fp.isa revision 5268:5bfc53fe60e7
1// -*- mode:c++ -*-
2
3// Copyright (c) 2007 MIPS Technologies, Inc.
4// All rights reserved.
5//
6// Redistribution and use in source and binary forms, with or without
7// modification, are permitted provided that the following conditions are
8// met: redistributions of source code must retain the above copyright
9// notice, this list of conditions and the following disclaimer;
10// redistributions in binary form must reproduce the above copyright
11// notice, this list of conditions and the following disclaimer in the
12// documentation and/or other materials provided with the distribution;
13// neither the name of the copyright holders nor the names of its
14// contributors may be used to endorse or promote products derived from
15// this software without specific prior written permission.
16//
17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28//
29// Authors: Korey Sewell
30
31////////////////////////////////////////////////////////////////////
32//
33// Floating Point operate instructions
34//
35
36output header {{
37        /**
38         * Base class for FP operations.
39         */
40        class FPOp : public MipsStaticInst
41        {
42                protected:
43
44                /// Constructor
45                FPOp(const char *mnem, MachInst _machInst, OpClass __opClass) : MipsStaticInst(mnem, _machInst, __opClass)
46                {
47                }
48
49            //std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
50
51                //needs function to check for fpEnable or not
52        };
53
54        class FPCompareOp : public FPOp
55        {
56          protected:
57            FPCompareOp(const char *mnem, MachInst _machInst, OpClass __opClass) : FPOp(mnem, _machInst, __opClass)
58                {
59                }
60
61            std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
62
63        };
64}};
65
66output decoder {{
67        std::string FPCompareOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
68        {
69            std::stringstream ss;
70
71            ccprintf(ss, "%-10s ", mnemonic);
72
73            ccprintf(ss,"%d",CC);
74
75            if(_numSrcRegs > 0) {
76                ss << ", ";
77                printReg(ss, _srcRegIdx[0]);
78            }
79
80            if(_numSrcRegs > 1) {
81                ss << ", ";
82                printReg(ss, _srcRegIdx[1]);
83            }
84
85            return ss.str();
86        }
87}};
88
89output exec {{
90        inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
91        {
92            //@TODO: Implement correct CP0 checks to see if the CP1
93            // unit is enable or not
94          if (!isCoprocessorEnabled(xc, 1))
95             return new CoprocessorUnusableFault(1);
96
97          return NoFault;
98        }
99
100        //If any operand is Nan return the appropriate QNaN
101        template <class T>
102        bool
103        fpNanOperands(FPOp *inst, %(CPU_exec_context)s *xc, const T &src_type,
104                      Trace::InstRecord *traceData)
105        {
106            uint64_t mips_nan = 0;
107            T src_op = 0;
108            int size = sizeof(src_op) * 8;
109
110            for (int i = 0; i < inst->numSrcRegs(); i++) {
111                uint64_t src_bits = xc->readFloatRegOperandBits(inst, 0, size);
112
113                if (isNan(&src_bits, size) ) {
114                    if (isSnan(&src_bits, size)) {
115                        switch (size)
116                        {
117                          case 32: mips_nan = MIPS32_QNAN; break;
118                          case 64: mips_nan = MIPS64_QNAN; break;
119                          default: panic("Unsupported Floating Point Size (%d)", size);
120                        }
121                    } else {
122                        mips_nan = src_bits;
123                    }
124
125                    xc->setFloatRegOperandBits(inst, 0, mips_nan, size);
126                    if (traceData) { traceData->setData(mips_nan); }
127                    return true;
128                }
129            }
130            return false;
131        }
132
133        template <class T>
134        bool
135        fpInvalidOp(FPOp *inst, %(CPU_exec_context)s *cpu, const T dest_val,
136                    Trace::InstRecord *traceData)
137        {
138            uint64_t mips_nan = 0;
139            T src_op = dest_val;
140            int size = sizeof(src_op) * 8;
141
142            if (isNan(&src_op, size)) {
143                switch (size)
144                {
145                  case 32: mips_nan = MIPS32_QNAN; break;
146                  case 64: mips_nan = MIPS64_QNAN; break;
147                  default: panic("Unsupported Floating Point Size (%d)", size);
148                }
149
150                //Set value to QNAN
151                cpu->setFloatRegOperandBits(inst, 0, mips_nan, size);
152
153                //Read FCSR from FloatRegFile
154                uint32_t fcsr_bits = cpu->tcBase()->readFloatRegBits(FCSR);
155
156                uint32_t new_fcsr = genInvalidVector(fcsr_bits);
157
158                //Write FCSR from FloatRegFile
159                cpu->tcBase()->setFloatRegBits(FCSR, new_fcsr);
160
161                if (traceData) { traceData->setData(mips_nan); }
162                return true;
163            }
164
165            return false;
166        }
167
168        void
169        fpResetCauseBits(%(CPU_exec_context)s *cpu)
170        {
171            //Read FCSR from FloatRegFile
172            uint32_t fcsr = cpu->tcBase()->readFloatRegBits(FCSR);
173
174            // TODO: Use utility function here
175            fcsr = bits(fcsr, 31, 18) << 18 | bits(fcsr, 11, 0);
176
177            //Write FCSR from FloatRegFile
178            cpu->tcBase()->setFloatRegBits(FCSR, fcsr);
179        }
180}};
181
182def template FloatingPointExecute {{
183        Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
184        {
185                Fault fault = NoFault;
186
187                %(fp_enable_check)s;
188
189
190                //When is the right time to reset cause bits?
191                //start of every instruction or every cycle?
192#if FULL_SYSTEM
193                fpResetCauseBits(xc);
194#endif
195                %(op_decl)s;
196                %(op_rd)s;
197
198                //Check if any FP operand is a NaN value
199                if (!fpNanOperands((FPOp*)this, xc, Fd, traceData)) {
200                    %(code)s;
201
202                    //Change this code for Full-System/Sycall Emulation
203                    //separation
204                    //----
205                    //Should Full System-Mode throw a fault here?
206                    //----
207                    //Check for IEEE 754 FP Exceptions
208                    //fault = fpNanOperands((FPOp*)this, xc, Fd, traceData);
209                    if (
210#if FULL_SYSTEM
211                        !fpInvalidOp((FPOp*)this, xc, Fd, traceData) &&
212#endif
213                        fault == NoFault)
214                    {
215                        %(op_wb)s;
216                    }
217                }
218
219                return fault;
220        }
221}};
222
223// Primary format for float point operate instructions:
224def format FloatOp(code, *flags) {{
225        iop = InstObjParams(name, Name, 'FPOp', code, flags)
226        header_output = BasicDeclare.subst(iop)
227        decoder_output = BasicConstructor.subst(iop)
228        decode_block = BasicDecode.subst(iop)
229        exec_output = FloatingPointExecute.subst(iop)
230}};
231
232def format FloatCompareOp(cond_code, *flags) {{
233    import sys
234
235    code = 'bool cond;\n'
236    if '.sf' in cond_code or 'SinglePrecision' in flags:
237        if 'QnanException' in flags:
238            code += 'if (isQnan(&Fs.sf, 32) || isQnan(&Ft.sf, 32)) {\n'
239            code += '\tFCSR = genInvalidVector(FCSR);\n'
240            code += '\treturn NoFault;'
241            code += '}\n else '
242        code += 'if (isNan(&Fs.sf, 32) || isNan(&Ft.sf, 32)) {\n'
243    elif '.df' in cond_code or 'DoublePrecision' in flags:
244        if 'QnanException' in flags:
245            code += 'if (isQnan(&Fs.df, 64) || isQnan(&Ft.df, 64)) {\n'
246            code += '\tFCSR = genInvalidVector(FCSR);\n'
247            code += '\treturn NoFault;'
248            code += '}\n else '
249        code += 'if (isNan(&Fs.df, 64) || isNan(&Ft.df, 64)) {\n'
250    else:
251       sys.exit('Decoder Failed: Can\'t Determine Operand Type\n')
252
253    if 'UnorderedTrue' in flags:
254       code += 'cond = 1;\n'
255    elif 'UnorderedFalse' in flags:
256       code += 'cond = 0;\n'
257    else:
258       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
259
260    code += '} else {\n'
261    code +=  cond_code + '}'
262    code += 'FCSR = genCCVector(FCSR, CC, cond);\n'
263
264    iop = InstObjParams(name, Name, 'FPCompareOp', code)
265    header_output = BasicDeclare.subst(iop)
266    decoder_output = BasicConstructor.subst(iop)
267    decode_block = BasicDecode.subst(iop)
268    exec_output = BasicExecute.subst(iop)
269}};
270
271def format FloatConvertOp(code, *flags) {{
272    import sys
273
274    #Determine Source Type
275    convert = 'fpConvert('
276    if '.sf' in code:
277        code = 'float ' + code + '\n'
278        convert += 'SINGLE_TO_'
279    elif '.df' in code:
280        code = 'double ' + code + '\n'
281        convert += 'DOUBLE_TO_'
282    elif '.uw' in code:
283        code = 'uint32_t ' + code + '\n'
284        convert += 'WORD_TO_'
285    elif '.ud' in code:
286        code = 'uint64_t ' + code + '\n'
287        convert += 'LONG_TO_'
288    else:
289        sys.exit("Error Determining Source Type for Conversion")
290
291    #Determine Destination Type
292    if 'ToSingle' in flags:
293        code += 'Fd.uw = ' + convert + 'SINGLE, '
294    elif 'ToDouble' in flags:
295        code += 'Fd.ud = ' + convert + 'DOUBLE, '
296    elif 'ToWord' in flags:
297        code += 'Fd.uw = ' + convert + 'WORD, '
298    elif 'ToLong' in flags:
299        code += 'Fd.ud = ' + convert + 'LONG, '
300    else:
301        sys.exit("Error Determining Destination Type for Conversion")
302
303    #Figure out how to round value
304    if 'Ceil' in flags:
305        code += 'ceil(val)); '
306    elif 'Floor' in flags:
307        code += 'floor(val)); '
308    elif 'Round' in flags:
309        code += 'roundFP(val, 0)); '
310    elif 'Trunc' in flags:
311        code += 'truncFP(val));'
312    else:
313        code += 'val); '
314
315    iop = InstObjParams(name, Name, 'FPOp', code)
316    header_output = BasicDeclare.subst(iop)
317    decoder_output = BasicConstructor.subst(iop)
318    decode_block = BasicDecode.subst(iop)
319    exec_output = BasicExecute.subst(iop)
320}};
321
322def format FloatAccOp(code, *flags) {{
323        iop = InstObjParams(name, Name, 'FPOp', code, flags)
324        header_output = BasicDeclare.subst(iop)
325        decoder_output = BasicConstructor.subst(iop)
326        decode_block = BasicDecode.subst(iop)
327        exec_output = BasicExecute.subst(iop)
328}};
329
330// Primary format for float64 operate instructions:
331def format Float64Op(code, *flags) {{
332        iop = InstObjParams(name, Name, 'MipsStaticInst', code, flags)
333        header_output = BasicDeclare.subst(iop)
334        decoder_output = BasicConstructor.subst(iop)
335        decode_block = BasicDecode.subst(iop)
336        exec_output = BasicExecute.subst(iop)
337}};
338
339def format FloatPSCompareOp(cond_code1, cond_code2, *flags) {{
340    import sys
341
342    code = 'bool cond1, cond2;\n'
343    code += 'bool code_block1, code_block2;\n'
344    code += 'code_block1 = code_block2 = true;\n'
345
346    if 'QnanException' in flags:
347        code += 'if (isQnan(&Fs1.sf, 32) || isQnan(&Ft1.sf, 32)) {\n'
348        code += '\tFCSR = genInvalidVector(FCSR);\n'
349        code += 'code_block1 = false;'
350        code += '}\n'
351        code += 'if (isQnan(&Fs2.sf, 32) || isQnan(&Ft2.sf, 32)) {\n'
352        code += '\tFCSR = genInvalidVector(FCSR);\n'
353        code += 'code_block2 = false;'
354        code += '}\n'
355
356    code += 'if (code_block1) {'
357    code += '\tif (isNan(&Fs1.sf, 32) || isNan(&Ft1.sf, 32)) {\n'
358    if 'UnorderedTrue' in flags:
359       code += 'cond1 = 1;\n'
360    elif 'UnorderedFalse' in flags:
361       code += 'cond1 = 0;\n'
362    else:
363       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
364    code += '} else {\n'
365    code +=  cond_code1
366    code += 'FCSR = genCCVector(FCSR, CC, cond1);}\n}\n'
367
368    code += 'if (code_block2) {'
369    code += '\tif (isNan(&Fs2.sf, 32) || isNan(&Ft2.sf, 32)) {\n'
370    if 'UnorderedTrue' in flags:
371       code += 'cond2 = 1;\n'
372    elif 'UnorderedFalse' in flags:
373       code += 'cond2 = 0;\n'
374    else:
375       sys.exit('Decoder Failed: Float Compare Instruction Needs A Unordered Flag\n')
376    code += '} else {\n'
377    code +=  cond_code2
378    code += 'FCSR = genCCVector(FCSR, CC, cond2);}\n}'
379
380    iop = InstObjParams(name, Name, 'FPCompareOp', code)
381    header_output = BasicDeclare.subst(iop)
382    decoder_output = BasicConstructor.subst(iop)
383    decode_block = BasicDecode.subst(iop)
384    exec_output = BasicExecute.subst(iop)
385}};
386
387