interrupts.cc revision 5691
1/*
2 * Copyright (c) 2008 The Hewlett-Packard Development Company
3 * All rights reserved.
4 *
5 * Redistribution and use of this software in source and binary forms,
6 * with or without modification, are permitted provided that the
7 * following conditions are met:
8 *
9 * The software must be used only for Non-Commercial Use which means any
10 * use which is NOT directed to receiving any direct monetary
11 * compensation for, or commercial advantage from such use.  Illustrative
12 * examples of non-commercial use are academic research, personal study,
13 * teaching, education and corporate research & development.
14 * Illustrative examples of commercial use are distributing products for
15 * commercial advantage and providing services using the software for
16 * commercial advantage.
17 *
18 * If you wish to use this software or functionality therein that may be
19 * covered by patents for commercial use, please contact:
20 *     Director of Intellectual Property Licensing
21 *     Office of Strategy and Technology
22 *     Hewlett-Packard Company
23 *     1501 Page Mill Road
24 *     Palo Alto, California  94304
25 *
26 * Redistributions of source code must retain the above copyright notice,
27 * this list of conditions and the following disclaimer.  Redistributions
28 * in binary form must reproduce the above copyright notice, this list of
29 * conditions and the following disclaimer in the documentation and/or
30 * other materials provided with the distribution.  Neither the name of
31 * the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
32 * contributors may be used to endorse or promote products derived from
33 * this software without specific prior written permission.  No right of
34 * sublicense is granted herewith.  Derivatives of the software and
35 * output created using the software may be prepared, but only for
36 * Non-Commercial Uses.  Derivatives of the software may be shared with
37 * others provided: (i) the others agree to abide by the list of
38 * conditions herein which includes the Non-Commercial Use restrictions;
39 * and (ii) such Derivatives of the software include the above copyright
40 * notice to acknowledge the contribution from this software where
41 * applicable, this list of conditions and the disclaimer below.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 *
55 * Authors: Gabe Black
56 */
57
58#include "arch/x86/apicregs.hh"
59#include "arch/x86/interrupts.hh"
60#include "arch/x86/intmessage.hh"
61#include "cpu/base.hh"
62#include "mem/packet_access.hh"
63
64int
65divideFromConf(uint32_t conf)
66{
67    // This figures out what division we want from the division configuration
68    // register in the local APIC. The encoding is a little odd but it can
69    // be deciphered fairly easily.
70    int shift = ((conf & 0x8) >> 1) | (conf & 0x3);
71    shift = (shift + 1) % 8;
72    return 1 << shift;
73}
74
75namespace X86ISA
76{
77
78ApicRegIndex
79decodeAddr(Addr paddr)
80{
81    ApicRegIndex regNum;
82    paddr &= ~mask(3);
83    switch (paddr)
84    {
85      case 0x20:
86        regNum = APIC_ID;
87        break;
88      case 0x30:
89        regNum = APIC_VERSION;
90        break;
91      case 0x80:
92        regNum = APIC_TASK_PRIORITY;
93        break;
94      case 0x90:
95        regNum = APIC_ARBITRATION_PRIORITY;
96        break;
97      case 0xA0:
98        regNum = APIC_PROCESSOR_PRIORITY;
99        break;
100      case 0xB0:
101        regNum = APIC_EOI;
102        break;
103      case 0xD0:
104        regNum = APIC_LOGICAL_DESTINATION;
105        break;
106      case 0xE0:
107        regNum = APIC_DESTINATION_FORMAT;
108        break;
109      case 0xF0:
110        regNum = APIC_SPURIOUS_INTERRUPT_VECTOR;
111        break;
112      case 0x100:
113      case 0x108:
114      case 0x110:
115      case 0x118:
116      case 0x120:
117      case 0x128:
118      case 0x130:
119      case 0x138:
120      case 0x140:
121      case 0x148:
122      case 0x150:
123      case 0x158:
124      case 0x160:
125      case 0x168:
126      case 0x170:
127      case 0x178:
128        regNum = APIC_IN_SERVICE((paddr - 0x100) / 0x8);
129        break;
130      case 0x180:
131      case 0x188:
132      case 0x190:
133      case 0x198:
134      case 0x1A0:
135      case 0x1A8:
136      case 0x1B0:
137      case 0x1B8:
138      case 0x1C0:
139      case 0x1C8:
140      case 0x1D0:
141      case 0x1D8:
142      case 0x1E0:
143      case 0x1E8:
144      case 0x1F0:
145      case 0x1F8:
146        regNum = APIC_TRIGGER_MODE((paddr - 0x180) / 0x8);
147        break;
148      case 0x200:
149      case 0x208:
150      case 0x210:
151      case 0x218:
152      case 0x220:
153      case 0x228:
154      case 0x230:
155      case 0x238:
156      case 0x240:
157      case 0x248:
158      case 0x250:
159      case 0x258:
160      case 0x260:
161      case 0x268:
162      case 0x270:
163      case 0x278:
164        regNum = APIC_INTERRUPT_REQUEST((paddr - 0x200) / 0x8);
165        break;
166      case 0x280:
167        regNum = APIC_ERROR_STATUS;
168        break;
169      case 0x300:
170        regNum = APIC_INTERRUPT_COMMAND_LOW;
171        break;
172      case 0x310:
173        regNum = APIC_INTERRUPT_COMMAND_HIGH;
174        break;
175      case 0x320:
176        regNum = APIC_LVT_TIMER;
177        break;
178      case 0x330:
179        regNum = APIC_LVT_THERMAL_SENSOR;
180        break;
181      case 0x340:
182        regNum = APIC_LVT_PERFORMANCE_MONITORING_COUNTERS;
183        break;
184      case 0x350:
185        regNum = APIC_LVT_LINT0;
186        break;
187      case 0x360:
188        regNum = APIC_LVT_LINT1;
189        break;
190      case 0x370:
191        regNum = APIC_LVT_ERROR;
192        break;
193      case 0x380:
194        regNum = APIC_INITIAL_COUNT;
195        break;
196      case 0x390:
197        regNum = APIC_CURRENT_COUNT;
198        break;
199      case 0x3E0:
200        regNum = APIC_DIVIDE_CONFIGURATION;
201        break;
202      default:
203        // A reserved register field.
204        panic("Accessed reserved register field %#x.\n", paddr);
205        break;
206    }
207    return regNum;
208}
209}
210
211Tick
212X86ISA::Interrupts::read(PacketPtr pkt)
213{
214    Addr offset = pkt->getAddr() - pioAddr;
215    //Make sure we're at least only accessing one register.
216    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
217        panic("Accessed more than one register at a time in the APIC!\n");
218    ApicRegIndex reg = decodeAddr(offset);
219    uint32_t val = htog(readReg(reg));
220    DPRINTF(LocalApic,
221            "Reading Local APIC register %d at offset %#x as %#x.\n",
222            reg, offset, val);
223    pkt->setData(((uint8_t *)&val) + (offset & mask(3)));
224    return latency;
225}
226
227Tick
228X86ISA::Interrupts::write(PacketPtr pkt)
229{
230    Addr offset = pkt->getAddr() - pioAddr;
231    //Make sure we're at least only accessing one register.
232    if ((offset & ~mask(3)) != ((offset + pkt->getSize()) & ~mask(3)))
233        panic("Accessed more than one register at a time in the APIC!\n");
234    ApicRegIndex reg = decodeAddr(offset);
235    uint32_t val = regs[reg];
236    pkt->writeData(((uint8_t *)&val) + (offset & mask(3)));
237    DPRINTF(LocalApic,
238            "Writing Local APIC register %d at offset %#x as %#x.\n",
239            reg, offset, gtoh(val));
240    setReg(reg, gtoh(val));
241    return latency;
242}
243void
244X86ISA::Interrupts::requestInterrupt(uint8_t vector,
245        uint8_t deliveryMode, bool level)
246{
247    /*
248     * Fixed and lowest-priority delivery mode interrupts are handled
249     * using the IRR/ISR registers, checking against the TPR, etc.
250     * The SMI, NMI, ExtInt, INIT, etc interrupts go straight through.
251     */
252    if (deliveryMode == DeliveryMode::Fixed ||
253            deliveryMode == DeliveryMode::LowestPriority) {
254        DPRINTF(LocalApic, "Interrupt is an %s.\n",
255                DeliveryMode::names[deliveryMode]);
256        // Queue up the interrupt in the IRR.
257        if (vector > IRRV)
258            IRRV = vector;
259        if (!getRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector)) {
260            setRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, vector);
261            if (level) {
262                setRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
263            } else {
264                clearRegArrayBit(APIC_TRIGGER_MODE_BASE, vector);
265            }
266        }
267    } else if (!DeliveryMode::isReserved(deliveryMode)) {
268        DPRINTF(LocalApic, "Interrupt is an %s.\n",
269                DeliveryMode::names[deliveryMode]);
270        if (deliveryMode == DeliveryMode::SMI && !pendingSmi) {
271            pendingUnmaskableInt = pendingSmi = true;
272            smiVector = vector;
273        } else if (deliveryMode == DeliveryMode::NMI && !pendingNmi) {
274            pendingUnmaskableInt = pendingNmi = true;
275            nmiVector = vector;
276        } else if (deliveryMode == DeliveryMode::ExtInt && !pendingExtInt) {
277            pendingExtInt = true;
278            extIntVector = vector;
279        } else if (deliveryMode == DeliveryMode::INIT && !pendingInit) {
280            pendingUnmaskableInt = pendingInit = true;
281            initVector = vector;
282        }
283    }
284}
285
286Tick
287X86ISA::Interrupts::recvMessage(PacketPtr pkt)
288{
289    uint8_t id = 0;
290    Addr offset = pkt->getAddr() - x86InterruptAddress(id, 0);
291    assert(pkt->cmd == MemCmd::MessageReq);
292    switch(offset)
293    {
294      case 0:
295        {
296            TriggerIntMessage message = pkt->get<TriggerIntMessage>();
297            uint8_t vector = message.vector;
298            DPRINTF(LocalApic,
299                    "Got Trigger Interrupt message with vector %#x.\n",
300                    vector);
301            // Make sure we're really supposed to get this.
302            assert((message.destMode == 0 && message.destination == id) ||
303                   (bits((int)message.destination, id)));
304
305            requestInterrupt(message.vector,
306                    message.deliveryMode, message.trigger);
307        }
308        break;
309      default:
310        panic("Local apic got unknown interrupt message at offset %#x.\n",
311                offset);
312        break;
313    }
314    delete pkt->req;
315    delete pkt;
316    return latency;
317}
318
319
320uint32_t
321X86ISA::Interrupts::readReg(ApicRegIndex reg)
322{
323    if (reg >= APIC_TRIGGER_MODE(0) &&
324            reg <= APIC_TRIGGER_MODE(15)) {
325        panic("Local APIC Trigger Mode registers are unimplemented.\n");
326    }
327    switch (reg) {
328      case APIC_ARBITRATION_PRIORITY:
329        panic("Local APIC Arbitration Priority register unimplemented.\n");
330        break;
331      case APIC_PROCESSOR_PRIORITY:
332        panic("Local APIC Processor Priority register unimplemented.\n");
333        break;
334      case APIC_ERROR_STATUS:
335        regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
336        break;
337      case APIC_INTERRUPT_COMMAND_LOW:
338        panic("Local APIC Interrupt Command low"
339                " register unimplemented.\n");
340        break;
341      case APIC_INTERRUPT_COMMAND_HIGH:
342        panic("Local APIC Interrupt Command high"
343                " register unimplemented.\n");
344        break;
345      case APIC_CURRENT_COUNT:
346        {
347            assert(clock);
348            uint32_t val = regs[reg] - curTick / clock;
349            val /= (16 * divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]));
350            return val;
351        }
352      default:
353        break;
354    }
355    return regs[reg];
356}
357
358void
359X86ISA::Interrupts::setReg(ApicRegIndex reg, uint32_t val)
360{
361    uint32_t newVal = val;
362    if (reg >= APIC_IN_SERVICE(0) &&
363            reg <= APIC_IN_SERVICE(15)) {
364        panic("Local APIC In-Service registers are unimplemented.\n");
365    }
366    if (reg >= APIC_TRIGGER_MODE(0) &&
367            reg <= APIC_TRIGGER_MODE(15)) {
368        panic("Local APIC Trigger Mode registers are unimplemented.\n");
369    }
370    if (reg >= APIC_INTERRUPT_REQUEST(0) &&
371            reg <= APIC_INTERRUPT_REQUEST(15)) {
372        panic("Local APIC Interrupt Request registers "
373                "are unimplemented.\n");
374    }
375    switch (reg) {
376      case APIC_ID:
377        newVal = val & 0xFF;
378        break;
379      case APIC_VERSION:
380        // The Local APIC Version register is read only.
381        return;
382      case APIC_TASK_PRIORITY:
383        newVal = val & 0xFF;
384        break;
385      case APIC_ARBITRATION_PRIORITY:
386        panic("Local APIC Arbitration Priority register unimplemented.\n");
387        break;
388      case APIC_PROCESSOR_PRIORITY:
389        panic("Local APIC Processor Priority register unimplemented.\n");
390        break;
391      case APIC_EOI:
392        // Remove the interrupt that just completed from the local apic state.
393        clearRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
394        updateISRV();
395        return;
396      case APIC_LOGICAL_DESTINATION:
397        newVal = val & 0xFF000000;
398        break;
399      case APIC_DESTINATION_FORMAT:
400        newVal = val | 0x0FFFFFFF;
401        break;
402      case APIC_SPURIOUS_INTERRUPT_VECTOR:
403        regs[APIC_INTERNAL_STATE] &= ~ULL(1 << 1);
404        regs[APIC_INTERNAL_STATE] |= val & (1 << 8);
405        if (val & (1 << 9))
406            warn("Focus processor checking not implemented.\n");
407        break;
408      case APIC_ERROR_STATUS:
409        {
410            if (regs[APIC_INTERNAL_STATE] & 0x1) {
411                regs[APIC_INTERNAL_STATE] &= ~ULL(0x1);
412                newVal = 0;
413            } else {
414                regs[APIC_INTERNAL_STATE] |= ULL(0x1);
415                return;
416            }
417
418        }
419        break;
420      case APIC_INTERRUPT_COMMAND_LOW:
421        panic("Local APIC Interrupt Command low"
422                " register unimplemented.\n");
423        break;
424      case APIC_INTERRUPT_COMMAND_HIGH:
425        panic("Local APIC Interrupt Command high"
426                " register unimplemented.\n");
427        break;
428      case APIC_LVT_TIMER:
429      case APIC_LVT_THERMAL_SENSOR:
430      case APIC_LVT_PERFORMANCE_MONITORING_COUNTERS:
431      case APIC_LVT_LINT0:
432      case APIC_LVT_LINT1:
433      case APIC_LVT_ERROR:
434        {
435            uint64_t readOnlyMask = (1 << 12) | (1 << 14);
436            newVal = (val & ~readOnlyMask) |
437                     (regs[reg] & readOnlyMask);
438        }
439        break;
440      case APIC_INITIAL_COUNT:
441        {
442            assert(clock);
443            newVal = bits(val, 31, 0);
444            uint32_t newCount = newVal *
445                (divideFromConf(regs[APIC_DIVIDE_CONFIGURATION]) * 16);
446            regs[APIC_CURRENT_COUNT] = newCount + curTick / clock;
447            // Find out how long a "tick" of the timer should take.
448            Tick timerTick = 16 * clock;
449            // Schedule on the edge of the next tick plus the new count.
450            Tick offset = curTick % timerTick;
451            if (offset) {
452                reschedule(apicTimerEvent,
453                        curTick + (newCount + 1) * timerTick - offset, true);
454            } else {
455                reschedule(apicTimerEvent,
456                        curTick + newCount * timerTick, true);
457            }
458        }
459        break;
460      case APIC_CURRENT_COUNT:
461        //Local APIC Current Count register is read only.
462        return;
463      case APIC_DIVIDE_CONFIGURATION:
464        newVal = val & 0xB;
465        break;
466      default:
467        break;
468    }
469    regs[reg] = newVal;
470    return;
471}
472
473bool
474X86ISA::Interrupts::check_interrupts(ThreadContext * tc) const
475{
476    RFLAGS rflags = tc->readMiscRegNoEffect(MISCREG_RFLAGS);
477    if (pendingUnmaskableInt) {
478        DPRINTF(LocalApic, "Reported pending unmaskable interrupt.\n");
479        return true;
480    }
481    if (rflags.intf) {
482        if (pendingExtInt) {
483            DPRINTF(LocalApic, "Reported pending external interrupt.\n");
484            return true;
485        }
486        if (IRRV > ISRV && bits(IRRV, 7, 4) >
487               bits(regs[APIC_TASK_PRIORITY], 7, 4)) {
488            DPRINTF(LocalApic, "Reported pending regular interrupt.\n");
489            return true;
490        }
491    }
492    return false;
493}
494
495Fault
496X86ISA::Interrupts::getInterrupt(ThreadContext * tc)
497{
498    assert(check_interrupts(tc));
499    // These are all probably fairly uncommon, so we'll make them easier to
500    // check for.
501    if (pendingUnmaskableInt) {
502        if (pendingSmi) {
503            DPRINTF(LocalApic, "Generated SMI fault object.\n");
504            return new SystemManagementInterrupt();
505        } else if (pendingNmi) {
506            DPRINTF(LocalApic, "Generated NMI fault object.\n");
507            return new NonMaskableInterrupt(nmiVector);
508        } else if (pendingInit) {
509            DPRINTF(LocalApic, "Generated INIT fault object.\n");
510            return new InitInterrupt(initVector);
511        } else {
512            panic("pendingUnmaskableInt set, but no unmaskable "
513                    "ints were pending.\n");
514            return NoFault;
515        }
516    } else if (pendingExtInt) {
517        DPRINTF(LocalApic, "Generated external interrupt fault object.\n");
518        return new ExternalInterrupt(extIntVector);
519    } else {
520        DPRINTF(LocalApic, "Generated regular interrupt fault object.\n");
521        // The only thing left are fixed and lowest priority interrupts.
522        return new ExternalInterrupt(IRRV);
523    }
524}
525
526void
527X86ISA::Interrupts::updateIntrInfo(ThreadContext * tc)
528{
529    assert(check_interrupts(tc));
530    if (pendingUnmaskableInt) {
531        if (pendingSmi) {
532            DPRINTF(LocalApic, "SMI sent to core.\n");
533            pendingSmi = false;
534        } else if (pendingNmi) {
535            DPRINTF(LocalApic, "NMI sent to core.\n");
536            pendingNmi = false;
537        } else if (pendingInit) {
538            DPRINTF(LocalApic, "Init sent to core.\n");
539            pendingInit = false;
540        }
541        if (!(pendingSmi || pendingNmi || pendingInit))
542            pendingUnmaskableInt = false;
543    } else if (pendingExtInt) {
544        pendingExtInt = false;
545    } else {
546        DPRINTF(LocalApic, "Interrupt %d sent to core.\n", IRRV);
547        // Mark the interrupt as "in service".
548        ISRV = IRRV;
549        setRegArrayBit(APIC_IN_SERVICE_BASE, ISRV);
550        // Clear it out of the IRR.
551        clearRegArrayBit(APIC_INTERRUPT_REQUEST_BASE, IRRV);
552        updateIRRV();
553    }
554}
555
556X86ISA::Interrupts *
557X86LocalApicParams::create()
558{
559    return new X86ISA::Interrupts(this);
560}
561