process.cc revision 13028
1/* 2 * Copyright (c) 2010, 2012 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2007-2008 The Florida State University 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Stephen Hines 41 * Ali Saidi 42 */ 43 44#include "arch/arm/process.hh" 45 46#include "arch/arm/isa_traits.hh" 47#include "arch/arm/types.hh" 48#include "base/loader/elf_object.hh" 49#include "base/loader/object_file.hh" 50#include "base/logging.hh" 51#include "cpu/thread_context.hh" 52#include "debug/Stack.hh" 53#include "mem/page_table.hh" 54#include "params/Process.hh" 55#include "sim/aux_vector.hh" 56#include "sim/byteswap.hh" 57#include "sim/process_impl.hh" 58#include "sim/syscall_return.hh" 59#include "sim/system.hh" 60 61using namespace std; 62using namespace ArmISA; 63 64ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile, 65 ObjectFile::Arch _arch) 66 : Process(params, 67 new EmulationPageTable(params->name, params->pid, PageBytes), 68 objFile), 69 arch(_arch) 70{ 71 fatal_if(params->useArchPT, "Arch page tables not implemented."); 72} 73 74ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile, 75 ObjectFile::Arch _arch) 76 : ArmProcess(params, objFile, _arch) 77{ 78 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + 79 objFile->bssSize(), PageBytes); 80 Addr stack_base = 0xbf000000L; 81 Addr max_stack_size = 8 * 1024 * 1024; 82 Addr next_thread_stack_base = stack_base - max_stack_size; 83 Addr mmap_end = 0x40000000L; 84 85 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, 86 next_thread_stack_base, mmap_end); 87} 88 89ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile, 90 ObjectFile::Arch _arch) 91 : ArmProcess(params, objFile, _arch) 92{ 93 Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() + 94 objFile->bssSize(), PageBytes); 95 Addr stack_base = 0x7fffff0000L; 96 Addr max_stack_size = 8 * 1024 * 1024; 97 Addr next_thread_stack_base = stack_base - max_stack_size; 98 Addr mmap_end = 0x4000000000L; 99 100 memState = make_shared<MemState>(brk_point, stack_base, max_stack_size, 101 next_thread_stack_base, mmap_end); 102} 103 104void 105ArmProcess32::initState() 106{ 107 Process::initState(); 108 argsInit<uint32_t>(PageBytes, INTREG_SP); 109 for (int i = 0; i < contextIds.size(); i++) { 110 ThreadContext * tc = system->getThreadContext(contextIds[i]); 111 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR); 112 // Enable the floating point coprocessors. 113 cpacr.cp10 = 0x3; 114 cpacr.cp11 = 0x3; 115 tc->setMiscReg(MISCREG_CPACR, cpacr); 116 // Generically enable floating point support. 117 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); 118 fpexc.en = 1; 119 tc->setMiscReg(MISCREG_FPEXC, fpexc); 120 } 121} 122 123void 124ArmProcess64::initState() 125{ 126 Process::initState(); 127 argsInit<uint64_t>(PageBytes, INTREG_SP0); 128 for (int i = 0; i < contextIds.size(); i++) { 129 ThreadContext * tc = system->getThreadContext(contextIds[i]); 130 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 131 cpsr.mode = MODE_EL0T; 132 tc->setMiscReg(MISCREG_CPSR, cpsr); 133 CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1); 134 // Enable the floating point coprocessors. 135 cpacr.cp10 = 0x3; 136 cpacr.cp11 = 0x3; 137 tc->setMiscReg(MISCREG_CPACR_EL1, cpacr); 138 // Generically enable floating point support. 139 FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC); 140 fpexc.en = 1; 141 tc->setMiscReg(MISCREG_FPEXC, fpexc); 142 } 143} 144 145template <class IntType> 146void 147ArmProcess::argsInit(int pageSize, IntRegIndex spIndex) 148{ 149 int intSize = sizeof(IntType); 150 151 typedef AuxVector<IntType> auxv_t; 152 std::vector<auxv_t> auxv; 153 154 string filename; 155 if (argv.size() < 1) 156 filename = ""; 157 else 158 filename = argv[0]; 159 160 //We want 16 byte alignment 161 uint64_t align = 16; 162 163 // Patch the ld_bias for dynamic executables. 164 updateBias(); 165 166 // load object file into target memory 167 objFile->loadSections(initVirtMem); 168 169 enum ArmCpuFeature { 170 Arm_Swp = 1 << 0, 171 Arm_Half = 1 << 1, 172 Arm_Thumb = 1 << 2, 173 Arm_26Bit = 1 << 3, 174 Arm_FastMult = 1 << 4, 175 Arm_Fpa = 1 << 5, 176 Arm_Vfp = 1 << 6, 177 Arm_Edsp = 1 << 7, 178 Arm_Java = 1 << 8, 179 Arm_Iwmmxt = 1 << 9, 180 Arm_Crunch = 1 << 10, 181 Arm_ThumbEE = 1 << 11, 182 Arm_Neon = 1 << 12, 183 Arm_Vfpv3 = 1 << 13, 184 Arm_Vfpv3d16 = 1 << 14 185 }; 186 187 //Setup the auxilliary vectors. These will already have endian conversion. 188 //Auxilliary vectors are loaded only for elf formatted executables. 189 ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile); 190 if (elfObject) { 191 192 if (objFile->getOpSys() == ObjectFile::Linux) { 193 IntType features = 194 Arm_Swp | 195 Arm_Half | 196 Arm_Thumb | 197// Arm_26Bit | 198 Arm_FastMult | 199// Arm_Fpa | 200 Arm_Vfp | 201 Arm_Edsp | 202// Arm_Java | 203// Arm_Iwmmxt | 204// Arm_Crunch | 205 Arm_ThumbEE | 206 Arm_Neon | 207 Arm_Vfpv3 | 208 Arm_Vfpv3d16 | 209 0; 210 211 //Bits which describe the system hardware capabilities 212 //XXX Figure out what these should be 213 auxv.push_back(auxv_t(M5_AT_HWCAP, features)); 214 //Frequency at which times() increments 215 auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64)); 216 //Whether to enable "secure mode" in the executable 217 auxv.push_back(auxv_t(M5_AT_SECURE, 0)); 218 // Pointer to 16 bytes of random data 219 auxv.push_back(auxv_t(M5_AT_RANDOM, 0)); 220 //The filename of the program 221 auxv.push_back(auxv_t(M5_AT_EXECFN, 0)); 222 //The string "v71" -- ARM v7 architecture 223 auxv.push_back(auxv_t(M5_AT_PLATFORM, 0)); 224 } 225 226 //The system page size 227 auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes)); 228 // For statically linked executables, this is the virtual address of the 229 // program header tables if they appear in the executable image 230 auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); 231 // This is the size of a program header entry from the elf file. 232 auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); 233 // This is the number of program headers from the original elf file. 234 auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); 235 // This is the base address of the ELF interpreter; it should be 236 // zero for static executables or contain the base address for 237 // dynamic executables. 238 auxv.push_back(auxv_t(M5_AT_BASE, getBias())); 239 //XXX Figure out what this should be. 240 auxv.push_back(auxv_t(M5_AT_FLAGS, 0)); 241 //The entry point to the program 242 auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); 243 //Different user and group IDs 244 auxv.push_back(auxv_t(M5_AT_UID, uid())); 245 auxv.push_back(auxv_t(M5_AT_EUID, euid())); 246 auxv.push_back(auxv_t(M5_AT_GID, gid())); 247 auxv.push_back(auxv_t(M5_AT_EGID, egid())); 248 } 249 250 //Figure out how big the initial stack nedes to be 251 252 // A sentry NULL void pointer at the top of the stack. 253 int sentry_size = intSize; 254 255 string platform = "v71"; 256 int platform_size = platform.size() + 1; 257 258 // Bytes for AT_RANDOM above, we'll just keep them 0 259 int aux_random_size = 16; // as per the specification 260 261 // The aux vectors are put on the stack in two groups. The first group are 262 // the vectors that are generated as the elf is loaded. The second group 263 // are the ones that were computed ahead of time and include the platform 264 // string. 265 int aux_data_size = filename.size() + 1; 266 267 int env_data_size = 0; 268 for (int i = 0; i < envp.size(); ++i) { 269 env_data_size += envp[i].size() + 1; 270 } 271 int arg_data_size = 0; 272 for (int i = 0; i < argv.size(); ++i) { 273 arg_data_size += argv[i].size() + 1; 274 } 275 276 int info_block_size = 277 sentry_size + env_data_size + arg_data_size + 278 aux_data_size + platform_size + aux_random_size; 279 280 //Each auxilliary vector is two 4 byte words 281 int aux_array_size = intSize * 2 * (auxv.size() + 1); 282 283 int envp_array_size = intSize * (envp.size() + 1); 284 int argv_array_size = intSize * (argv.size() + 1); 285 286 int argc_size = intSize; 287 288 //Figure out the size of the contents of the actual initial frame 289 int frame_size = 290 info_block_size + 291 aux_array_size + 292 envp_array_size + 293 argv_array_size + 294 argc_size; 295 296 //There needs to be padding after the auxiliary vector data so that the 297 //very bottom of the stack is aligned properly. 298 int partial_size = frame_size; 299 int aligned_partial_size = roundUp(partial_size, align); 300 int aux_padding = aligned_partial_size - partial_size; 301 302 int space_needed = frame_size + aux_padding; 303 304 memState->setStackMin(memState->getStackBase() - space_needed); 305 memState->setStackMin(roundDown(memState->getStackMin(), align)); 306 memState->setStackSize(memState->getStackBase() - memState->getStackMin()); 307 308 // map memory 309 allocateMem(roundDown(memState->getStackMin(), pageSize), 310 roundUp(memState->getStackSize(), pageSize)); 311 312 // map out initial stack contents 313 IntType sentry_base = memState->getStackBase() - sentry_size; 314 IntType aux_data_base = sentry_base - aux_data_size; 315 IntType env_data_base = aux_data_base - env_data_size; 316 IntType arg_data_base = env_data_base - arg_data_size; 317 IntType platform_base = arg_data_base - platform_size; 318 IntType aux_random_base = platform_base - aux_random_size; 319 IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding; 320 IntType envp_array_base = auxv_array_base - envp_array_size; 321 IntType argv_array_base = envp_array_base - argv_array_size; 322 IntType argc_base = argv_array_base - argc_size; 323 324 DPRINTF(Stack, "The addresses of items on the initial stack:\n"); 325 DPRINTF(Stack, "0x%x - aux data\n", aux_data_base); 326 DPRINTF(Stack, "0x%x - env data\n", env_data_base); 327 DPRINTF(Stack, "0x%x - arg data\n", arg_data_base); 328 DPRINTF(Stack, "0x%x - random data\n", aux_random_base); 329 DPRINTF(Stack, "0x%x - platform base\n", platform_base); 330 DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base); 331 DPRINTF(Stack, "0x%x - envp array\n", envp_array_base); 332 DPRINTF(Stack, "0x%x - argv array\n", argv_array_base); 333 DPRINTF(Stack, "0x%x - argc \n", argc_base); 334 DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin()); 335 336 // write contents to stack 337 338 // figure out argc 339 IntType argc = argv.size(); 340 IntType guestArgc = ArmISA::htog(argc); 341 342 //Write out the sentry void * 343 IntType sentry_NULL = 0; 344 initVirtMem.writeBlob(sentry_base, 345 (uint8_t*)&sentry_NULL, sentry_size); 346 347 //Fix up the aux vectors which point to other data 348 for (int i = auxv.size() - 1; i >= 0; i--) { 349 if (auxv[i].getHostAuxType() == M5_AT_PLATFORM) { 350 auxv[i].setAuxVal(platform_base); 351 initVirtMem.writeString(platform_base, platform.c_str()); 352 } else if (auxv[i].getHostAuxType() == M5_AT_EXECFN) { 353 auxv[i].setAuxVal(aux_data_base); 354 initVirtMem.writeString(aux_data_base, filename.c_str()); 355 } else if (auxv[i].getHostAuxType() == M5_AT_RANDOM) { 356 auxv[i].setAuxVal(aux_random_base); 357 // Just leave the value 0, we don't want randomness 358 } 359 } 360 361 //Copy the aux stuff 362 for (int x = 0; x < auxv.size(); x++) { 363 initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize, 364 (uint8_t*)&(auxv[x].getAuxType()), 365 intSize); 366 initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize, 367 (uint8_t*)&(auxv[x].getAuxVal()), 368 intSize); 369 } 370 //Write out the terminating zeroed auxilliary vector 371 const uint64_t zero = 0; 372 initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(), 373 (uint8_t*)&zero, 2 * intSize); 374 375 copyStringArray(envp, envp_array_base, env_data_base, initVirtMem); 376 copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem); 377 378 initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize); 379 380 ThreadContext *tc = system->getThreadContext(contextIds[0]); 381 //Set the stack pointer register 382 tc->setIntReg(spIndex, memState->getStackMin()); 383 //A pointer to a function to run when the program exits. We'll set this 384 //to zero explicitly to make sure this isn't used. 385 tc->setIntReg(ArgumentReg0, 0); 386 //Set argument regs 1 and 2 to argv[0] and envp[0] respectively 387 if (argv.size() > 0) { 388 tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size - 389 argv[argv.size() - 1].size() - 1); 390 } else { 391 tc->setIntReg(ArgumentReg1, 0); 392 } 393 if (envp.size() > 0) { 394 tc->setIntReg(ArgumentReg2, env_data_base + env_data_size - 395 envp[envp.size() - 1].size() - 1); 396 } else { 397 tc->setIntReg(ArgumentReg2, 0); 398 } 399 400 PCState pc; 401 pc.thumb(arch == ObjectFile::Thumb); 402 pc.nextThumb(pc.thumb()); 403 pc.aarch64(arch == ObjectFile::Arm64); 404 pc.nextAArch64(pc.aarch64()); 405 pc.set(getStartPC() & ~mask(1)); 406 tc->pcState(pc); 407 408 //Align the "stackMin" to a page boundary. 409 memState->setStackMin(roundDown(memState->getStackMin(), pageSize)); 410} 411 412ArmISA::IntReg 413ArmProcess32::getSyscallArg(ThreadContext *tc, int &i) 414{ 415 assert(i < 6); 416 return tc->readIntReg(ArgumentReg0 + i++); 417} 418 419ArmISA::IntReg 420ArmProcess64::getSyscallArg(ThreadContext *tc, int &i) 421{ 422 assert(i < 8); 423 return tc->readIntReg(ArgumentReg0 + i++); 424} 425 426ArmISA::IntReg 427ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width) 428{ 429 assert(width == 32 || width == 64); 430 if (width == 32) 431 return getSyscallArg(tc, i); 432 433 // 64 bit arguments are passed starting in an even register 434 if (i % 2 != 0) 435 i++; 436 437 // Registers r0-r6 can be used 438 assert(i < 5); 439 uint64_t val; 440 val = tc->readIntReg(ArgumentReg0 + i++); 441 val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32); 442 return val; 443} 444 445ArmISA::IntReg 446ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width) 447{ 448 return getSyscallArg(tc, i); 449} 450 451 452void 453ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val) 454{ 455 assert(i < 6); 456 tc->setIntReg(ArgumentReg0 + i, val); 457} 458 459void 460ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val) 461{ 462 assert(i < 8); 463 tc->setIntReg(ArgumentReg0 + i, val); 464} 465 466void 467ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) 468{ 469 470 if (objFile->getOpSys() == ObjectFile::FreeBSD) { 471 // Decode return value 472 if (sysret.encodedValue() >= 0) 473 // FreeBSD checks the carry bit to determine if syscall is succeeded 474 tc->setCCReg(CCREG_C, 0); 475 else { 476 sysret = -sysret.encodedValue(); 477 } 478 } 479 480 tc->setIntReg(ReturnValueReg, sysret.encodedValue()); 481} 482 483void 484ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) 485{ 486 487 if (objFile->getOpSys() == ObjectFile::FreeBSD) { 488 // Decode return value 489 if (sysret.encodedValue() >= 0) 490 // FreeBSD checks the carry bit to determine if syscall is succeeded 491 tc->setCCReg(CCREG_C, 0); 492 else { 493 sysret = -sysret.encodedValue(); 494 } 495 } 496 497 tc->setIntReg(ReturnValueReg, sysret.encodedValue()); 498} 499