fp.isa revision 8738:66bf413b0d5b
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 MIPS Technologies, Inc.
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met: redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer;
10// redistributions in binary form must reproduce the above copyright
11// notice, this list of conditions and the following disclaimer in the
12// documentation and/or other materials provided with the distribution;
13// neither the name of the copyright holders nor the names of its
14// contributors may be used to endorse or promote products derived from
15// this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: Korey Sewell
30
31////////////////////////////////////////////////////////////////////
32//
33// Floating Point operate instructions
34//
35
36output header {{
37        /**
38         * Base class for FP operations.
39         */
40        class FPOp : public MipsStaticInst
41        {
42                protected:
43
44                /// Constructor
45                FPOp(const char *mnem, MachInst _machInst, OpClass __opClass) : MipsStaticInst(mnem, _machInst, __opClass)
46                {
47                }
48
49            //std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
50
51                //needs function to check for fpEnable or not
52        };
53
54        class FPCompareOp : public FPOp
55        {
56          protected:
57            FPCompareOp(const char *mnem, MachInst _machInst, OpClass __opClass) : FPOp(mnem, _machInst, __opClass)
58                {
59                }
60
61            std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
62
63        };
64}};
65
66output decoder {{
67        std::string FPCompareOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
68        {
69            std::stringstream ss;
70
71            ccprintf(ss, "%-10s ", mnemonic);
72
73            ccprintf(ss,"%d",CC);
74
75            if(_numSrcRegs > 0) {
76                ss << ", ";
77                printReg(ss, _srcRegIdx[0]);
78            }
79
80            if(_numSrcRegs > 1) {
81                ss << ", ";
82                printReg(ss, _srcRegIdx[1]);
83            }
84
85            return ss.str();
86        }
87}};
88
89output exec {{
90        inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
91        {
92            //@TODO: Implement correct CP0 checks to see if the CP1
93            // unit is enable or not
94          if (!isCoprocessorEnabled(xc, 1))
95             return new CoprocessorUnusableFault(1);
96
97          return NoFault;
98        }
99
100        //If any operand is Nan return the appropriate QNaN
101        template <class T>
102        bool
103        fpNanOperands(FPOp *inst, %(CPU_exec_context)s *xc, const T &src_type,
104                      Trace::InstRecord *traceData)
105        {
106            uint64_t mips_nan = 0;
107            assert(sizeof(T) == 4);
108
109            for (int i = 0; i < inst->numSrcRegs(); i++) {
110                uint64_t src_bits = xc->readFloatRegOperandBits(inst, 0);
111
112                if (isNan(&src_bits, 32) ) {
113                    mips_nan = MIPS32_QNAN;
114                    xc->setFloatRegOperandBits(inst, 0, mips_nan);
115                    if (traceData) { traceData->setData(mips_nan); }
116                    return true;
117                }
118            }
119            return false;
120        }
121
122        template <class T>
123        bool
124        fpInvalidOp(FPOp *inst, %(CPU_exec_context)s *cpu, const T dest_val,
125                    Trace::InstRecord *traceData)
126        {
127            uint64_t mips_nan = 0;
128            T src_op = dest_val;
129            assert(sizeof(T) == 4);
130
131            if (isNan(&src_op, 32)) {
132                mips_nan = MIPS32_QNAN;
133
134                //Set value to QNAN
135                cpu->setFloatRegOperandBits(inst, 0, mips_nan);
136
137                //Read FCSR from FloatRegFile
138                uint32_t fcsr_bits =
139                    cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR);
140
141                uint32_t new_fcsr = genInvalidVector(fcsr_bits);
142
143                //Write FCSR from FloatRegFile
144                cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, new_fcsr);
145
146                if (traceData) { traceData->setData(mips_nan); }
147                return true;
148            }
149
150            return false;
151        }
152
153        void
154        fpResetCauseBits(%(CPU_exec_context)s *cpu)
155        {
156            //Read FCSR from FloatRegFile
157            uint32_t fcsr = cpu->tcBase()->readFloatRegBits(FLOATREG_FCSR);
158
159            // TODO: Use utility function here
160            fcsr = bits(fcsr, 31, 18) << 18 | bits(fcsr, 11, 0);
161
162            //Write FCSR from FloatRegFile
163            cpu->tcBase()->setFloatRegBits(FLOATREG_FCSR, fcsr);
164        }
165}};
166
167def template FloatingPointExecute {{
168        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
169        {
170                Fault fault = NoFault;
171
172                %(fp_enable_check)s;
173
174
175                //When is the right time to reset cause bits?
176                //start of every instruction or every cycle?
177                if (FullSystem)
178                    fpResetCauseBits(xc);
179                %(op_decl)s;
180                %(op_rd)s;
181
182                //Check if any FP operand is a NaN value
183                if (!fpNanOperands((FPOp*)this, xc, Fd, traceData)) {
184                    %(code)s;
185
186                    //Change this code for Full-System/Sycall Emulation
187                    //separation
188                    //----
189                    //Should Full System-Mode throw a fault here?
190                    //----
191                    //Check for IEEE 754 FP Exceptions
192                    //fault = fpNanOperands((FPOp*)this, xc, Fd, traceData);
193                    bool invalid_op = false;
194                    if (FullSystem) {
195                        invalid_op =
196                            fpInvalidOp((FPOp*)this, xc, Fd, traceData);
197                    }
198                    if (!invalid_op && fault == NoFault) {
199                        %(op_wb)s;
200                    }
201                }
202
203                return fault;
204        }
205}};
206
207// Primary format for float point operate instructions:
208def format FloatOp(code, *flags) {{
209        iop = InstObjParams(name, Name, 'FPOp', code, flags)
210        header_output = BasicDeclare.subst(iop)
211        decoder_output = BasicConstructor.subst(iop)
212        decode_block = BasicDecode.subst(iop)
213        exec_output = FloatingPointExecute.subst(iop)
214}};
215
216def format FloatCompareOp(cond_code, *flags) {{
217    import sys
218
219    code = 'bool cond;\n'
220    if '_sf' in cond_code or 'SinglePrecision' in flags:
221        if 'QnanException' in flags:
222            code += 'if (isQnan(&Fs_sf, 32) || isQnan(&Ft_sf, 32)) {\n'
223            code += '\tFCSR = genInvalidVector(FCSR);\n'
224            code += '\treturn NoFault;'
225            code += '}\n else '
226        code += 'if (isNan(&Fs_sf, 32) || isNan(&Ft_sf, 32)) {\n'
227    elif '_df' in cond_code or 'DoublePrecision' in flags:
228        if 'QnanException' in flags:
229            code += 'if (isQnan(&Fs_df, 64) || isQnan(&Ft_df, 64)) {\n'
230            code += '\tFCSR = genInvalidVector(FCSR);\n'
231            code += '\treturn NoFault;'
232            code += '}\n else '
233        code += 'if (isNan(&Fs_df, 64) || isNan(&Ft_df, 64)) {\n'
234    else:
235       sys.exit('Decoder Failed: Can\'t Determine Operand Type\n')
236
237    if 'UnorderedTrue' in flags:
238       code += 'cond = 1;\n'
239    elif 'UnorderedFalse' in flags:
240       code += 'cond = 0;\n'
241    else:
242       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
243
244    code += '} else {\n'
245    code +=  cond_code + '}'
246    code += 'FCSR = genCCVector(FCSR, CC, cond);\n'
247
248    iop = InstObjParams(name, Name, 'FPCompareOp', code)
249    header_output = BasicDeclare.subst(iop)
250    decoder_output = BasicConstructor.subst(iop)
251    decode_block = BasicDecode.subst(iop)
252    exec_output = BasicExecute.subst(iop)
253}};
254
255def format FloatConvertOp(code, *flags) {{
256    import sys
257
258    #Determine Source Type
259    convert = 'fpConvert('
260    if '_sf' in code:
261        code = 'float ' + code + '\n'
262        convert += 'SINGLE_TO_'
263    elif '_df' in code:
264        code = 'double ' + code + '\n'
265        convert += 'DOUBLE_TO_'
266    elif '_uw' in code:
267        code = 'uint32_t ' + code + '\n'
268        convert += 'WORD_TO_'
269    elif '_ud' in code:
270        code = 'uint64_t ' + code + '\n'
271        convert += 'LONG_TO_'
272    else:
273        sys.exit("Error Determining Source Type for Conversion")
274
275    #Determine Destination Type
276    if 'ToSingle' in flags:
277        code += 'Fd_uw = ' + convert + 'SINGLE, '
278    elif 'ToDouble' in flags:
279        code += 'Fd_ud = ' + convert + 'DOUBLE, '
280    elif 'ToWord' in flags:
281        code += 'Fd_uw = ' + convert + 'WORD, '
282    elif 'ToLong' in flags:
283        code += 'Fd_ud = ' + convert + 'LONG, '
284    else:
285        sys.exit("Error Determining Destination Type for Conversion")
286
287    #Figure out how to round value
288    if 'Ceil' in flags:
289        code += 'ceil(val)); '
290    elif 'Floor' in flags:
291        code += 'floor(val)); '
292    elif 'Round' in flags:
293        code += 'roundFP(val, 0)); '
294    elif 'Trunc' in flags:
295        code += 'truncFP(val));'
296    else:
297        code += 'val); '
298
299    iop = InstObjParams(name, Name, 'FPOp', code)
300    header_output = BasicDeclare.subst(iop)
301    decoder_output = BasicConstructor.subst(iop)
302    decode_block = BasicDecode.subst(iop)
303    exec_output = BasicExecute.subst(iop)
304}};
305
306def format FloatAccOp(code, *flags) {{
307        iop = InstObjParams(name, Name, 'FPOp', code, flags)
308        header_output = BasicDeclare.subst(iop)
309        decoder_output = BasicConstructor.subst(iop)
310        decode_block = BasicDecode.subst(iop)
311        exec_output = BasicExecute.subst(iop)
312}};
313
314// Primary format for float64 operate instructions:
315def format Float64Op(code, *flags) {{
316        iop = InstObjParams(name, Name, 'MipsStaticInst', code, flags)
317        header_output = BasicDeclare.subst(iop)
318        decoder_output = BasicConstructor.subst(iop)
319        decode_block = BasicDecode.subst(iop)
320        exec_output = BasicExecute.subst(iop)
321}};
322
323def format FloatPSCompareOp(cond_code1, cond_code2, *flags) {{
324    import sys
325
326    code = 'bool cond1, cond2;\n'
327    code += 'bool code_block1, code_block2;\n'
328    code += 'code_block1 = code_block2 = true;\n'
329
330    if 'QnanException' in flags:
331        code += 'if (isQnan(&Fs1_sf, 32) || isQnan(&Ft1_sf, 32)) {\n'
332        code += '\tFCSR = genInvalidVector(FCSR);\n'
333        code += 'code_block1 = false;'
334        code += '}\n'
335        code += 'if (isQnan(&Fs2_sf, 32) || isQnan(&Ft2_sf, 32)) {\n'
336        code += '\tFCSR = genInvalidVector(FCSR);\n'
337        code += 'code_block2 = false;'
338        code += '}\n'
339
340    code += 'if (code_block1) {'
341    code += '\tif (isNan(&Fs1_sf, 32) || isNan(&Ft1_sf, 32)) {\n'
342    if 'UnorderedTrue' in flags:
343       code += 'cond1 = 1;\n'
344    elif 'UnorderedFalse' in flags:
345       code += 'cond1 = 0;\n'
346    else:
347       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
348    code += '} else {\n'
349    code +=  cond_code1
350    code += 'FCSR = genCCVector(FCSR, CC, cond1);}\n}\n'
351
352    code += 'if (code_block2) {'
353    code += '\tif (isNan(&Fs2_sf, 32) || isNan(&Ft2_sf, 32)) {\n'
354    if 'UnorderedTrue' in flags:
355       code += 'cond2 = 1;\n'
356    elif 'UnorderedFalse' in flags:
357       code += 'cond2 = 0;\n'
358    else:
359       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
360    code += '} else {\n'
361    code +=  cond_code2
362    code += 'FCSR = genCCVector(FCSR, CC, cond2);}\n}'
363
364    iop = InstObjParams(name, Name, 'FPCompareOp', code)
365    header_output = BasicDeclare.subst(iop)
366    decoder_output = BasicConstructor.subst(iop)
367    decode_block = BasicDecode.subst(iop)
368    exec_output = BasicExecute.subst(iop)
369}};
370
371