process.cc revision 11389:1e55f16160cb
1/*
2 * Copyright (c) 2007-2008 The Florida State University
3 * Copyright (c) 2009 The University of Edinburgh
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met: redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer;
10 * redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution;
13 * neither the name of the copyright holders nor the names of its
14 * contributors may be used to endorse or promote products derived from
15 * this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 *
29 * Authors: Stephen Hines
30 *          Timothy M. Jones
31 */
32
33#include "arch/power/isa_traits.hh"
34#include "arch/power/process.hh"
35#include "arch/power/types.hh"
36#include "base/loader/elf_object.hh"
37#include "base/loader/object_file.hh"
38#include "base/misc.hh"
39#include "cpu/thread_context.hh"
40#include "debug/Stack.hh"
41#include "mem/page_table.hh"
42#include "sim/process_impl.hh"
43#include "sim/system.hh"
44
45using namespace std;
46using namespace PowerISA;
47
48PowerLiveProcess::PowerLiveProcess(LiveProcessParams *params,
49        ObjectFile *objFile)
50    : LiveProcess(params, objFile)
51{
52    stack_base = 0xbf000000L;
53
54    // Set pointer for next thread stack.  Reserve 8M for main stack.
55    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
56
57    // Set up break point (Top of Heap)
58    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
59    brk_point = roundUp(brk_point, PageBytes);
60
61    // Set up region for mmaps. For now, start at bottom of kuseg space.
62    mmap_end = 0x70000000L;
63}
64
65void
66PowerLiveProcess::initState()
67{
68    Process::initState();
69
70    argsInit(MachineBytes, PageBytes);
71}
72
73void
74PowerLiveProcess::argsInit(int intSize, int pageSize)
75{
76    typedef AuxVector<uint32_t> auxv_t;
77    std::vector<auxv_t> auxv;
78
79    string filename;
80    if (argv.size() < 1)
81        filename = "";
82    else
83        filename = argv[0];
84
85    //We want 16 byte alignment
86    uint64_t align = 16;
87
88    // Patch the ld_bias for dynamic executables.
89    updateBias();
90
91    // load object file into target memory
92    objFile->loadSections(initVirtMem);
93
94    //Setup the auxilliary vectors. These will already have endian conversion.
95    //Auxilliary vectors are loaded only for elf formatted executables.
96    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
97    if (elfObject) {
98        uint32_t features = 0;
99
100        //Bits which describe the system hardware capabilities
101        //XXX Figure out what these should be
102        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
103        //The system page size
104        auxv.push_back(auxv_t(M5_AT_PAGESZ, PowerISA::PageBytes));
105        //Frequency at which times() increments
106        auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
107        // For statically linked executables, this is the virtual address of the
108        // program header tables if they appear in the executable image
109        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
110        // This is the size of a program header entry from the elf file.
111        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
112        // This is the number of program headers from the original elf file.
113        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
114        // This is the base address of the ELF interpreter; it should be
115        // zero for static executables or contain the base address for
116        // dynamic executables.
117        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
118        //XXX Figure out what this should be.
119        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
120        //The entry point to the program
121        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
122        //Different user and group IDs
123        auxv.push_back(auxv_t(M5_AT_UID, uid()));
124        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
125        auxv.push_back(auxv_t(M5_AT_GID, gid()));
126        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
127        //Whether to enable "secure mode" in the executable
128        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
129        //The filename of the program
130        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
131        //The string "v51" with unknown meaning
132        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
133    }
134
135    //Figure out how big the initial stack nedes to be
136
137    // A sentry NULL void pointer at the top of the stack.
138    int sentry_size = intSize;
139
140    string platform = "v51";
141    int platform_size = platform.size() + 1;
142
143    // The aux vectors are put on the stack in two groups. The first group are
144    // the vectors that are generated as the elf is loaded. The second group
145    // are the ones that were computed ahead of time and include the platform
146    // string.
147    int aux_data_size = filename.size() + 1;
148
149    int env_data_size = 0;
150    for (int i = 0; i < envp.size(); ++i) {
151        env_data_size += envp[i].size() + 1;
152    }
153    int arg_data_size = 0;
154    for (int i = 0; i < argv.size(); ++i) {
155        arg_data_size += argv[i].size() + 1;
156    }
157
158    int info_block_size =
159        sentry_size + env_data_size + arg_data_size +
160        aux_data_size + platform_size;
161
162    //Each auxilliary vector is two 4 byte words
163    int aux_array_size = intSize * 2 * (auxv.size() + 1);
164
165    int envp_array_size = intSize * (envp.size() + 1);
166    int argv_array_size = intSize * (argv.size() + 1);
167
168    int argc_size = intSize;
169
170    //Figure out the size of the contents of the actual initial frame
171    int frame_size =
172        info_block_size +
173        aux_array_size +
174        envp_array_size +
175        argv_array_size +
176        argc_size;
177
178    //There needs to be padding after the auxiliary vector data so that the
179    //very bottom of the stack is aligned properly.
180    int partial_size = frame_size;
181    int aligned_partial_size = roundUp(partial_size, align);
182    int aux_padding = aligned_partial_size - partial_size;
183
184    int space_needed = frame_size + aux_padding;
185
186    stack_min = stack_base - space_needed;
187    stack_min = roundDown(stack_min, align);
188    stack_size = stack_base - stack_min;
189
190    // map memory
191    allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
192
193    // map out initial stack contents
194    uint32_t sentry_base = stack_base - sentry_size;
195    uint32_t aux_data_base = sentry_base - aux_data_size;
196    uint32_t env_data_base = aux_data_base - env_data_size;
197    uint32_t arg_data_base = env_data_base - arg_data_size;
198    uint32_t platform_base = arg_data_base - platform_size;
199    uint32_t auxv_array_base = platform_base - aux_array_size - aux_padding;
200    uint32_t envp_array_base = auxv_array_base - envp_array_size;
201    uint32_t argv_array_base = envp_array_base - argv_array_size;
202    uint32_t argc_base = argv_array_base - argc_size;
203
204    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
205    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
206    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
207    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
208    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
209    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
210    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
211    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
212    DPRINTF(Stack, "0x%x - argc \n", argc_base);
213    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
214
215    // write contents to stack
216
217    // figure out argc
218    uint32_t argc = argv.size();
219    uint32_t guestArgc = PowerISA::htog(argc);
220
221    //Write out the sentry void *
222    uint32_t sentry_NULL = 0;
223    initVirtMem.writeBlob(sentry_base,
224            (uint8_t*)&sentry_NULL, sentry_size);
225
226    //Fix up the aux vectors which point to other data
227    for (int i = auxv.size() - 1; i >= 0; i--) {
228        if (auxv[i].a_type == M5_AT_PLATFORM) {
229            auxv[i].a_val = platform_base;
230            initVirtMem.writeString(platform_base, platform.c_str());
231        } else if (auxv[i].a_type == M5_AT_EXECFN) {
232            auxv[i].a_val = aux_data_base;
233            initVirtMem.writeString(aux_data_base, filename.c_str());
234        }
235    }
236
237    //Copy the aux stuff
238    for (int x = 0; x < auxv.size(); x++)
239    {
240        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
241                (uint8_t*)&(auxv[x].a_type), intSize);
242        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
243                (uint8_t*)&(auxv[x].a_val), intSize);
244    }
245    //Write out the terminating zeroed auxilliary vector
246    const uint64_t zero = 0;
247    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
248            (uint8_t*)&zero, 2 * intSize);
249
250    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
251    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
252
253    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
254
255    ThreadContext *tc = system->getThreadContext(contextIds[0]);
256
257    //Set the stack pointer register
258    tc->setIntReg(StackPointerReg, stack_min);
259
260    tc->pcState(getStartPC());
261
262    //Align the "stack_min" to a page boundary.
263    stack_min = roundDown(stack_min, pageSize);
264}
265
266PowerISA::IntReg
267PowerLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
268{
269    assert(i < 5);
270    return tc->readIntReg(ArgumentReg0 + i++);
271}
272
273void
274PowerLiveProcess::setSyscallArg(ThreadContext *tc,
275        int i, PowerISA::IntReg val)
276{
277    assert(i < 5);
278    tc->setIntReg(ArgumentReg0 + i, val);
279}
280
281void
282PowerLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
283{
284    Cr cr = tc->readIntReg(INTREG_CR);
285    if (sysret.successful()) {
286        cr.cr0.so = 0;
287    } else {
288        cr.cr0.so = 1;
289    }
290    tc->setIntReg(INTREG_CR, cr);
291    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
292}
293