1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 *          Timothy M. Jones
31 */
32
33#include "arch/power/process.hh"
34
35#include "arch/power/isa_traits.hh"
36#include "arch/power/types.hh"
37#include "base/loader/elf_object.hh"
38#include "base/loader/object_file.hh"
39#include "base/logging.hh"
40#include "cpu/thread_context.hh"
41#include "debug/Stack.hh"
42#include "mem/page_table.hh"
43#include "params/Process.hh"
44#include "sim/aux_vector.hh"
45#include "sim/process_impl.hh"
46#include "sim/syscall_return.hh"
47#include "sim/system.hh"
48
49using namespace std;
50using namespace PowerISA;
51
52PowerProcess::PowerProcess(ProcessParams *params, ObjectFile *objFile)
53    : Process(params,
54              new EmulationPageTable(params->name, params->pid, PageBytes),
55              objFile)
56{
57    fatal_if(params->useArchPT, "Arch page tables not implemented.");
58    // Set up break point (Top of Heap)
59    Addr brk_point = objFile->dataBase() + objFile->dataSize() +
60                     objFile->bssSize();
61    brk_point = roundUp(brk_point, PageBytes);
62
63    Addr stack_base = 0xbf000000L;
64
65    Addr max_stack_size = 8 * 1024 * 1024;
66
67    // Set pointer for next thread stack.  Reserve 8M for main stack.
68    Addr next_thread_stack_base = stack_base - max_stack_size;
69
70    // Set up region for mmaps. For now, start at bottom of kuseg space.
71    Addr mmap_end = 0x70000000L;
72
73    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
74                                     next_thread_stack_base, mmap_end);
75}
76
77void
78PowerProcess::initState()
79{
80    Process::initState();
81
82    argsInit(MachineBytes, PageBytes);
83}
84
85void
86PowerProcess::argsInit(int intSize, int pageSize)
87{
88    std::vector<AuxVector<uint32_t>> auxv;
89
90    string filename;
91    if (argv.size() < 1)
92        filename = "";
93    else
94        filename = argv[0];
95
96    //We want 16 byte alignment
97    uint64_t align = 16;
98
99    // Patch the ld_bias for dynamic executables.
100    updateBias();
101
102    // load object file into target memory
103    objFile->loadSections(initVirtMem);
104
105    //Setup the auxilliary vectors. These will already have endian conversion.
106    //Auxilliary vectors are loaded only for elf formatted executables.
107    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
108    if (elfObject) {
109        uint32_t features = 0;
110
111        //Bits which describe the system hardware capabilities
112        //XXX Figure out what these should be
113        auxv.emplace_back(M5_AT_HWCAP, features);
114        //The system page size
115        auxv.emplace_back(M5_AT_PAGESZ, PowerISA::PageBytes);
116        //Frequency at which times() increments
117        auxv.emplace_back(M5_AT_CLKTCK, 0x64);
118        // For statically linked executables, this is the virtual address of
119        // the program header tables if they appear in the executable image
120        auxv.emplace_back(M5_AT_PHDR, elfObject->programHeaderTable());
121        // This is the size of a program header entry from the elf file.
122        auxv.emplace_back(M5_AT_PHENT, elfObject->programHeaderSize());
123        // This is the number of program headers from the original elf file.
124        auxv.emplace_back(M5_AT_PHNUM, elfObject->programHeaderCount());
125        // This is the base address of the ELF interpreter; it should be
126        // zero for static executables or contain the base address for
127        // dynamic executables.
128        auxv.emplace_back(M5_AT_BASE, getBias());
129        //XXX Figure out what this should be.
130        auxv.emplace_back(M5_AT_FLAGS, 0);
131        //The entry point to the program
132        auxv.emplace_back(M5_AT_ENTRY, objFile->entryPoint());
133        //Different user and group IDs
134        auxv.emplace_back(M5_AT_UID, uid());
135        auxv.emplace_back(M5_AT_EUID, euid());
136        auxv.emplace_back(M5_AT_GID, gid());
137        auxv.emplace_back(M5_AT_EGID, egid());
138        //Whether to enable "secure mode" in the executable
139        auxv.emplace_back(M5_AT_SECURE, 0);
140        //The filename of the program
141        auxv.emplace_back(M5_AT_EXECFN, 0);
142        //The string "v51" with unknown meaning
143        auxv.emplace_back(M5_AT_PLATFORM, 0);
144    }
145
146    //Figure out how big the initial stack nedes to be
147
148    // A sentry NULL void pointer at the top of the stack.
149    int sentry_size = intSize;
150
151    string platform = "v51";
152    int platform_size = platform.size() + 1;
153
154    // The aux vectors are put on the stack in two groups. The first group are
155    // the vectors that are generated as the elf is loaded. The second group
156    // are the ones that were computed ahead of time and include the platform
157    // string.
158    int aux_data_size = filename.size() + 1;
159
160    int env_data_size = 0;
161    for (int i = 0; i < envp.size(); ++i) {
162        env_data_size += envp[i].size() + 1;
163    }
164    int arg_data_size = 0;
165    for (int i = 0; i < argv.size(); ++i) {
166        arg_data_size += argv[i].size() + 1;
167    }
168
169    int info_block_size =
170        sentry_size + env_data_size + arg_data_size +
171        aux_data_size + platform_size;
172
173    //Each auxilliary vector is two 4 byte words
174    int aux_array_size = intSize * 2 * (auxv.size() + 1);
175
176    int envp_array_size = intSize * (envp.size() + 1);
177    int argv_array_size = intSize * (argv.size() + 1);
178
179    int argc_size = intSize;
180
181    //Figure out the size of the contents of the actual initial frame
182    int frame_size =
183        info_block_size +
184        aux_array_size +
185        envp_array_size +
186        argv_array_size +
187        argc_size;
188
189    //There needs to be padding after the auxiliary vector data so that the
190    //very bottom of the stack is aligned properly.
191    int partial_size = frame_size;
192    int aligned_partial_size = roundUp(partial_size, align);
193    int aux_padding = aligned_partial_size - partial_size;
194
195    int space_needed = frame_size + aux_padding;
196
197    Addr stack_min = memState->getStackBase() - space_needed;
198    stack_min = roundDown(stack_min, align);
199
200    memState->setStackSize(memState->getStackBase() - stack_min);
201
202    // map memory
203    allocateMem(roundDown(stack_min, pageSize),
204                roundUp(memState->getStackSize(), pageSize));
205
206    // map out initial stack contents
207    uint32_t sentry_base = memState->getStackBase() - sentry_size;
208    uint32_t aux_data_base = sentry_base - aux_data_size;
209    uint32_t env_data_base = aux_data_base - env_data_size;
210    uint32_t arg_data_base = env_data_base - arg_data_size;
211    uint32_t platform_base = arg_data_base - platform_size;
212    uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
213    uint32_t envp_array_base = auxv_array_base - envp_array_size;
214    uint32_t argv_array_base = envp_array_base - argv_array_size;
215    uint32_t argc_base = argv_array_base - argc_size;
216
217    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
218    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
219    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
220    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
221    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
222    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
223    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
224    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
225    DPRINTF(Stack, "0x%x - argc \n", argc_base);
226    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
227
228    // write contents to stack
229
230    // figure out argc
231    uint32_t argc = argv.size();
232    uint32_t guestArgc = PowerISA::htog(argc);
233
234    //Write out the sentry void *
235    uint32_t sentry_NULL = 0;
236    initVirtMem.writeBlob(sentry_base, &sentry_NULL, sentry_size);
237
238    //Fix up the aux vectors which point to other data
239    for (int i = auxv.size() - 1; i >= 0; i--) {
240        if (auxv[i].type == M5_AT_PLATFORM) {
241            auxv[i].val = platform_base;
242            initVirtMem.writeString(platform_base, platform.c_str());
243        } else if (auxv[i].type == M5_AT_EXECFN) {
244            auxv[i].val = aux_data_base;
245            initVirtMem.writeString(aux_data_base, filename.c_str());
246        }
247    }
248
249    //Copy the aux stuff
250    Addr auxv_array_end = auxv_array_base;
251    for (const auto &aux: auxv) {
252        initVirtMem.write(auxv_array_end, aux, GuestByteOrder);
253        auxv_array_end += sizeof(aux);
254    }
255    //Write out the terminating zeroed auxilliary vector
256    const AuxVector<uint64_t> zero(0, 0);
257    initVirtMem.write(auxv_array_end, zero);
258    auxv_array_end += sizeof(zero);
259
260    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
261    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
262
263    initVirtMem.writeBlob(argc_base, &guestArgc, intSize);
264
265    ThreadContext *tc = system->getThreadContext(contextIds[0]);
266
267    //Set the stack pointer register
268    tc->setIntReg(StackPointerReg, stack_min);
269
270    tc->pcState(getStartPC());
271
272    //Align the "stack_min" to a page boundary.
273    memState->setStackMin(roundDown(stack_min, pageSize));
274}
275
276RegVal
277PowerProcess::getSyscallArg(ThreadContext *tc, int &i)
278{
279    assert(i < 5);
280    return tc->readIntReg(ArgumentReg0 + i++);
281}
282
283void
284PowerProcess::setSyscallArg(ThreadContext *tc, int i, RegVal val)
285{
286    assert(i < 5);
287    tc->setIntReg(ArgumentReg0 + i, val);
288}
289
290void
291PowerProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
292{
293    Cr cr = tc->readIntReg(INTREG_CR);
294    if (sysret.successful()) {
295        cr.cr0.so = 0;
296    } else {
297        cr.cr0.so = 1;
298    }
299    tc->setIntReg(INTREG_CR, cr);
300    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
301}
302