process.cc revision 13121:4741df518ab8
1/*
2 * Copyright (c) 2010, 2012, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/logging.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "params/Process.hh"
55#include "sim/aux_vector.hh"
56#include "sim/byteswap.hh"
57#include "sim/process_impl.hh"
58#include "sim/syscall_return.hh"
59#include "sim/system.hh"
60
61using namespace std;
62using namespace ArmISA;
63
64ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
65                       ObjectFile::Arch _arch)
66    : Process(params,
67              new EmulationPageTable(params->name, params->pid, PageBytes),
68              objFile),
69      arch(_arch)
70{
71    fatal_if(params->useArchPT, "Arch page tables not implemented.");
72}
73
74ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
75                           ObjectFile::Arch _arch)
76    : ArmProcess(params, objFile, _arch)
77{
78    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
79                             objFile->bssSize(), PageBytes);
80    Addr stack_base = 0xbf000000L;
81    Addr max_stack_size = 8 * 1024 * 1024;
82    Addr next_thread_stack_base = stack_base - max_stack_size;
83    Addr mmap_end = 0x40000000L;
84
85    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
86                                     next_thread_stack_base, mmap_end);
87}
88
89ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
90                           ObjectFile::Arch _arch)
91    : ArmProcess(params, objFile, _arch)
92{
93    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
94                             objFile->bssSize(), PageBytes);
95    Addr stack_base = 0x7fffff0000L;
96    Addr max_stack_size = 8 * 1024 * 1024;
97    Addr next_thread_stack_base = stack_base - max_stack_size;
98    Addr mmap_end = 0x4000000000L;
99
100    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
101                                     next_thread_stack_base, mmap_end);
102}
103
104void
105ArmProcess32::initState()
106{
107    Process::initState();
108    argsInit<uint32_t>(PageBytes, INTREG_SP);
109    for (int i = 0; i < contextIds.size(); i++) {
110        ThreadContext * tc = system->getThreadContext(contextIds[i]);
111        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
112        // Enable the floating point coprocessors.
113        cpacr.cp10 = 0x3;
114        cpacr.cp11 = 0x3;
115        tc->setMiscReg(MISCREG_CPACR, cpacr);
116        // Generically enable floating point support.
117        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
118        fpexc.en = 1;
119        tc->setMiscReg(MISCREG_FPEXC, fpexc);
120    }
121}
122
123void
124ArmProcess64::initState()
125{
126    Process::initState();
127    argsInit<uint64_t>(PageBytes, INTREG_SP0);
128    for (int i = 0; i < contextIds.size(); i++) {
129        ThreadContext * tc = system->getThreadContext(contextIds[i]);
130        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
131        cpsr.mode = MODE_EL0T;
132        tc->setMiscReg(MISCREG_CPSR, cpsr);
133        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
134        // Enable the floating point coprocessors.
135        cpacr.cp10 = 0x3;
136        cpacr.cp11 = 0x3;
137        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
138        // Generically enable floating point support.
139        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
140        fpexc.en = 1;
141        tc->setMiscReg(MISCREG_FPEXC, fpexc);
142    }
143}
144
145uint32_t
146ArmProcess32::armHwcapImpl() const
147{
148    enum ArmCpuFeature {
149        Arm_Swp = 1 << 0,
150        Arm_Half = 1 << 1,
151        Arm_Thumb = 1 << 2,
152        Arm_26Bit = 1 << 3,
153        Arm_FastMult = 1 << 4,
154        Arm_Fpa = 1 << 5,
155        Arm_Vfp = 1 << 6,
156        Arm_Edsp = 1 << 7,
157        Arm_Java = 1 << 8,
158        Arm_Iwmmxt = 1 << 9,
159        Arm_Crunch = 1 << 10,
160        Arm_ThumbEE = 1 << 11,
161        Arm_Neon = 1 << 12,
162        Arm_Vfpv3 = 1 << 13,
163        Arm_Vfpv3d16 = 1 << 14
164    };
165
166    return Arm_Swp | Arm_Half | Arm_Thumb | Arm_FastMult |
167           Arm_Vfp | Arm_Edsp | Arm_ThumbEE | Arm_Neon |
168           Arm_Vfpv3 | Arm_Vfpv3d16;
169}
170
171uint32_t
172ArmProcess64::armHwcapImpl() const
173{
174    // In order to know what these flags mean, please refer to Linux
175    // /Documentation/arm64/elf_hwcaps.txt text file.
176    enum ArmCpuFeature {
177        Arm_Fp = 1 << 0,
178        Arm_Asimd = 1 << 1,
179        Arm_Evtstrm = 1 << 2,
180        Arm_Aes = 1 << 3,
181        Arm_Pmull = 1 << 4,
182        Arm_Sha1 = 1 << 5,
183        Arm_Sha2 = 1 << 6,
184        Arm_Crc32 = 1 << 7,
185        Arm_Atomics = 1 << 8,
186        Arm_Fphp = 1 << 9,
187        Arm_Asimdhp = 1 << 10,
188        Arm_Cpuid = 1 << 11,
189        Arm_Asimdrdm = 1 << 12,
190        Arm_Jscvt = 1 << 13,
191        Arm_Fcma = 1 << 14,
192        Arm_Lrcpc = 1 << 15,
193        Arm_Dcpop = 1 << 16,
194        Arm_Sha3 = 1 << 17,
195        Arm_Sm3 = 1 << 18,
196        Arm_Sm4 = 1 << 19,
197        Arm_Asimddp = 1 << 20,
198        Arm_Sha512 = 1 << 21,
199        Arm_Sve = 1 << 22,
200        Arm_Asimdfhm = 1 << 23,
201        Arm_Dit = 1 << 24,
202        Arm_Uscat = 1 << 25,
203        Arm_Ilrcpc = 1 << 26,
204        Arm_Flagm = 1 << 27
205    };
206
207    return Arm_Fp | Arm_Asimd | Arm_Evtstrm | Arm_Crc32;
208}
209
210template <class IntType>
211void
212ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
213{
214    int intSize = sizeof(IntType);
215
216    typedef AuxVector<IntType> auxv_t;
217    std::vector<auxv_t> auxv;
218
219    string filename;
220    if (argv.size() < 1)
221        filename = "";
222    else
223        filename = argv[0];
224
225    //We want 16 byte alignment
226    uint64_t align = 16;
227
228    // Patch the ld_bias for dynamic executables.
229    updateBias();
230
231    // load object file into target memory
232    objFile->loadSections(initVirtMem);
233
234    //Setup the auxilliary vectors. These will already have endian conversion.
235    //Auxilliary vectors are loaded only for elf formatted executables.
236    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
237    if (elfObject) {
238
239        if (objFile->getOpSys() == ObjectFile::Linux) {
240            IntType features = armHwcap<IntType>();
241
242            //Bits which describe the system hardware capabilities
243            //XXX Figure out what these should be
244            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
245            //Frequency at which times() increments
246            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
247            //Whether to enable "secure mode" in the executable
248            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
249            // Pointer to 16 bytes of random data
250            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
251            //The filename of the program
252            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
253            //The string "v71" -- ARM v7 architecture
254            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
255        }
256
257        //The system page size
258        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
259        // For statically linked executables, this is the virtual address of the
260        // program header tables if they appear in the executable image
261        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
262        // This is the size of a program header entry from the elf file.
263        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
264        // This is the number of program headers from the original elf file.
265        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
266        // This is the base address of the ELF interpreter; it should be
267        // zero for static executables or contain the base address for
268        // dynamic executables.
269        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
270        //XXX Figure out what this should be.
271        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
272        //The entry point to the program
273        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
274        //Different user and group IDs
275        auxv.push_back(auxv_t(M5_AT_UID, uid()));
276        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
277        auxv.push_back(auxv_t(M5_AT_GID, gid()));
278        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
279    }
280
281    //Figure out how big the initial stack nedes to be
282
283    // A sentry NULL void pointer at the top of the stack.
284    int sentry_size = intSize;
285
286    string platform = "v71";
287    int platform_size = platform.size() + 1;
288
289    // Bytes for AT_RANDOM above, we'll just keep them 0
290    int aux_random_size = 16; // as per the specification
291
292    // The aux vectors are put on the stack in two groups. The first group are
293    // the vectors that are generated as the elf is loaded. The second group
294    // are the ones that were computed ahead of time and include the platform
295    // string.
296    int aux_data_size = filename.size() + 1;
297
298    int env_data_size = 0;
299    for (int i = 0; i < envp.size(); ++i) {
300        env_data_size += envp[i].size() + 1;
301    }
302    int arg_data_size = 0;
303    for (int i = 0; i < argv.size(); ++i) {
304        arg_data_size += argv[i].size() + 1;
305    }
306
307    int info_block_size =
308        sentry_size + env_data_size + arg_data_size +
309        aux_data_size + platform_size + aux_random_size;
310
311    //Each auxilliary vector is two 4 byte words
312    int aux_array_size = intSize * 2 * (auxv.size() + 1);
313
314    int envp_array_size = intSize * (envp.size() + 1);
315    int argv_array_size = intSize * (argv.size() + 1);
316
317    int argc_size = intSize;
318
319    //Figure out the size of the contents of the actual initial frame
320    int frame_size =
321        info_block_size +
322        aux_array_size +
323        envp_array_size +
324        argv_array_size +
325        argc_size;
326
327    //There needs to be padding after the auxiliary vector data so that the
328    //very bottom of the stack is aligned properly.
329    int partial_size = frame_size;
330    int aligned_partial_size = roundUp(partial_size, align);
331    int aux_padding = aligned_partial_size - partial_size;
332
333    int space_needed = frame_size + aux_padding;
334
335    memState->setStackMin(memState->getStackBase() - space_needed);
336    memState->setStackMin(roundDown(memState->getStackMin(), align));
337    memState->setStackSize(memState->getStackBase() - memState->getStackMin());
338
339    // map memory
340    allocateMem(roundDown(memState->getStackMin(), pageSize),
341                          roundUp(memState->getStackSize(), pageSize));
342
343    // map out initial stack contents
344    IntType sentry_base = memState->getStackBase() - sentry_size;
345    IntType aux_data_base = sentry_base - aux_data_size;
346    IntType env_data_base = aux_data_base - env_data_size;
347    IntType arg_data_base = env_data_base - arg_data_size;
348    IntType platform_base = arg_data_base - platform_size;
349    IntType aux_random_base = platform_base - aux_random_size;
350    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
351    IntType envp_array_base = auxv_array_base - envp_array_size;
352    IntType argv_array_base = envp_array_base - argv_array_size;
353    IntType argc_base = argv_array_base - argc_size;
354
355    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
356    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
357    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
358    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
359    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
360    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
361    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
362    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
363    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
364    DPRINTF(Stack, "0x%x - argc \n", argc_base);
365    DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
366
367    // write contents to stack
368
369    // figure out argc
370    IntType argc = argv.size();
371    IntType guestArgc = ArmISA::htog(argc);
372
373    //Write out the sentry void *
374    IntType sentry_NULL = 0;
375    initVirtMem.writeBlob(sentry_base,
376            (uint8_t*)&sentry_NULL, sentry_size);
377
378    //Fix up the aux vectors which point to other data
379    for (int i = auxv.size() - 1; i >= 0; i--) {
380        if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) {
381            auxv[i].setAuxVal(platform_base);
382            initVirtMem.writeString(platform_base, platform.c_str());
383        } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) {
384            auxv[i].setAuxVal(aux_data_base);
385            initVirtMem.writeString(aux_data_base, filename.c_str());
386        } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) {
387            auxv[i].setAuxVal(aux_random_base);
388            // Just leave the value 0, we don't want randomness
389        }
390    }
391
392    //Copy the aux stuff
393    for (int x = 0; x < auxv.size(); x++) {
394        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
395                              (uint8_t*)&(auxv[x].getAuxType()),
396                              intSize);
397        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
398                              (uint8_t*)&(auxv[x].getAuxVal()),
399                              intSize);
400    }
401    //Write out the terminating zeroed auxilliary vector
402    const uint64_t zero = 0;
403    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
404            (uint8_t*)&zero, 2 * intSize);
405
406    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
407    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
408
409    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
410
411    ThreadContext *tc = system->getThreadContext(contextIds[0]);
412    //Set the stack pointer register
413    tc->setIntReg(spIndex, memState->getStackMin());
414    //A pointer to a function to run when the program exits. We'll set this
415    //to zero explicitly to make sure this isn't used.
416    tc->setIntReg(ArgumentReg0, 0);
417    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
418    if (argv.size() > 0) {
419        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
420                                    argv[argv.size() - 1].size() - 1);
421    } else {
422        tc->setIntReg(ArgumentReg1, 0);
423    }
424    if (envp.size() > 0) {
425        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
426                                    envp[envp.size() - 1].size() - 1);
427    } else {
428        tc->setIntReg(ArgumentReg2, 0);
429    }
430
431    PCState pc;
432    pc.thumb(arch == ObjectFile::Thumb);
433    pc.nextThumb(pc.thumb());
434    pc.aarch64(arch == ObjectFile::Arm64);
435    pc.nextAArch64(pc.aarch64());
436    pc.set(getStartPC() & ~mask(1));
437    tc->pcState(pc);
438
439    //Align the "stackMin" to a page boundary.
440    memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
441}
442
443ArmISA::IntReg
444ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
445{
446    assert(i < 6);
447    return tc->readIntReg(ArgumentReg0 + i++);
448}
449
450ArmISA::IntReg
451ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
452{
453    assert(i < 8);
454    return tc->readIntReg(ArgumentReg0 + i++);
455}
456
457ArmISA::IntReg
458ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
459{
460    assert(width == 32 || width == 64);
461    if (width == 32)
462        return getSyscallArg(tc, i);
463
464    // 64 bit arguments are passed starting in an even register
465    if (i % 2 != 0)
466       i++;
467
468    // Registers r0-r6 can be used
469    assert(i < 5);
470    uint64_t val;
471    val = tc->readIntReg(ArgumentReg0 + i++);
472    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
473    return val;
474}
475
476ArmISA::IntReg
477ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
478{
479    return getSyscallArg(tc, i);
480}
481
482
483void
484ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
485{
486    assert(i < 6);
487    tc->setIntReg(ArgumentReg0 + i, val);
488}
489
490void
491ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
492{
493    assert(i < 8);
494    tc->setIntReg(ArgumentReg0 + i, val);
495}
496
497void
498ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
499{
500
501    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
502        // Decode return value
503        if (sysret.encodedValue() >= 0)
504            // FreeBSD checks the carry bit to determine if syscall is succeeded
505            tc->setCCReg(CCREG_C, 0);
506        else {
507            sysret = -sysret.encodedValue();
508        }
509    }
510
511    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
512}
513
514void
515ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
516{
517
518    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
519        // Decode return value
520        if (sysret.encodedValue() >= 0)
521            // FreeBSD checks the carry bit to determine if syscall is succeeded
522            tc->setCCReg(CCREG_C, 0);
523        else {
524            sysret = -sysret.encodedValue();
525        }
526    }
527
528    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
529}
530