into a count.
405                val = (val + ticksPerCount - 1) / ticksPerCount;
406                return val;
407            } else {
408                return 0;
409            }
410        }
411      default:
412        break;
413    }
414    return regs[reg];
415}
416
417void
418X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
419{
420    uint32_t newVal = val;
421    if (reg >= APIC_IN_SERVICE(0) &&
422            reg <= APIC_IN_SERVICE(15)) {
423        panic("Local APIC In-Service registers are unimplemented.\n");
424    }
425    if (reg >= APIC_TRIGGER_MODE(0) &&
426            reg <= APIC_TRIGGER_MODE(15)) {
427        panic("Local APIC Trigger Mode registers are unimplemented.\n");
428    }
429    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
430            reg <= APIC_INTERRUPT_REQUEST(15)) {
431        panic("Local APIC Interrupt Request registers "
432                "are unimplemented.\n");
433    }
434    switch (reg) {
435      case APIC_ID:
436        newVal = val & 0xFF;
437        break;
438      case APIC_VERSION:
439        // The Local APIC Version register is read only.
440        return;
441      case APIC_TASK_PRIORITY:
442        newVal = val & 0xFF;
443        break;
444      case APIC_ARBITRATION_PRIORITY:
445        panic("Local APIC Arbitration Priority register unimplemented.\n");
446        break;
447      case APIC_PROCESSOR_PRIORITY:
448        panic("Local APIC Processor Priority register unimplemented.\n");
449        break;
450      case APIC_EOI:
451        // Remove the interrupt that just completed from the local apic state.
452        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
453        updateISRV();
454        return;
455      case APIC_LOGICAL_DESTINATION:
456        newVal = val & 0xFF000000;
457        break;
458      case APIC_DESTINATION_FORMAT:
459        newVal = val | 0x0FFFFFFF;
460        break;
461      case APIC_SPURIOUS_INTERRUPT_VECTOR:
462        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
463        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
464        if (val & (1 << 9))
465            warn("Focus processor checking not implemented.\n");
466        break;
467      case APIC_ERROR_STATUS:
468        {
469            if (regs[APIC_INTERNAL_STATE] & 0x1) {
470                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
471                newVal = 0;
472            } else {
473                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
474                return;
475            }
476
477        }
478        break;
479      case APIC_INTERRUPT_COMMAND_LOW:
480        {
481            InterruptCommandRegLow low = regs[APIC_INTERRUPT_COMMAND_LOW];
482            // Check if we're already sending an IPI.
483            if (low.deliveryStatus) {
484                newVal = low;
485                break;
486            }
487            low = val;
488            InterruptCommandRegHigh high = regs[APIC_INTERRUPT_COMMAND_HIGH];
489            // Record that an IPI is being sent.
490            low.deliveryStatus = 1;
491            TriggerIntMessage message = 0;
492            message.destination = high.destination;
493            message.vector = low.vector;
494            message.deliveryMode = low.deliveryMode;
495            message.destMode = low.destMode;
496            message.level = low.level;
497            message.trigger = low.trigger;
498            bool timing = sys->getMemoryMode() == Enums::timing;
499            // Be careful no updates of the delivery status bit get lost.
500            regs[APIC_INTERRUPT_COMMAND_LOW] = low;
501            ApicList apics;
502            int numContexts = sys->numContexts();
503            switch (low.destShorthand) {
504              case 0:
505                if (message.deliveryMode == DeliveryMode::LowestPriority) {
506                    panic("Lowest priority delivery mode "
507                            "IPIs aren't implemented.\n");
508                }
509                if (message.destMode == 1) {
510                    int dest = message.destination;
511                    hack_once("Assuming logical destinations are 1 << id.\n");
512                    for (int i = 0; i < numContexts; i++) {
513                        if (dest & 0x1)
514                            apics.push_back(i);
515                        dest = dest >> 1;
516                    }
517                } else {
518                    if (message.destination == 0xFF) {
519                        for (int i = 0; i < numContexts; i++) {
520                            if (i == initialApicId) {
521                                requestInterrupt(message.vector,
522                                        message.deliveryMode, message.trigger);
523                            } else {
524                                apics.push_back(i);
525                            }
526                        }
527                    } else {
528                        if (message.destination == initialApicId) {
529                            requestInterrupt(message.vector,
530                                    message.deliveryMode, message.trigger);
531                        } else {
532                            apics.push_back(message.destination);
533                        }
534                    }
535                }
536                break;
537              case 1:
538                newVal = val;
539                requestInterrupt(message.vector,
540                        message.deliveryMode, message.trigger);
541                break;
542              case 2:
543                requestInterrupt(message.vector,
544                        message.deliveryMode, message.trigger);
545                // Fall through
546              case 3:
547                {
548                    for (int i = 0; i < numContexts; i++) {
549                        if (i != initialApicId) {
550                            apics.push_back(i);
551                        }
552                    }
553                }
554                break;
555            }
556            pendingIPIs += apics.size();
557            intPort->sendMessage(apics, message, timing);
558            newVal = regs[APIC_INTERRUPT_COMMAND_LOW];
559        }
560        break;
561      case APIC_LVT_TIMER:
562      case APIC_LVT_THERMAL_SENSOR:
563      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
564      case APIC_LVT_LINT0:
565      case APIC_LVT_LINT1:
566      case APIC_LVT_ERROR:
567        {
568            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
569            newVal = (val & ~readOnlyMask) |
570                     (regs[reg] & readOnlyMask);
571        }
572        break;
573      case APIC_INITIAL_COUNT:
574        {
575            assert(clock);
576            newVal = bits(val, 31, 0);
577            // Compute how many timer ticks we're being programmed for.
578            uint64_t newCount = newVal *
579                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
580            // Schedule on the edge of the next tick plus the new count.
581            Tick offset = curTick() % clock;
582            if (offset) {
583                reschedule(apicTimerEvent,
584                        curTick() + (newCount + 1) * clock - offset, true);
585            } else {
586                reschedule(apicTimerEvent,
587                        curTick() + newCount * clock, true);
588            }
589        }
590        break;
591      case APIC_CURRENT_COUNT:
592        //Local APIC Current Count register is read only.
593        return;
594      case APIC_DIVIDE_CONFIGURATION:
595        newVal = val & 0xB;
596        break;
597      default:
598        break;
599    }
600    regs[reg] = newVal;
601    return;
602}
603
604
605X86ISA::Interrupts::Interrupts(Params * p) :
606    BasicPioDevice(p), IntDev(this, p->int_latency), latency(p->pio_latency),
607    clock(0),
608    apicTimerEvent(this),
609    pendingSmi(false), smiVector(0),
610    pendingNmi(false), nmiVector(0),
611    pendingExtInt(false), extIntVector(0),
612    pendingInit(false), initVector(0),
613    pendingStartup(false), startupVector(0),
614    startedUp(false), pendingUnmaskableInt(false),
615    pendingIPIs(0), cpu(NULL)
616{
617    pioSize = PageBytes;
618    memset(regs, 0, sizeof(regs));
619    //Set the local apic DFR to the flat model.
620    regs[APIC_DESTINATION_FORMAT] = (uint32_t)(-1);
621    ISRV = 0;
622    IRRV = 0;
623}
624
625
626bool
627X86ISA::Interrupts::checkInterrupts(ThreadContext *tc) const
628{
629    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
630    if (pendingUnmaskableInt) {
631        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
632        return true;
633    }
634    if (rflags.intf) {
635        if (pendingExtInt) {
636            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
637            return true;
638        }
639        if (IRRV > ISRV && bits(IRRV, 7, 4) >
640               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
641            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
642            return true;
643        }
644    }
645    return false;
646}
647
648Fault
649X86ISA::Interrupts::getInterrupt(ThreadContext *tc)
650{
651    assert(checkInterrupts(tc));
652    // These are all probably fairly uncommon, so we'll make them easier to
653    // check for.
654    if (pendingUnmaskableInt) {
655        if (pendingSmi) {
656            DPRINTF(LocalApic, "Generated SMI fault object.\n");
657            return new SystemManagementInterrupt();
658        } else if (pendingNmi) {
659            DPRINTF(LocalApic, "Generated NMI fault object.\n");
660            return new NonMaskableInterrupt(nmiVector);
661        } else if (pendingInit) {
662            DPRINTF(LocalApic, "Generated INIT fault object.\n");
663            return new InitInterrupt(initVector);
664        } else if (pendingStartup) {
665            DPRINTF(LocalApic, "Generating SIPI fault object.\n");
666            return new StartupInterrupt(startupVector);
667        } else {
668            panic("pendingUnmaskableInt set, but no unmaskable "
669                    "ints were pending.\n");
670            return NoFault;
671        }
672    } else if (pendingExtInt) {
673        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
674        return new ExternalInterrupt(extIntVector);
675    } else {
676        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
677        // The only thing left are fixed and lowest priority interrupts.
678        return new ExternalInterrupt(IRRV);
679    }
680}
681
682void
683X86ISA::Interrupts::updateIntrInfo(ThreadContext *tc)
684{
685    assert(checkInterrupts(tc));
686    if (pendingUnmaskableInt) {
687        if (pendingSmi) {
688            DPRINTF(LocalApic, "SMI sent to core.\n");
689            pendingSmi = false;
690        } else if (pendingNmi) {
691            DPRINTF(LocalApic, "NMI sent to core.\n");
692            pendingNmi = false;
693        } else if (pendingInit) {
694            DPRINTF(LocalApic, "Init sent to core.\n");
695            pendingInit = false;
696            startedUp = false;
697        } else if (pendingStartup) {
698            DPRINTF(LocalApic, "SIPI sent to core.\n");
699            pendingStartup = false;
700            startedUp = true;
701        }
702        if (!(pendingSmi || pendingNmi || pendingInit || pendingStartup))
703            pendingUnmaskableInt = false;
704    } else if (pendingExtInt) {
705        pendingExtInt = false;
706    } else {
707        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
708        // Mark the interrupt as "in service".
709        ISRV = IRRV;
710        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
711        // Clear it out of the IRR.
712        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
713        updateIRRV();
714    }
715}
716
717void
718X86ISA::Interrupts::serialize(std::ostream &os)
719{
720    SERIALIZE_ARRAY(regs, NUM_APIC_REGS);
721    SERIALIZE_SCALAR(clock);
722    SERIALIZE_SCALAR(pendingSmi);
723    SERIALIZE_SCALAR(smiVector);
724    SERIALIZE_SCALAR(pendingNmi);
725    SERIALIZE_SCALAR(nmiVector);
726    SERIALIZE_SCALAR(pendingExtInt);
727    SERIALIZE_SCALAR(extIntVector);
728    SERIALIZE_SCALAR(pendingInit);
729    SERIALIZE_SCALAR(initVector);
730    SERIALIZE_SCALAR(pendingStartup);
731    SERIALIZE_SCALAR(startupVector);
732    SERIALIZE_SCALAR(startedUp);
733    SERIALIZE_SCALAR(pendingUnmaskableInt);
734    SERIALIZE_SCALAR(pendingIPIs);
735    SERIALIZE_SCALAR(IRRV);
736    SERIALIZE_SCALAR(ISRV);
737    bool apicTimerEventScheduled = apicTimerEvent.scheduled();
738    SERIALIZE_SCALAR(apicTimerEventScheduled);
739    Tick apicTimerEventTick = apicTimerEvent.when();
740    SERIALIZE_SCALAR(apicTimerEventTick);
741}
742
743void
744X86ISA::Interrupts::unserialize(Checkpoint *cp, const std::string &section)
745{
746    UNSERIALIZE_ARRAY(regs, NUM_APIC_REGS);
747    UNSERIALIZE_SCALAR(clock);
748    UNSERIALIZE_SCALAR(pendingSmi);
749    UNSERIALIZE_SCALAR(smiVector);
750    UNSERIALIZE_SCALAR(pendingNmi);
751    UNSERIALIZE_SCALAR(nmiVector);
752    UNSERIALIZE_SCALAR(pendingExtInt);
753    UNSERIALIZE_SCALAR(extIntVector);
754    UNSERIALIZE_SCALAR(pendingInit);
755    UNSERIALIZE_SCALAR(initVector);
756    UNSERIALIZE_SCALAR(pendingStartup);
757    UNSERIALIZE_SCALAR(startupVector);
758    UNSERIALIZE_SCALAR(startedUp);
759    UNSERIALIZE_SCALAR(pendingUnmaskableInt);
760    UNSERIALIZE_SCALAR(pendingIPIs);
761    UNSERIALIZE_SCALAR(IRRV);
762    UNSERIALIZE_SCALAR(ISRV);
763    bool apicTimerEventScheduled;
764    UNSERIALIZE_SCALAR(apicTimerEventScheduled);
765    if (apicTimerEventScheduled) {
766        Tick apicTimerEventTick;
767        UNSERIALIZE_SCALAR(apicTimerEventTick);
768        if (apicTimerEvent.scheduled()) {
769            reschedule(apicTimerEvent, apicTimerEventTick, true);
770        } else {
771            schedule(apicTimerEvent, apicTimerEventTick);
772        }
773    }
774}
775
776X86ISA::Interrupts *
777X86LocalApicParams::create()
778{
779    return new X86ISA::Interrupts(this);
780}
781