process.cc revision 13122:32e21edd0a61
1/*
2 * Copyright (c) 2010, 2012, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/logging.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "params/Process.hh"
55#include "sim/aux_vector.hh"
56#include "sim/byteswap.hh"
57#include "sim/process_impl.hh"
58#include "sim/syscall_return.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace ArmISA;
63
64ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
65                       ObjectFile::Arch _arch)
66    : Process(params,
67              new EmulationPageTable(params->name, params->pid, PageBytes),
68              objFile),
69      arch(_arch)
70{
71    fatal_if(params->useArchPT, "Arch page tables not implemented.");
72}
73
74ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
75                           ObjectFile::Arch _arch)
76    : ArmProcess(params, objFile, _arch)
77{
78    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
79                             objFile->bssSize(), PageBytes);
80    Addr stack_base = 0xbf000000L;
81    Addr max_stack_size = 8 * 1024 * 1024;
82    Addr next_thread_stack_base = stack_base - max_stack_size;
83    Addr mmap_end = 0x40000000L;
84
85    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
86                                     next_thread_stack_base, mmap_end);
87}
88
89ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
90                           ObjectFile::Arch _arch)
91    : ArmProcess(params, objFile, _arch)
92{
93    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
94                             objFile->bssSize(), PageBytes);
95    Addr stack_base = 0x7fffff0000L;
96    Addr max_stack_size = 8 * 1024 * 1024;
97    Addr next_thread_stack_base = stack_base - max_stack_size;
98    Addr mmap_end = 0x4000000000L;
99
100    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
101                                     next_thread_stack_base, mmap_end);
102}
103
104void
105ArmProcess32::initState()
106{
107    Process::initState();
108    argsInit<uint32_t>(PageBytes, INTREG_SP);
109    for (int i = 0; i < contextIds.size(); i++) {
110        ThreadContext * tc = system->getThreadContext(contextIds[i]);
111        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
112        // Enable the floating point coprocessors.
113        cpacr.cp10 = 0x3;
114        cpacr.cp11 = 0x3;
115        tc->setMiscReg(MISCREG_CPACR, cpacr);
116        // Generically enable floating point support.
117        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
118        fpexc.en = 1;
119        tc->setMiscReg(MISCREG_FPEXC, fpexc);
120    }
121}
122
123void
124ArmProcess64::initState()
125{
126    Process::initState();
127    argsInit<uint64_t>(PageBytes, INTREG_SP0);
128    for (int i = 0; i < contextIds.size(); i++) {
129        ThreadContext * tc = system->getThreadContext(contextIds[i]);
130        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
131        cpsr.mode = MODE_EL0T;
132        tc->setMiscReg(MISCREG_CPSR, cpsr);
133        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
134        // Enable the floating point coprocessors.
135        cpacr.cp10 = 0x3;
136        cpacr.cp11 = 0x3;
137        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
138        // Generically enable floating point support.
139        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
140        fpexc.en = 1;
141        tc->setMiscReg(MISCREG_FPEXC, fpexc);
142    }
143}
144
145uint32_t
146ArmProcess32::armHwcapImpl() const
147{
148    enum ArmCpuFeature {
149        Arm_Swp = 1 << 0,
150        Arm_Half = 1 << 1,
151        Arm_Thumb = 1 << 2,
152        Arm_26Bit = 1 << 3,
153        Arm_FastMult = 1 << 4,
154        Arm_Fpa = 1 << 5,
155        Arm_Vfp = 1 << 6,
156        Arm_Edsp = 1 << 7,
157        Arm_Java = 1 << 8,
158        Arm_Iwmmxt = 1 << 9,
159        Arm_Crunch = 1 << 10,
160        Arm_ThumbEE = 1 << 11,
161        Arm_Neon = 1 << 12,
162        Arm_Vfpv3 = 1 << 13,
163        Arm_Vfpv3d16 = 1 << 14
164    };
165
166    return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult |
167           Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon |
168           Arm_Vfpv3 | Arm_Vfpv3d16;
169}
170
171uint32_t
172ArmProcess64::armHwcapImpl() const
173{
174    // In order to know what these flags mean, please refer to Linux
175    // /Documentation/arm64/elf_hwcaps.txt text file.
176    enum ArmCpuFeature {
177        Arm_Fp = 1 << 0,
178        Arm_Asimd = 1 << 1,
179        Arm_Evtstrm = 1 << 2,
180        Arm_Aes = 1 << 3,
181        Arm_Pmull = 1 << 4,
182        Arm_Sha1 = 1 << 5,
183        Arm_Sha2 = 1 << 6,
184        Arm_Crc32 = 1 << 7,
185        Arm_Atomics = 1 << 8,
186        Arm_Fphp = 1 << 9,
187        Arm_Asimdhp = 1 << 10,
188        Arm_Cpuid = 1 << 11,
189        Arm_Asimdrdm = 1 << 12,
190        Arm_Jscvt = 1 << 13,
191        Arm_Fcma = 1 << 14,
192        Arm_Lrcpc = 1 << 15,
193        Arm_Dcpop = 1 << 16,
194        Arm_Sha3 = 1 << 17,
195        Arm_Sm3 = 1 << 18,
196        Arm_Sm4 = 1 << 19,
197        Arm_Asimddp = 1 << 20,
198        Arm_Sha512 = 1 << 21,
199        Arm_Sve = 1 << 22,
200        Arm_Asimdfhm = 1 << 23,
201        Arm_Dit = 1 << 24,
202        Arm_Uscat = 1 << 25,
203        Arm_Ilrcpc = 1 << 26,
204        Arm_Flagm = 1 << 27
205    };
206
207    uint32_t hwcap = 0;
208
209    ThreadContext *tc = system->getThreadContext(contextIds[0]);
210
211    const AA64PFR0 pf_r0 = tc->readMiscReg(MISCREG_ID_AA64PFR0_EL1);
212
213    hwcap |= (pf_r0.fp == 0) ? Arm_Fp : 0;
214    hwcap |= (pf_r0.fp == 1) ? Arm_Fphp | Arm_Fp : 0;
215    hwcap |= (pf_r0.advsimd == 0) ? Arm_Asimd : 0;
216    hwcap |= (pf_r0.advsimd == 1) ? Arm_Asimdhp | Arm_Asimd : 0;
217    hwcap |= (pf_r0.sve >= 1) ? Arm_Sve : 0;
218    hwcap |= (pf_r0.dit >= 1) ? Arm_Dit : 0;
219
220    const AA64ISAR0 isa_r0 = tc->readMiscReg(MISCREG_ID_AA64ISAR0_EL1);
221
222    hwcap |= (isa_r0.aes >= 1) ? Arm_Aes : 0;
223    hwcap |= (isa_r0.aes >= 2) ? Arm_Pmull : 0;
224    hwcap |= (isa_r0.sha1 >= 1) ? Arm_Sha1 : 0;
225    hwcap |= (isa_r0.sha2 >= 1) ? Arm_Sha2 : 0;
226    hwcap |= (isa_r0.sha2 >= 2) ? Arm_Sha512 : 0;
227    hwcap |= (isa_r0.crc32 >= 1) ? Arm_Crc32 : 0;
228    hwcap |= (isa_r0.atomic >= 1) ? Arm_Atomics : 0;
229    hwcap |= (isa_r0.rdm >= 1) ? Arm_Asimdrdm : 0;
230    hwcap |= (isa_r0.sha3 >= 1) ? Arm_Sha3 : 0;
231    hwcap |= (isa_r0.sm3 >= 1) ? Arm_Sm3 : 0;
232    hwcap |= (isa_r0.sm4 >= 1) ? Arm_Sm4 : 0;
233    hwcap |= (isa_r0.dp >= 1) ? Arm_Asimddp : 0;
234    hwcap |= (isa_r0.fhm >= 1) ? Arm_Asimdfhm : 0;
235    hwcap |= (isa_r0.ts >= 1) ? Arm_Flagm : 0;
236
237    const AA64ISAR1 isa_r1 = tc->readMiscReg(MISCREG_ID_AA64ISAR1_EL1);
238
239    hwcap |= (isa_r1.dpb >= 1) ? Arm_Dcpop : 0;
240    hwcap |= (isa_r1.jscvt >= 1) ? Arm_Jscvt : 0;
241    hwcap |= (isa_r1.fcma >= 1) ? Arm_Fcma : 0;
242    hwcap |= (isa_r1.lrcpc >= 1) ? Arm_Lrcpc : 0;
243    hwcap |= (isa_r1.lrcpc >= 2) ? Arm_Ilrcpc : 0;
244
245    const AA64MMFR2 mm_fr2 = tc->readMiscReg(MISCREG_ID_AA64MMFR2_EL1);
246
247    hwcap |= (mm_fr2.at >= 1) ? Arm_Uscat : 0;
248
249    return hwcap;
250}
251
252template <class IntType>
253void
254ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
255{
256    int intSize = sizeof(IntType);
257
258    typedef AuxVector<IntType> auxv_t;
259    std::vector<auxv_t> auxv;
260
261    string filename;
262    if (argv.size() < 1)
263        filename = "";
264    else
265        filename = argv[0];
266
267    //We want 16 byte alignment
268    uint64_t align = 16;
269
270    // Patch the ld_bias for dynamic executables.
271    updateBias();
272
273    // load object file into target memory
274    objFile->loadSections(initVirtMem);
275
276    //Setup the auxilliary vectors. These will already have endian conversion.
277    //Auxilliary vectors are loaded only for elf formatted executables.
278    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
279    if (elfObject) {
280
281        if (objFile->getOpSys() == ObjectFile::Linux) {
282            IntType features = armHwcap<IntType>();
283
284            //Bits which describe the system hardware capabilities
285            //XXX Figure out what these should be
286            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
287            //Frequency at which times() increments
288            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
289            //Whether to enable "secure mode" in the executable
290            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
291            // Pointer to 16 bytes of random data
292            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
293            //The filename of the program
294            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
295            //The string "v71" -- ARM v7 architecture
296            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
297        }
298
299        //The system page size
300        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
301        // For statically linked executables, this is the virtual address of the
302        // program header tables if they appear in the executable image
303        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
304        // This is the size of a program header entry from the elf file.
305        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
306        // This is the number of program headers from the original elf file.
307        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
308        // This is the base address of the ELF interpreter; it should be
309        // zero for static executables or contain the base address for
310        // dynamic executables.
311        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
312        //XXX Figure out what this should be.
313        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
314        //The entry point to the program
315        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
316        //Different user and group IDs
317        auxv.push_back(auxv_t(M5_AT_UID, uid()));
318        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
319        auxv.push_back(auxv_t(M5_AT_GID, gid()));
320        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
321    }
322
323    //Figure out how big the initial stack nedes to be
324
325    // A sentry NULL void pointer at the top of the stack.
326    int sentry_size = intSize;
327
328    string platform = "v71";
329    int platform_size = platform.size() + 1;
330
331    // Bytes for AT_RANDOM above, we'll just keep them 0
332    int aux_random_size = 16; // as per the specification
333
334    // The aux vectors are put on the stack in two groups. The first group are
335    // the vectors that are generated as the elf is loaded. The second group
336    // are the ones that were computed ahead of time and include the platform
337    // string.
338    int aux_data_size = filename.size() + 1;
339
340    int env_data_size = 0;
341    for (int i = 0; i < envp.size(); ++i) {
342        env_data_size += envp[i].size() + 1;
343    }
344    int arg_data_size = 0;
345    for (int i = 0; i < argv.size(); ++i) {
346        arg_data_size += argv[i].size() + 1;
347    }
348
349    int info_block_size =
350        sentry_size + env_data_size + arg_data_size +
351        aux_data_size + platform_size + aux_random_size;
352
353    //Each auxilliary vector is two 4 byte words
354    int aux_array_size = intSize * 2 * (auxv.size() + 1);
355
356    int envp_array_size = intSize * (envp.size() + 1);
357    int argv_array_size = intSize * (argv.size() + 1);
358
359    int argc_size = intSize;
360
361    //Figure out the size of the contents of the actual initial frame
362    int frame_size =
363        info_block_size +
364        aux_array_size +
365        envp_array_size +
366        argv_array_size +
367        argc_size;
368
369    //There needs to be padding after the auxiliary vector data so that the
370    //very bottom of the stack is aligned properly.
371    int partial_size = frame_size;
372    int aligned_partial_size = roundUp(partial_size, align);
373    int aux_padding = aligned_partial_size - partial_size;
374
375    int space_needed = frame_size + aux_padding;
376
377    memState->setStackMin(memState->getStackBase() - space_needed);
378    memState->setStackMin(roundDown(memState->getStackMin(), align));
379    memState->setStackSize(memState->getStackBase() - memState->getStackMin());
380
381    // map memory
382    allocateMem(roundDown(memState->getStackMin(), pageSize),
383                          roundUp(memState->getStackSize(), pageSize));
384
385    // map out initial stack contents
386    IntType sentry_base = memState->getStackBase() - sentry_size;
387    IntType aux_data_base = sentry_base - aux_data_size;
388    IntType env_data_base = aux_data_base - env_data_size;
389    IntType arg_data_base = env_data_base - arg_data_size;
390    IntType platform_base = arg_data_base - platform_size;
391    IntType aux_random_base = platform_base - aux_random_size;
392    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
393    IntType envp_array_base = auxv_array_base - envp_array_size;
394    IntType argv_array_base = envp_array_base - argv_array_size;
395    IntType argc_base = argv_array_base - argc_size;
396
397    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
398    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
399    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
400    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
401    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
402    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
403    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
404    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
405    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
406    DPRINTF(Stack, "0x%x - argc \n", argc_base);
407    DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
408
409    // write contents to stack
410
411    // figure out argc
412    IntType argc = argv.size();
413    IntType guestArgc = ArmISA::htog(argc);
414
415    //Write out the sentry void *
416    IntType sentry_NULL = 0;
417    initVirtMem.writeBlob(sentry_base,
418            (uint8_t*)&sentry_NULL, sentry_size);
419
420    //Fix up the aux vectors which point to other data
421    for (int i = auxv.size() - 1; i >= 0; i--) {
422        if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) {
423            auxv[i].setAuxVal(platform_base);
424            initVirtMem.writeString(platform_base, platform.c_str());
425        } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) {
426            auxv[i].setAuxVal(aux_data_base);
427            initVirtMem.writeString(aux_data_base, filename.c_str());
428        } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) {
429            auxv[i].setAuxVal(aux_random_base);
430            // Just leave the value 0, we don't want randomness
431        }
432    }
433
434    //Copy the aux stuff
435    for (int x = 0; x < auxv.size(); x++) {
436        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
437                              (uint8_t*)&(auxv[x].getAuxType()),
438                              intSize);
439        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
440                              (uint8_t*)&(auxv[x].getAuxVal()),
441                              intSize);
442    }
443    //Write out the terminating zeroed auxilliary vector
444    const uint64_t zero = 0;
445    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
446            (uint8_t*)&zero, 2 * intSize);
447
448    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
449    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
450
451    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
452
453    ThreadContext *tc = system->getThreadContext(contextIds[0]);
454    //Set the stack pointer register
455    tc->setIntReg(spIndex, memState->getStackMin());
456    //A pointer to a function to run when the program exits. We'll set this
457    //to zero explicitly to make sure this isn't used.
458    tc->setIntReg(ArgumentReg0, 0);
459    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
460    if (argv.size() > 0) {
461        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
462                                    argv[argv.size() - 1].size() - 1);
463    } else {
464        tc->setIntReg(ArgumentReg1, 0);
465    }
466    if (envp.size() > 0) {
467        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
468                                    envp[envp.size() - 1].size() - 1);
469    } else {
470        tc->setIntReg(ArgumentReg2, 0);
471    }
472
473    PCState pc;
474    pc.thumb(arch == ObjectFile::Thumb);
475    pc.nextThumb(pc.thumb());
476    pc.aarch64(arch == ObjectFile::Arm64);
477    pc.nextAArch64(pc.aarch64());
478    pc.set(getStartPC() & ~mask(1));
479    tc->pcState(pc);
480
481    //Align the "stackMin" to a page boundary.
482    memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
483}
484
485ArmISA::IntReg
486ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
487{
488    assert(i < 6);
489    return tc->readIntReg(ArgumentReg0 + i++);
490}
491
492ArmISA::IntReg
493ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
494{
495    assert(i < 8);
496    return tc->readIntReg(ArgumentReg0 + i++);
497}
498
499ArmISA::IntReg
500ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
501{
502    assert(width == 32 || width == 64);
503    if (width == 32)
504        return getSyscallArg(tc, i);
505
506    // 64 bit arguments are passed starting in an even register
507    if (i % 2 != 0)
508       i++;
509
510    // Registers r0-r6 can be used
511    assert(i < 5);
512    uint64_t val;
513    val = tc->readIntReg(ArgumentReg0 + i++);
514    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
515    return val;
516}
517
518ArmISA::IntReg
519ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
520{
521    return getSyscallArg(tc, i);
522}
523
524
525void
526ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
527{
528    assert(i < 6);
529    tc->setIntReg(ArgumentReg0 + i, val);
530}
531
532void
533ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
534{
535    assert(i < 8);
536    tc->setIntReg(ArgumentReg0 + i, val);
537}
538
539void
540ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
541{
542
543    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
544        // Decode return value
545        if (sysret.encodedValue() >= 0)
546            // FreeBSD checks the carry bit to determine if syscall is succeeded
547            tc->setCCReg(CCREG_C, 0);
548        else {
549            sysret = -sysret.encodedValue();
550        }
551    }
552
553    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
554}
555
556void
557ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
558{
559
560    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
561        // Decode return value
562        if (sysret.encodedValue() >= 0)
563            // FreeBSD checks the carry bit to determine if syscall is succeeded
564            tc->setCCReg(CCREG_C, 0);
565        else {
566            sysret = -sysret.encodedValue();
567        }
568    }
569
570    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
571}
572