1// -*- mode:c++ -*-
2
3// Copyright (c) 2009 The University of Edinburgh
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met: redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer;
10// redistributions in binary form must reproduce the above copyright
11// notice, this list of conditions and the following disclaimer in the
12// documentation and/or other materials provided with the distribution;
13// neither the name of the copyright holders nor the names of its
14// contributors may be used to endorse or promote products derived from
15// this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: Timothy M. Jones
30
31////////////////////////////////////////////////////////////////////
32//
33// Integer ALU instructions
34//
35
36
37// Instruction class constructor template when Rc is set.
38def template IntRcConstructor {{
39        %(class_name)s::%(class_name)s(ExtMachInst machInst)  : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
40        {
41                %(constructor)s;
42                rcSet = true;
43        }
44}};
45
46
47// Instruction class constructor template when OE is set.
48def template IntOeConstructor {{
49        %(class_name)s::%(class_name)s(ExtMachInst machInst)  : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
50        {
51                %(constructor)s;
52                oeSet = true;
53        }
54}};
55
56
57// Instruction class constructor template when both Rc and OE are set.
58def template IntRcOeConstructor {{
59        %(class_name)s::%(class_name)s(ExtMachInst machInst)  : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
60        {
61                %(constructor)s;
62                rcSet = true;
63                oeSet = true;
64        }
65}};
66
67
68let {{
69
70readXERCode = 'Xer xer = XER;'
71
72setXERCode = 'XER = xer;'
73
74computeCR0Code = '''
75    Cr cr = CR;
76    cr.cr0 = makeCRField((int32_t)%(result)s, (int32_t)0, xer.so);
77    CR = cr;
78'''
79
80computeCACode = '''
81    if (findCarry(32, %(result)s, %(inputa)s, %(inputb)s)) {
82        xer.ca = 1;
83    } else {
84        xer.ca = 0;
85    }
86'''
87
88computeOVCode = '''
89    if (findOverflow(32, %(result)s, %(inputa)s, %(inputb)s)) {
90        xer.ov = 1;
91        xer.so = 1;
92    } else {
93        xer.ov = 0;
94    }
95'''
96
97computeDivOVCode = '''
98    if (divSetOV) {
99        xer.ov = 1;
100        xer.so = 1;
101    } else {
102        if (findOverflow(32, %(result)s, %(inputa)s, %(inputb)s)) {
103            xer.ov = 1;
104            xer.so = 1;
105        } else {
106            xer.ov = 0;
107        }
108    }
109'''
110
111}};
112
113
114// A basic integer instruction.
115def format IntOp(code, inst_flags = []) {{
116    (header_output, decoder_output, decode_block, exec_output) = \
117        GenAluOp(name, Name, 'IntOp', code, inst_flags, BasicDecode,
118                 BasicConstructor)
119}};
120
121
122// Integer instructions with immediate (signed or unsigned).
123def format IntImmOp(code, inst_flags = []) {{
124    (header_output, decoder_output, decode_block, exec_output) = \
125        GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
126                 BasicConstructor)
127}};
128
129
130// Integer instructions with immediate that perform arithmetic.
131// These instructions all write to Rt and use an altered form of the
132// value in source register Ra, hence the use of src to hold the actual
133// value. The control flags include the use of code to compute the
134// carry bit or the CR0 code.
135def format IntImmArithOp(code, ctrl_flags = [], inst_flags = []) {{
136
137    # Set up the dictionary and deal with control flags
138    dict = {'result':'Rt', 'inputa':'src', 'inputb':'imm'}
139    if ctrl_flags:
140        code += readXERCode
141        for val in ctrl_flags:
142            if val == 'computeCA':
143                code += computeCACode % dict + setXERCode
144            elif val == 'computeCR0':
145                code += computeCR0Code % dict
146
147    # Generate the class
148    (header_output, decoder_output, decode_block, exec_output) = \
149        GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
150                 BasicConstructor)
151}};
152
153
154// Integer instructions with immediate that perform arithmetic but use
155// the value 0 when Ra == 0. We generate two versions of each instruction
156// corresponding to these two different scenarios. The correct version is
157// determined at decode (see the CheckRaDecode template).
158def format IntImmArithCheckRaOp(code, code_ra0, inst_flags = []) {{
159
160    # First the version where Ra is non-zero
161    (header_output, decoder_output, decode_block, exec_output) = \
162        GenAluOp(name, Name, 'IntImmOp', code, inst_flags,
163                 CheckRaDecode, BasicConstructor)
164
165    # Now another version where Ra == 0
166    (header_output_ra0, decoder_output_ra0, _, exec_output_ra0) = \
167        GenAluOp(name, Name + 'RaZero', 'IntImmOp', code_ra0, inst_flags,
168                 CheckRaDecode, BasicConstructor)
169
170    # Finally, add to the other outputs
171    header_output += header_output_ra0
172    decoder_output += decoder_output_ra0
173    exec_output += exec_output_ra0
174}};
175
176
177// Integer instructions with immediate that perform logic operations.
178// All instructions write to Ra and use Rs as a source register. Some
179// also compute the CR0 code too.
180def format IntImmLogicOp(code, computeCR0 = 0, inst_flags = []) {{
181
182    # Set up the dictionary and deal with computing CR0
183    dict = {'result':'Ra'}
184    if computeCR0:
185        code += readXERCode + computeCR0Code % dict
186
187    # Generate the class
188    (header_output, decoder_output, decode_block, exec_output) = \
189        GenAluOp(name, Name, 'IntImmOp', code, inst_flags, BasicDecode,
190                 BasicConstructor)
191}};
192
193
194// Integer instructions that perform logic operations. The result is
195// always written into Ra. All instructions have 2 versions depending on
196// whether the Rc bit is set to compute the CR0 code. This is determined
197// at decode as before.
198def format IntLogicOp(code, inst_flags = []) {{
199    dict = {'result':'Ra'}
200
201    # Code when Rc is set
202    code_rc1 = code + readXERCode + computeCR0Code % dict
203
204    # Generate the first class
205    (header_output, decoder_output, decode_block, exec_output) = \
206        GenAluOp(name, Name, 'IntOp', code, inst_flags,
207                 CheckRcDecode, BasicConstructor)
208
209    # Generate the second class
210    (header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
211        GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
212                 CheckRcDecode, IntRcConstructor)
213
214    # Finally, add to the other outputs
215    header_output += header_output_rc1
216    decoder_output += decoder_output_rc1
217    exec_output += exec_output_rc1
218}};
219
220
221// Integer instructions with a shift amount. As above, except inheriting
222// from the IntShiftOp class.
223def format IntShiftOp(code, inst_flags = []) {{
224    dict = {'result':'Ra'}
225
226    # Code when Rc is set
227    code_rc1 = code + readXERCode + computeCR0Code % dict
228
229    # Generate the first class
230    (header_output, decoder_output, decode_block, exec_output) = \
231        GenAluOp(name, Name, 'IntShiftOp', code, inst_flags,
232                 CheckRcDecode, BasicConstructor)
233
234    # Generate the second class
235    (header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
236        GenAluOp(name, Name + 'RcSet', 'IntShiftOp', code_rc1, inst_flags,
237                 CheckRcDecode, IntRcConstructor)
238
239    # Finally, add to the other outputs
240    header_output += header_output_rc1
241    decoder_output += decoder_output_rc1
242    exec_output += exec_output_rc1
243}};
244
245
246// Instructions in this format are all reduced to the form Rt = src1 + src2,
247// therefore we just give src1 and src2 definitions. In working out the
248// template we first put in the definitions of the variables and then
249// the code for the addition. We also deal with computing the carry flag
250// if required.
251//
252// We generate 4 versions of each instruction. This correspond to the
253// different combinations of having the OE bit set or unset (which controls
254// whether the overflow flag is computed) and the Rc bit set or unset too
255// (which controls whether the CR0 code is computed).
256def format IntSumOp(src1, src2, ca = {{ 0 }}, computeCA = 0,
257                    inst_flags = []) {{
258
259    # The result is always in Rt, but the source values vary
260    dict = {'result':'Rt', 'inputa':'src1', 'inputb':'src2'}
261
262    # Add code to set up variables and do the sum
263    code  = 'uint32_t src1 = ' + src1 + ';\n'
264    code += 'uint32_t src2 = ' + src2 + ';\n'
265    code += 'uint32_t ca = ' + ca + ';\n'
266    code += 'Rt = src1 + src2 + ca;\n'
267
268    # Add code for calculating the carry, if needed
269    if computeCA:
270        code += computeCACode % dict + setXERCode
271
272    # Setup the 4 code versions and add code to access XER if necessary
273    code_rc1 = readXERCode + code
274    code_oe1 = readXERCode + code + computeOVCode % dict + setXERCode
275    code_rc1_oe1 = readXERCode + code + computeOVCode % dict + setXERCode
276    if (computeCA or ca == 'xer.ca'):
277        code = readXERCode + code
278    code_rc1 += computeCR0Code % dict
279    code_rc1_oe1 += computeCR0Code % dict
280
281    # Generate the classes
282    (header_output, decoder_output, decode_block, exec_output) = \
283        GenAluOp(name, Name, 'IntOp', code, inst_flags,
284                 CheckRcOeDecode, BasicConstructor)
285    (header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
286        GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
287                 CheckRcOeDecode, IntRcConstructor)
288    (header_output_oe1, decoder_output_oe1, _, exec_output_oe1) = \
289        GenAluOp(name, Name + 'OeSet', 'IntOp', code_oe1, inst_flags,
290                 CheckRcOeDecode, IntOeConstructor)
291    (header_output_rc1_oe1, decoder_output_rc1_oe1, _, exec_output_rc1_oe1) = \
292        GenAluOp(name, Name + 'RcSetOeSet', 'IntOp', code_rc1_oe1,
293                 inst_flags, CheckRcOeDecode, IntRcOeConstructor)
294
295    # Finally, add to the other outputs
296    header_output += \
297        header_output_rc1 + header_output_oe1 + header_output_rc1_oe1
298    decoder_output += \
299        decoder_output_rc1 + decoder_output_oe1 + decoder_output_rc1_oe1
300    exec_output += \
301        exec_output_rc1 + exec_output_oe1 + exec_output_rc1_oe1
302
303}};
304
305
306// Instructions that use source registers Ra and Rb, with the result
307// placed into Rt. Basically multiply and divide instructions. The
308// carry bit is never set, but overflow can be calculated. Division
309// explicitly sets the overflow bit in certain situations and this is
310// dealt with using the 'divSetOV' boolean in decoder.isa. We generate
311// two versions of each instruction to deal with the Rc bit.
312def format IntArithOp(code, computeOV = 0, inst_flags = []) {{
313
314    # The result is always in Rt, but the source values vary
315    dict = {'result':'Rt', 'inputa':'src1', 'inputb':'src2'}
316
317    # Deal with setting the overflow flag
318    if computeOV:
319        code = 'bool divSetOV = false;\n' + code
320        code += computeDivOVCode % dict + setXERCode
321
322    # Setup the 2 code versions and add code to access XER if necessary
323    code_rc1 = readXERCode + code + computeCR0Code % dict
324    if computeOV:
325        code = readXERCode + code
326
327    # Generate the classes
328    (header_output, decoder_output, decode_block, exec_output) = \
329        GenAluOp(name, Name, 'IntOp', code, inst_flags,
330                 CheckRcDecode, BasicConstructor)
331
332    # Generate the second class
333    (header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
334        GenAluOp(name, Name + 'RcSet', 'IntOp', code_rc1, inst_flags,
335                 CheckRcDecode, IntRcConstructor)
336
337    # Finally, add to the other outputs
338    header_output += header_output_rc1
339    decoder_output += decoder_output_rc1
340    exec_output += exec_output_rc1
341}};
342
343
344// A special format for rotate instructions which use certain fields
345// from the instruction's binary encoding. We need two versions for each
346// instruction to deal with the Rc bit.
347def format IntRotateOp(code, inst_flags = []) {{
348
349    # The result is always in Ra
350    dict = {'result':'Ra'}
351
352    # Setup the code for when Rc is set
353    code_rc1 = readXERCode + code + computeCR0Code % dict
354
355    # Generate the first class
356    (header_output, decoder_output, decode_block, exec_output) = \
357        GenAluOp(name, Name, 'IntRotateOp', code, inst_flags,
358                 CheckRcDecode, BasicConstructor)
359
360    # Generate the second class
361    (header_output_rc1, decoder_output_rc1, _, exec_output_rc1) = \
362        GenAluOp(name, Name + 'RcSet', 'IntRotateOp', code_rc1, inst_flags,
363                 CheckRcDecode, IntRcConstructor)
364
365    # Finally, add to the other outputs
366    header_output += header_output_rc1
367    decoder_output += decoder_output_rc1
368    exec_output += exec_output_rc1
369}};
370