process.cc revision 4434:2ea7b6e0b78f
1/*
2 * Copyright (c) 2003-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Authors: Gabe Black
29 *          Ali Saidi
30 */
31
32#include "arch/sparc/asi.hh"
33#include "arch/sparc/handlers.hh"
34#include "arch/sparc/isa_traits.hh"
35#include "arch/sparc/process.hh"
36#include "arch/sparc/types.hh"
37#include "base/loader/object_file.hh"
38#include "base/loader/elf_object.hh"
39#include "base/misc.hh"
40#include "cpu/thread_context.hh"
41#include "mem/page_table.hh"
42#include "sim/process_impl.hh"
43#include "mem/translating_port.hh"
44#include "sim/system.hh"
45
46using namespace std;
47using namespace SparcISA;
48
49
50SparcLiveProcess::SparcLiveProcess(const std::string &nm, ObjectFile *objFile,
51        System *_system, int stdin_fd, int stdout_fd, int stderr_fd,
52        std::vector<std::string> &argv, std::vector<std::string> &envp,
53        const std::string &cwd,
54        uint64_t _uid, uint64_t _euid, uint64_t _gid, uint64_t _egid,
55        uint64_t _pid, uint64_t _ppid)
56    : LiveProcess(nm, objFile, _system, stdin_fd, stdout_fd, stderr_fd,
57        argv, envp, cwd, _uid, _euid, _gid, _egid, _pid, _ppid)
58{
59
60    // XXX all the below need to be updated for SPARC - Ali
61    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
62    brk_point = roundUp(brk_point, VMPageSize);
63
64    // Set pointer for next thread stack.  Reserve 8M for main stack.
65    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
66
67    //Initialize these to 0s
68    fillStart = 0;
69    spillStart = 0;
70}
71
72void SparcLiveProcess::handleTrap(int trapNum, ThreadContext *tc)
73{
74    switch(trapNum)
75    {
76      case 0x03: //Flush window trap
77        warn("Ignoring request to flush register windows.\n");
78        break;
79      default:
80        panic("Unimplemented trap to operating system: trap number %#x.\n", trapNum);
81    }
82}
83
84void
85Sparc32LiveProcess::startup()
86{
87    argsInit(32 / 8, VMPageSize);
88
89    //From the SPARC ABI
90
91    //The process runs in user mode
92    threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x02);
93
94    //Setup default FP state
95    threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0);
96
97    threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0);
98    //
99    /*
100     * Register window management registers
101     */
102
103    //No windows contain info from other programs
104    //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
105    threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0);
106    //There are no windows to pop
107    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
108    threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0);
109    //All windows are available to save into
110    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
111    threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2);
112    //All windows are "clean"
113    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
114    threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows);
115    //Start with register window 0
116    threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0);
117    //Always use spill and fill traps 0
118    //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0);
119    threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0);
120    //Set the trap level to 0
121    threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0);
122    //Set the ASI register to something fixed
123    threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY);
124}
125
126void
127Sparc64LiveProcess::startup()
128{
129    argsInit(sizeof(IntReg), VMPageSize);
130
131    //From the SPARC ABI
132
133    //The process runs in user mode
134    threadContexts[0]->setMiscReg(MISCREG_PSTATE, 0x02);
135
136    //Setup default FP state
137    threadContexts[0]->setMiscRegNoEffect(MISCREG_FSR, 0);
138
139    threadContexts[0]->setMiscRegNoEffect(MISCREG_TICK, 0);
140    //
141    /*
142     * Register window management registers
143     */
144
145    //No windows contain info from other programs
146    //threadContexts[0]->setMiscRegNoEffect(MISCREG_OTHERWIN, 0);
147    threadContexts[0]->setIntReg(NumIntArchRegs + 6, 0);
148    //There are no windows to pop
149    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANRESTORE, 0);
150    threadContexts[0]->setIntReg(NumIntArchRegs + 4, 0);
151    //All windows are available to save into
152    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CANSAVE, NWindows - 2);
153    threadContexts[0]->setIntReg(NumIntArchRegs + 3, NWindows - 2);
154    //All windows are "clean"
155    //threadContexts[0]->setMiscRegNoEffect(MISCREG_CLEANWIN, NWindows);
156    threadContexts[0]->setIntReg(NumIntArchRegs + 5, NWindows);
157    //Start with register window 0
158    threadContexts[0]->setMiscRegNoEffect(MISCREG_CWP, 0);
159    //Always use spill and fill traps 0
160    //threadContexts[0]->setMiscRegNoEffect(MISCREG_WSTATE, 0);
161    threadContexts[0]->setIntReg(NumIntArchRegs + 7, 0);
162    //Set the trap level to 0
163    threadContexts[0]->setMiscRegNoEffect(MISCREG_TL, 0);
164    //Set the ASI register to something fixed
165    threadContexts[0]->setMiscRegNoEffect(MISCREG_ASI, ASI_PRIMARY);
166}
167
168M5_32_auxv_t::M5_32_auxv_t(int32_t type, int32_t val)
169{
170    a_type = TheISA::htog(type);
171    a_val = TheISA::htog(val);
172}
173
174M5_64_auxv_t::M5_64_auxv_t(int64_t type, int64_t val)
175{
176    a_type = TheISA::htog(type);
177    a_val = TheISA::htog(val);
178}
179
180void
181Sparc64LiveProcess::argsInit(int intSize, int pageSize)
182{
183    typedef M5_64_auxv_t auxv_t;
184    Process::startup();
185
186    string filename;
187    if(argv.size() < 1)
188        filename = "";
189    else
190        filename = argv[0];
191
192    Addr alignmentMask = ~(intSize - 1);
193
194    // load object file into target memory
195    objFile->loadSections(initVirtMem);
196
197    //These are the auxilliary vector types
198    enum auxTypes
199    {
200        SPARC_AT_HWCAP = 16,
201        SPARC_AT_PAGESZ = 6,
202        SPARC_AT_CLKTCK = 17,
203        SPARC_AT_PHDR = 3,
204        SPARC_AT_PHENT = 4,
205        SPARC_AT_PHNUM = 5,
206        SPARC_AT_BASE = 7,
207        SPARC_AT_FLAGS = 8,
208        SPARC_AT_ENTRY = 9,
209        SPARC_AT_UID = 11,
210        SPARC_AT_EUID = 12,
211        SPARC_AT_GID = 13,
212        SPARC_AT_EGID = 14,
213        SPARC_AT_SECURE = 23
214    };
215
216    enum hardwareCaps
217    {
218        M5_HWCAP_SPARC_FLUSH = 1,
219        M5_HWCAP_SPARC_STBAR = 2,
220        M5_HWCAP_SPARC_SWAP = 4,
221        M5_HWCAP_SPARC_MULDIV = 8,
222        M5_HWCAP_SPARC_V9 = 16,
223        //This one should technically only be set
224        //if there is a cheetah or cheetah_plus tlb,
225        //but we'll use it all the time
226        M5_HWCAP_SPARC_ULTRA3 = 32
227    };
228
229    const int64_t hwcap =
230        M5_HWCAP_SPARC_FLUSH |
231        M5_HWCAP_SPARC_STBAR |
232        M5_HWCAP_SPARC_SWAP |
233        M5_HWCAP_SPARC_MULDIV |
234        M5_HWCAP_SPARC_V9 |
235        M5_HWCAP_SPARC_ULTRA3;
236
237
238    //Setup the auxilliary vectors. These will already have endian conversion.
239    //Auxilliary vectors are loaded only for elf formatted executables.
240    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
241    if(elfObject)
242    {
243        //Bits which describe the system hardware capabilities
244        auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap));
245        //The system page size
246        auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
247        //Defined to be 100 in the kernel source.
248        //Frequency at which times() increments
249        auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100));
250        // For statically linked executables, this is the virtual address of the
251        // program header tables if they appear in the executable image
252        auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable()));
253        // This is the size of a program header entry from the elf file.
254        auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize()));
255        // This is the number of program headers from the original elf file.
256        auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
257        //This is the address of the elf "interpreter", It should be set
258        //to 0 for regular executables. It should be something else
259        //(not sure what) for dynamic libraries.
260        auxv.push_back(auxv_t(SPARC_AT_BASE, 0));
261        //This is hardwired to 0 in the elf loading code in the kernel
262        auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0));
263        //The entry point to the program
264        auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint()));
265        //Different user and group IDs
266        auxv.push_back(auxv_t(SPARC_AT_UID, uid()));
267        auxv.push_back(auxv_t(SPARC_AT_EUID, euid()));
268        auxv.push_back(auxv_t(SPARC_AT_GID, gid()));
269        auxv.push_back(auxv_t(SPARC_AT_EGID, egid()));
270        //Whether to enable "secure mode" in the executable
271        auxv.push_back(auxv_t(SPARC_AT_SECURE, 0));
272    }
273
274    //Figure out how big the initial stack needs to be
275
276    // The unaccounted for 0 at the top of the stack
277    int mysterious_size = intSize;
278
279    //This is the name of the file which is present on the initial stack
280    //It's purpose is to let the user space linker examine the original file.
281    int file_name_size = filename.size() + 1;
282
283    int env_data_size = 0;
284    for (int i = 0; i < envp.size(); ++i) {
285        env_data_size += envp[i].size() + 1;
286    }
287    int arg_data_size = 0;
288    for (int i = 0; i < argv.size(); ++i) {
289        arg_data_size += argv[i].size() + 1;
290    }
291
292    //The info_block needs to be padded so it's size is a multiple of the
293    //alignment mask. Also, it appears that there needs to be at least some
294    //padding, so if the size is already a multiple, we need to increase it
295    //anyway.
296    int info_block_size =
297        (file_name_size +
298        env_data_size +
299        arg_data_size +
300        intSize) & alignmentMask;
301
302    int info_block_padding =
303        info_block_size -
304        file_name_size -
305        env_data_size -
306        arg_data_size;
307
308    //Each auxilliary vector is two 8 byte words
309    int aux_array_size = intSize * 2 * (auxv.size() + 1);
310
311    int envp_array_size = intSize * (envp.size() + 1);
312    int argv_array_size = intSize * (argv.size() + 1);
313
314    int argc_size = intSize;
315    int window_save_size = intSize * 16;
316
317    int space_needed =
318        mysterious_size +
319        info_block_size +
320        aux_array_size +
321        envp_array_size +
322        argv_array_size +
323        argc_size +
324        window_save_size;
325
326    stack_min = stack_base - space_needed;
327    stack_min &= alignmentMask;
328    stack_size = stack_base - stack_min;
329
330    // map memory
331    pTable->allocate(roundDown(stack_min, pageSize),
332                     roundUp(stack_size, pageSize));
333
334    // map out initial stack contents
335    Addr mysterious_base = stack_base - mysterious_size;
336    Addr file_name_base = mysterious_base - file_name_size;
337    Addr env_data_base = file_name_base - env_data_size;
338    Addr arg_data_base = env_data_base - arg_data_size;
339    Addr auxv_array_base = arg_data_base - aux_array_size - info_block_padding;
340    Addr envp_array_base = auxv_array_base - envp_array_size;
341    Addr argv_array_base = envp_array_base - argv_array_size;
342    Addr argc_base = argv_array_base - argc_size;
343#ifndef NDEBUG
344    // only used in DPRINTF
345    Addr window_save_base = argc_base - window_save_size;
346#endif
347
348    DPRINTF(Sparc, "The addresses of items on the initial stack:\n");
349    DPRINTF(Sparc, "0x%x - file name\n", file_name_base);
350    DPRINTF(Sparc, "0x%x - env data\n", env_data_base);
351    DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base);
352    DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base);
353    DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base);
354    DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base);
355    DPRINTF(Sparc, "0x%x - argc \n", argc_base);
356    DPRINTF(Sparc, "0x%x - window save\n", window_save_base);
357    DPRINTF(Sparc, "0x%x - stack min\n", stack_min);
358
359    // write contents to stack
360
361    // figure out argc
362    uint64_t argc = argv.size();
363    uint64_t guestArgc = TheISA::htog(argc);
364
365    //Write out the mysterious 0
366    uint64_t mysterious_zero = 0;
367    initVirtMem->writeBlob(mysterious_base,
368            (uint8_t*)&mysterious_zero, mysterious_size);
369
370    //Write the file name
371    initVirtMem->writeString(file_name_base, filename.c_str());
372
373    //Copy the aux stuff
374    for(int x = 0; x < auxv.size(); x++)
375    {
376        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
377                (uint8_t*)&(auxv[x].a_type), intSize);
378        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
379                (uint8_t*)&(auxv[x].a_val), intSize);
380    }
381    //Write out the terminating zeroed auxilliary vector
382    const uint64_t zero = 0;
383    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
384            (uint8_t*)&zero, 2 * intSize);
385
386    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
387    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
388
389    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
390
391    //Stuff the trap handlers into the processes address space.
392    //Since the stack grows down and is the highest area in the processes
393    //address space, we can put stuff above it and stay out of the way.
394    int fillSize = sizeof(MachInst) * numFillInsts;
395    int spillSize = sizeof(MachInst) * numSpillInsts;
396    fillStart = stack_base;
397    spillStart = fillStart + fillSize;
398    initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler64, fillSize);
399    initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler64, spillSize);
400
401    //Set up the thread context to start running the process
402    threadContexts[0]->setIntReg(ArgumentReg0, argc);
403    threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base);
404    threadContexts[0]->setIntReg(StackPointerReg, stack_min - StackBias);
405
406    Addr prog_entry = objFile->entryPoint();
407    threadContexts[0]->setPC(prog_entry);
408    threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
409    threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
410
411    //Align the "stack_min" to a page boundary.
412    stack_min = roundDown(stack_min, pageSize);
413
414//    num_processes++;
415}
416
417void
418Sparc32LiveProcess::argsInit(int intSize, int pageSize)
419{
420    typedef M5_32_auxv_t auxv_t;
421    Process::startup();
422
423    string filename;
424    if(argv.size() < 1)
425        filename = "";
426    else
427        filename = argv[0];
428
429    //Even though this is a 32 bit process, the ABI says we still need to
430    //maintain double word alignment of the stack pointer.
431    Addr alignmentMask = ~(8 - 1);
432
433    // load object file into target memory
434    objFile->loadSections(initVirtMem);
435
436    //These are the auxilliary vector types
437    enum auxTypes
438    {
439        SPARC_AT_HWCAP = 16,
440        SPARC_AT_PAGESZ = 6,
441        SPARC_AT_CLKTCK = 17,
442        SPARC_AT_PHDR = 3,
443        SPARC_AT_PHENT = 4,
444        SPARC_AT_PHNUM = 5,
445        SPARC_AT_BASE = 7,
446        SPARC_AT_FLAGS = 8,
447        SPARC_AT_ENTRY = 9,
448        SPARC_AT_UID = 11,
449        SPARC_AT_EUID = 12,
450        SPARC_AT_GID = 13,
451        SPARC_AT_EGID = 14,
452        SPARC_AT_SECURE = 23
453    };
454
455    enum hardwareCaps
456    {
457        M5_HWCAP_SPARC_FLUSH = 1,
458        M5_HWCAP_SPARC_STBAR = 2,
459        M5_HWCAP_SPARC_SWAP = 4,
460        M5_HWCAP_SPARC_MULDIV = 8,
461        M5_HWCAP_SPARC_V9 = 16,
462        //This one should technically only be set
463        //if there is a cheetah or cheetah_plus tlb,
464        //but we'll use it all the time
465        M5_HWCAP_SPARC_ULTRA3 = 32
466    };
467
468    const int64_t hwcap =
469        M5_HWCAP_SPARC_FLUSH |
470        M5_HWCAP_SPARC_STBAR |
471        M5_HWCAP_SPARC_SWAP |
472        M5_HWCAP_SPARC_MULDIV |
473        M5_HWCAP_SPARC_V9 |
474        M5_HWCAP_SPARC_ULTRA3;
475
476
477    //Setup the auxilliary vectors. These will already have endian conversion.
478    //Auxilliary vectors are loaded only for elf formatted executables.
479    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
480    if(elfObject)
481    {
482        //Bits which describe the system hardware capabilities
483        auxv.push_back(auxv_t(SPARC_AT_HWCAP, hwcap));
484        //The system page size
485        auxv.push_back(auxv_t(SPARC_AT_PAGESZ, SparcISA::VMPageSize));
486        //Defined to be 100 in the kernel source.
487        //Frequency at which times() increments
488        auxv.push_back(auxv_t(SPARC_AT_CLKTCK, 100));
489        // For statically linked executables, this is the virtual address of the
490        // program header tables if they appear in the executable image
491        auxv.push_back(auxv_t(SPARC_AT_PHDR, elfObject->programHeaderTable()));
492        // This is the size of a program header entry from the elf file.
493        auxv.push_back(auxv_t(SPARC_AT_PHENT, elfObject->programHeaderSize()));
494        // This is the number of program headers from the original elf file.
495        auxv.push_back(auxv_t(SPARC_AT_PHNUM, elfObject->programHeaderCount()));
496        //This is the address of the elf "interpreter", It should be set
497        //to 0 for regular executables. It should be something else
498        //(not sure what) for dynamic libraries.
499        auxv.push_back(auxv_t(SPARC_AT_BASE, 0));
500        //This is hardwired to 0 in the elf loading code in the kernel
501        auxv.push_back(auxv_t(SPARC_AT_FLAGS, 0));
502        //The entry point to the program
503        auxv.push_back(auxv_t(SPARC_AT_ENTRY, objFile->entryPoint()));
504        //Different user and group IDs
505        auxv.push_back(auxv_t(SPARC_AT_UID, uid()));
506        auxv.push_back(auxv_t(SPARC_AT_EUID, euid()));
507        auxv.push_back(auxv_t(SPARC_AT_GID, gid()));
508        auxv.push_back(auxv_t(SPARC_AT_EGID, egid()));
509        //Whether to enable "secure mode" in the executable
510        auxv.push_back(auxv_t(SPARC_AT_SECURE, 0));
511    }
512
513    //Figure out how big the initial stack needs to be
514
515    // The unaccounted for 8 byte 0 at the top of the stack
516    int mysterious_size = 8;
517
518    //This is the name of the file which is present on the initial stack
519    //It's purpose is to let the user space linker examine the original file.
520    int file_name_size = filename.size() + 1;
521
522    int env_data_size = 0;
523    for (int i = 0; i < envp.size(); ++i) {
524        env_data_size += envp[i].size() + 1;
525    }
526    int arg_data_size = 0;
527    for (int i = 0; i < argv.size(); ++i) {
528        arg_data_size += argv[i].size() + 1;
529    }
530
531    //The info_block - This seems to need an pad for some reason.
532    int info_block_size =
533        (mysterious_size +
534        file_name_size +
535        env_data_size +
536        arg_data_size + intSize);
537
538    //Each auxilliary vector is two 4 byte words
539    int aux_array_size = intSize * 2 * (auxv.size() + 1);
540
541    int envp_array_size = intSize * (envp.size() + 1);
542    int argv_array_size = intSize * (argv.size() + 1);
543
544    int argc_size = intSize;
545    int window_save_size = intSize * 16;
546
547    int space_needed =
548        info_block_size +
549        aux_array_size +
550        envp_array_size +
551        argv_array_size +
552        argc_size +
553        window_save_size;
554
555    stack_min = stack_base - space_needed;
556    stack_min &= alignmentMask;
557    stack_size = stack_base - stack_min;
558
559    // map memory
560    pTable->allocate(roundDown(stack_min, pageSize),
561                     roundUp(stack_size, pageSize));
562
563    // map out initial stack contents
564    uint32_t window_save_base = stack_min;
565    uint32_t argc_base = window_save_base + window_save_size;
566    uint32_t argv_array_base = argc_base + argc_size;
567    uint32_t envp_array_base = argv_array_base + argv_array_size;
568    uint32_t auxv_array_base = envp_array_base + envp_array_size;
569    //The info block is pushed up against the top of the stack, while
570    //the rest of the initial stack frame is aligned to an 8 byte boudary.
571    uint32_t arg_data_base = stack_base - info_block_size + intSize;
572    uint32_t env_data_base = arg_data_base + arg_data_size;
573    uint32_t file_name_base = env_data_base + env_data_size;
574    uint32_t mysterious_base = file_name_base + file_name_size;
575
576    DPRINTF(Sparc, "The addresses of items on the initial stack:\n");
577    DPRINTF(Sparc, "0x%x - file name\n", file_name_base);
578    DPRINTF(Sparc, "0x%x - env data\n", env_data_base);
579    DPRINTF(Sparc, "0x%x - arg data\n", arg_data_base);
580    DPRINTF(Sparc, "0x%x - auxv array\n", auxv_array_base);
581    DPRINTF(Sparc, "0x%x - envp array\n", envp_array_base);
582    DPRINTF(Sparc, "0x%x - argv array\n", argv_array_base);
583    DPRINTF(Sparc, "0x%x - argc \n", argc_base);
584    DPRINTF(Sparc, "0x%x - window save\n", window_save_base);
585    DPRINTF(Sparc, "0x%x - stack min\n", stack_min);
586
587    // write contents to stack
588
589    // figure out argc
590    uint32_t argc = argv.size();
591    uint32_t guestArgc = TheISA::htog(argc);
592
593    //Write out the mysterious 0
594    uint64_t mysterious_zero = 0;
595    initVirtMem->writeBlob(mysterious_base,
596            (uint8_t*)&mysterious_zero, mysterious_size);
597
598    //Write the file name
599    initVirtMem->writeString(file_name_base, filename.c_str());
600
601    //Copy the aux stuff
602    for(int x = 0; x < auxv.size(); x++)
603    {
604        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
605                (uint8_t*)&(auxv[x].a_type), intSize);
606        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
607                (uint8_t*)&(auxv[x].a_val), intSize);
608    }
609    //Write out the terminating zeroed auxilliary vector
610    const uint64_t zero = 0;
611    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
612            (uint8_t*)&zero, 2 * intSize);
613
614    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
615    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
616
617    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
618
619    //Stuff the trap handlers into the processes address space.
620    //Since the stack grows down and is the highest area in the processes
621    //address space, we can put stuff above it and stay out of the way.
622    int fillSize = sizeof(MachInst) * numFillInsts;
623    int spillSize = sizeof(MachInst) * numSpillInsts;
624    fillStart = stack_base;
625    spillStart = fillStart + fillSize;
626    initVirtMem->writeBlob(fillStart, (uint8_t*)fillHandler32, fillSize);
627    initVirtMem->writeBlob(spillStart, (uint8_t*)spillHandler32, spillSize);
628
629    //Set up the thread context to start running the process
630    //threadContexts[0]->setIntReg(ArgumentReg0, argc);
631    //threadContexts[0]->setIntReg(ArgumentReg1, argv_array_base);
632    threadContexts[0]->setIntReg(StackPointerReg, stack_min);
633
634    uint32_t prog_entry = objFile->entryPoint();
635    threadContexts[0]->setPC(prog_entry);
636    threadContexts[0]->setNextPC(prog_entry + sizeof(MachInst));
637    threadContexts[0]->setNextNPC(prog_entry + (2 * sizeof(MachInst)));
638
639    //Align the "stack_min" to a page boundary.
640    stack_min = roundDown(stack_min, pageSize);
641
642//    num_processes++;
643}
644