process.cc revision 7720:65d338a8dba4
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 *          Timothy M. Jones
31 */
32
33#include "arch/power/isa_traits.hh"
34#include "arch/power/process.hh"
35#include "arch/power/types.hh"
36#include "base/loader/elf_object.hh"
37#include "base/loader/object_file.hh"
38#include "base/misc.hh"
39#include "cpu/thread_context.hh"
40#include "mem/page_table.hh"
41#include "mem/translating_port.hh"
42#include "sim/process_impl.hh"
43#include "sim/system.hh"
44
45using namespace std;
46using namespace PowerISA;
47
48PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
49        ObjectFile *objFile)
50    : LiveProcess(params, objFile)
51{
52    stack_base = 0xbf000000L;
53
54    // Set pointer for next thread stack.  Reserve 8M for main stack.
55    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
56
57    // Set up break point (Top of Heap)
58    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
59    brk_point = roundUp(brk_point, VMPageSize);
60
61    // Set up region for mmaps. For now, start at bottom of kuseg space.
62    mmap_start = mmap_end = 0x70000000L;
63}
64
65void
66PowerLiveProcess::initState()
67{
68    Process::initState();
69
70    argsInit(MachineBytes, VMPageSize);
71}
72
73void
74PowerLiveProcess::argsInit(int intSize, int pageSize)
75{
76    typedef AuxVector<uint32_t> auxv_t;
77    std::vector<auxv_t> auxv;
78
79    string filename;
80    if (argv.size() < 1)
81        filename = "";
82    else
83        filename = argv[0];
84
85    //We want 16 byte alignment
86    uint64_t align = 16;
87
88    // load object file into target memory
89    objFile->loadSections(initVirtMem);
90
91    //Setup the auxilliary vectors. These will already have endian conversion.
92    //Auxilliary vectors are loaded only for elf formatted executables.
93    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
94    if (elfObject) {
95        uint32_t features = 0;
96
97        //Bits which describe the system hardware capabilities
98        //XXX Figure out what these should be
99        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
100        //The system page size
101        auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::VMPageSize));
102        //Frequency at which times() increments
103        auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
104        // For statically linked executables, this is the virtual address of the
105        // program header tables if they appear in the executable image
106        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
107        // This is the size of a program header entry from the elf file.
108        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
109        // This is the number of program headers from the original elf file.
110        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
111        //This is the address of the elf "interpreter", It should be set
112        //to 0 for regular executables. It should be something else
113        //(not sure what) for dynamic libraries.
114        auxv.push_back(auxv_t(M5_AT_BASE, 0));
115
116        //XXX Figure out what this should be.
117        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
118        //The entry point to the program
119        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
120        //Different user and group IDs
121        auxv.push_back(auxv_t(M5_AT_UID, uid()));
122        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
123        auxv.push_back(auxv_t(M5_AT_GID, gid()));
124        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
125        //Whether to enable "secure mode" in the executable
126        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
127        //The filename of the program
128        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
129        //The string "v51" with unknown meaning
130        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
131    }
132
133    //Figure out how big the initial stack nedes to be
134
135    // A sentry NULL void pointer at the top of the stack.
136    int sentry_size = intSize;
137
138    string platform = "v51";
139    int platform_size = platform.size() + 1;
140
141    // The aux vectors are put on the stack in two groups. The first group are
142    // the vectors that are generated as the elf is loaded. The second group
143    // are the ones that were computed ahead of time and include the platform
144    // string.
145    int aux_data_size = filename.size() + 1;
146
147    int env_data_size = 0;
148    for (int i = 0; i < envp.size(); ++i) {
149        env_data_size += envp[i].size() + 1;
150    }
151    int arg_data_size = 0;
152    for (int i = 0; i < argv.size(); ++i) {
153        arg_data_size += argv[i].size() + 1;
154    }
155
156    int info_block_size =
157        sentry_size + env_data_size + arg_data_size +
158        aux_data_size + platform_size;
159
160    //Each auxilliary vector is two 4 byte words
161    int aux_array_size = intSize * 2 * (auxv.size() + 1);
162
163    int envp_array_size = intSize * (envp.size() + 1);
164    int argv_array_size = intSize * (argv.size() + 1);
165
166    int argc_size = intSize;
167
168    //Figure out the size of the contents of the actual initial frame
169    int frame_size =
170        info_block_size +
171        aux_array_size +
172        envp_array_size +
173        argv_array_size +
174        argc_size;
175
176    //There needs to be padding after the auxiliary vector data so that the
177    //very bottom of the stack is aligned properly.
178    int partial_size = frame_size;
179    int aligned_partial_size = roundUp(partial_size, align);
180    int aux_padding = aligned_partial_size - partial_size;
181
182    int space_needed = frame_size + aux_padding;
183
184    stack_min = stack_base - space_needed;
185    stack_min = roundDown(stack_min, align);
186    stack_size = stack_base - stack_min;
187
188    // map memory
189    pTable->allocate(roundDown(stack_min, pageSize),
190                     roundUp(stack_size, pageSize));
191
192    // map out initial stack contents
193    uint32_t sentry_base = stack_base - sentry_size;
194    uint32_t aux_data_base = sentry_base - aux_data_size;
195    uint32_t env_data_base = aux_data_base - env_data_size;
196    uint32_t arg_data_base = env_data_base - arg_data_size;
197    uint32_t platform_base = arg_data_base - platform_size;
198    uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
199    uint32_t envp_array_base = auxv_array_base - envp_array_size;
200    uint32_t argv_array_base = envp_array_base - argv_array_size;
201    uint32_t argc_base = argv_array_base - argc_size;
202
203    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
204    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
205    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
206    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
207    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
208    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
209    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
210    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
211    DPRINTF(Stack, "0x%x - argc \n", argc_base);
212    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
213
214    // write contents to stack
215
216    // figure out argc
217    uint32_t argc = argv.size();
218    uint32_t guestArgc = PowerISA::htog(argc);
219
220    //Write out the sentry void *
221    uint32_t sentry_NULL = 0;
222    initVirtMem->writeBlob(sentry_base,
223            (uint8_t*)&sentry_NULL, sentry_size);
224
225    //Fix up the aux vectors which point to other data
226    for (int i = auxv.size() - 1; i >= 0; i--) {
227        if (auxv[i].a_type == M5_AT_PLATFORM) {
228            auxv[i].a_val = platform_base;
229            initVirtMem->writeString(platform_base, platform.c_str());
230        } else if (auxv[i].a_type == M5_AT_EXECFN) {
231            auxv[i].a_val = aux_data_base;
232            initVirtMem->writeString(aux_data_base, filename.c_str());
233        }
234    }
235
236    //Copy the aux stuff
237    for (int x = 0; x < auxv.size(); x++)
238    {
239        initVirtMem->writeBlob(auxv_array_base + x * 2 * intSize,
240                (uint8_t*)&(auxv[x].a_type), intSize);
241        initVirtMem->writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
242                (uint8_t*)&(auxv[x].a_val), intSize);
243    }
244    //Write out the terminating zeroed auxilliary vector
245    const uint64_t zero = 0;
246    initVirtMem->writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
247            (uint8_t*)&zero, 2 * intSize);
248
249    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
250    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
251
252    initVirtMem->writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
253
254    ThreadContext *tc = system->getThreadContext(contextIds[0]);
255
256    //Set the stack pointer register
257    tc->setIntReg(StackPointerReg, stack_min);
258
259    tc->pcState(objFile->entryPoint());
260
261    //Align the "stack_min" to a page boundary.
262    stack_min = roundDown(stack_min, pageSize);
263}
264
265PowerISA::IntReg
266PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
267{
268    assert(i < 5);
269    return tc->readIntReg(ArgumentReg0 + i++);
270}
271
272void
273PowerLiveProcess::setSyscallArg(ThreadContext *tc,
274        int i, PowerISA::IntReg val)
275{
276    assert(i < 5);
277    tc->setIntReg(ArgumentReg0 + i, val);
278}
279
280void
281PowerLiveProcess::setSyscallReturn(ThreadContext *tc,
282        SyscallReturn return_value)
283{
284    Cr cr = tc->readIntReg(INTREG_CR);
285    if (return_value.successful()) {
286        cr.cr0.so = 0;
287    } else {
288        cr.cr0.so = 1;
289    }
290    tc->setIntReg(INTREG_CR, cr);
291    tc->setIntReg(ReturnValueReg, return_value.value());
292}
293