process.cc revision 12334:e0ab29a34764
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/logging.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "sim/aux_vector.hh"
55#include "sim/byteswap.hh"
56#include "sim/process_impl.hh"
57#include "sim/syscall_return.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace ArmISA;
62
63ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
64                       ObjectFile::Arch _arch)
65    : Process(params, objFile), arch(_arch)
66{
67}
68
69ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
70                           ObjectFile::Arch _arch)
71    : ArmProcess(params, objFile, _arch)
72{
73    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
74                             objFile->bssSize(), PageBytes);
75    Addr stack_base = 0xbf000000L;
76    Addr max_stack_size = 8 * 1024 * 1024;
77    Addr next_thread_stack_base = stack_base - max_stack_size;
78    Addr mmap_end = 0x40000000L;
79
80    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
81                                     next_thread_stack_base, mmap_end);
82}
83
84ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
85                           ObjectFile::Arch _arch)
86    : ArmProcess(params, objFile, _arch)
87{
88    Addr brk_point = roundUp(objFile->dataBase() + objFile->dataSize() +
89                             objFile->bssSize(), PageBytes);
90    Addr stack_base = 0x7fffff0000L;
91    Addr max_stack_size = 8 * 1024 * 1024;
92    Addr next_thread_stack_base = stack_base - max_stack_size;
93    Addr mmap_end = 0x4000000000L;
94
95    memState = make_shared<MemState>(brk_point, stack_base, max_stack_size,
96                                     next_thread_stack_base, mmap_end);
97}
98
99void
100ArmProcess32::initState()
101{
102    Process::initState();
103    argsInit<uint32_t>(PageBytes, INTREG_SP);
104    for (int i = 0; i < contextIds.size(); i++) {
105        ThreadContext * tc = system->getThreadContext(contextIds[i]);
106        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
107        // Enable the floating point coprocessors.
108        cpacr.cp10 = 0x3;
109        cpacr.cp11 = 0x3;
110        tc->setMiscReg(MISCREG_CPACR, cpacr);
111        // Generically enable floating point support.
112        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
113        fpexc.en = 1;
114        tc->setMiscReg(MISCREG_FPEXC, fpexc);
115    }
116}
117
118void
119ArmProcess64::initState()
120{
121    Process::initState();
122    argsInit<uint64_t>(PageBytes, INTREG_SP0);
123    for (int i = 0; i < contextIds.size(); i++) {
124        ThreadContext * tc = system->getThreadContext(contextIds[i]);
125        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
126        cpsr.mode = MODE_EL0T;
127        tc->setMiscReg(MISCREG_CPSR, cpsr);
128        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
129        // Enable the floating point coprocessors.
130        cpacr.cp10 = 0x3;
131        cpacr.cp11 = 0x3;
132        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
133        // Generically enable floating point support.
134        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
135        fpexc.en = 1;
136        tc->setMiscReg(MISCREG_FPEXC, fpexc);
137    }
138}
139
140template <class IntType>
141void
142ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
143{
144    int intSize = sizeof(IntType);
145
146    typedef AuxVector<IntType> auxv_t;
147    std::vector<auxv_t> auxv;
148
149    string filename;
150    if (argv.size() < 1)
151        filename = "";
152    else
153        filename = argv[0];
154
155    //We want 16 byte alignment
156    uint64_t align = 16;
157
158    // Patch the ld_bias for dynamic executables.
159    updateBias();
160
161    // load object file into target memory
162    objFile->loadSections(initVirtMem);
163
164    enum ArmCpuFeature {
165        Arm_Swp = 1 << 0,
166        Arm_Half = 1 << 1,
167        Arm_Thumb = 1 << 2,
168        Arm_26Bit = 1 << 3,
169        Arm_FastMult = 1 << 4,
170        Arm_Fpa = 1 << 5,
171        Arm_Vfp = 1 << 6,
172        Arm_Edsp = 1 << 7,
173        Arm_Java = 1 << 8,
174        Arm_Iwmmxt = 1 << 9,
175        Arm_Crunch = 1 << 10,
176        Arm_ThumbEE = 1 << 11,
177        Arm_Neon = 1 << 12,
178        Arm_Vfpv3 = 1 << 13,
179        Arm_Vfpv3d16 = 1 << 14
180    };
181
182    //Setup the auxilliary vectors. These will already have endian conversion.
183    //Auxilliary vectors are loaded only for elf formatted executables.
184    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
185    if (elfObject) {
186
187        if (objFile->getOpSys() == ObjectFile::Linux) {
188            IntType features =
189                Arm_Swp |
190                Arm_Half |
191                Arm_Thumb |
192//                Arm_26Bit |
193                Arm_FastMult |
194//                Arm_Fpa |
195                Arm_Vfp |
196                Arm_Edsp |
197//                Arm_Java |
198//                Arm_Iwmmxt |
199//                Arm_Crunch |
200                Arm_ThumbEE |
201                Arm_Neon |
202                Arm_Vfpv3 |
203                Arm_Vfpv3d16 |
204                0;
205
206            //Bits which describe the system hardware capabilities
207            //XXX Figure out what these should be
208            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
209            //Frequency at which times() increments
210            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
211            //Whether to enable "secure mode" in the executable
212            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
213            // Pointer to 16 bytes of random data
214            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
215            //The filename of the program
216            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
217            //The string "v71" -- ARM v7 architecture
218            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
219        }
220
221        //The system page size
222        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
223        // For statically linked executables, this is the virtual address of the
224        // program header tables if they appear in the executable image
225        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
226        // This is the size of a program header entry from the elf file.
227        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
228        // This is the number of program headers from the original elf file.
229        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
230        // This is the base address of the ELF interpreter; it should be
231        // zero for static executables or contain the base address for
232        // dynamic executables.
233        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
234        //XXX Figure out what this should be.
235        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
236        //The entry point to the program
237        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
238        //Different user and group IDs
239        auxv.push_back(auxv_t(M5_AT_UID, uid()));
240        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
241        auxv.push_back(auxv_t(M5_AT_GID, gid()));
242        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
243    }
244
245    //Figure out how big the initial stack nedes to be
246
247    // A sentry NULL void pointer at the top of the stack.
248    int sentry_size = intSize;
249
250    string platform = "v71";
251    int platform_size = platform.size() + 1;
252
253    // Bytes for AT_RANDOM above, we'll just keep them 0
254    int aux_random_size = 16; // as per the specification
255
256    // The aux vectors are put on the stack in two groups. The first group are
257    // the vectors that are generated as the elf is loaded. The second group
258    // are the ones that were computed ahead of time and include the platform
259    // string.
260    int aux_data_size = filename.size() + 1;
261
262    int env_data_size = 0;
263    for (int i = 0; i < envp.size(); ++i) {
264        env_data_size += envp[i].size() + 1;
265    }
266    int arg_data_size = 0;
267    for (int i = 0; i < argv.size(); ++i) {
268        arg_data_size += argv[i].size() + 1;
269    }
270
271    int info_block_size =
272        sentry_size + env_data_size + arg_data_size +
273        aux_data_size + platform_size + aux_random_size;
274
275    //Each auxilliary vector is two 4 byte words
276    int aux_array_size = intSize * 2 * (auxv.size() + 1);
277
278    int envp_array_size = intSize * (envp.size() + 1);
279    int argv_array_size = intSize * (argv.size() + 1);
280
281    int argc_size = intSize;
282
283    //Figure out the size of the contents of the actual initial frame
284    int frame_size =
285        info_block_size +
286        aux_array_size +
287        envp_array_size +
288        argv_array_size +
289        argc_size;
290
291    //There needs to be padding after the auxiliary vector data so that the
292    //very bottom of the stack is aligned properly.
293    int partial_size = frame_size;
294    int aligned_partial_size = roundUp(partial_size, align);
295    int aux_padding = aligned_partial_size - partial_size;
296
297    int space_needed = frame_size + aux_padding;
298
299    memState->setStackMin(memState->getStackBase() - space_needed);
300    memState->setStackMin(roundDown(memState->getStackMin(), align));
301    memState->setStackSize(memState->getStackBase() - memState->getStackMin());
302
303    // map memory
304    allocateMem(roundDown(memState->getStackMin(), pageSize),
305                          roundUp(memState->getStackSize(), pageSize));
306
307    // map out initial stack contents
308    IntType sentry_base = memState->getStackBase() - sentry_size;
309    IntType aux_data_base = sentry_base - aux_data_size;
310    IntType env_data_base = aux_data_base - env_data_size;
311    IntType arg_data_base = env_data_base - arg_data_size;
312    IntType platform_base = arg_data_base - platform_size;
313    IntType aux_random_base = platform_base - aux_random_size;
314    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
315    IntType envp_array_base = auxv_array_base - envp_array_size;
316    IntType argv_array_base = envp_array_base - argv_array_size;
317    IntType argc_base = argv_array_base - argc_size;
318
319    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
320    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
321    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
322    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
323    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
324    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
325    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
326    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
327    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
328    DPRINTF(Stack, "0x%x - argc \n", argc_base);
329    DPRINTF(Stack, "0x%x - stack min\n", memState->getStackMin());
330
331    // write contents to stack
332
333    // figure out argc
334    IntType argc = argv.size();
335    IntType guestArgc = ArmISA::htog(argc);
336
337    //Write out the sentry void *
338    IntType sentry_NULL = 0;
339    initVirtMem.writeBlob(sentry_base,
340            (uint8_t*)&sentry_NULL, sentry_size);
341
342    //Fix up the aux vectors which point to other data
343    for (int i = auxv.size() - 1; i >= 0; i--) {
344        if (auxv[i].a_type == M5_AT_PLATFORM) {
345            auxv[i].a_val = platform_base;
346            initVirtMem.writeString(platform_base, platform.c_str());
347        } else if (auxv[i].a_type == M5_AT_EXECFN) {
348            auxv[i].a_val = aux_data_base;
349            initVirtMem.writeString(aux_data_base, filename.c_str());
350        } else if (auxv[i].a_type == M5_AT_RANDOM) {
351            auxv[i].a_val = aux_random_base;
352            // Just leave the value 0, we don't want randomness
353        }
354    }
355
356    //Copy the aux stuff
357    for (int x = 0; x < auxv.size(); x++) {
358        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
359                (uint8_t*)&(auxv[x].a_type), intSize);
360        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
361                (uint8_t*)&(auxv[x].a_val), intSize);
362    }
363    //Write out the terminating zeroed auxilliary vector
364    const uint64_t zero = 0;
365    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
366            (uint8_t*)&zero, 2 * intSize);
367
368    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
369    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
370
371    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
372
373    ThreadContext *tc = system->getThreadContext(contextIds[0]);
374    //Set the stack pointer register
375    tc->setIntReg(spIndex, memState->getStackMin());
376    //A pointer to a function to run when the program exits. We'll set this
377    //to zero explicitly to make sure this isn't used.
378    tc->setIntReg(ArgumentReg0, 0);
379    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
380    if (argv.size() > 0) {
381        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
382                                    argv[argv.size() - 1].size() - 1);
383    } else {
384        tc->setIntReg(ArgumentReg1, 0);
385    }
386    if (envp.size() > 0) {
387        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
388                                    envp[envp.size() - 1].size() - 1);
389    } else {
390        tc->setIntReg(ArgumentReg2, 0);
391    }
392
393    PCState pc;
394    pc.thumb(arch == ObjectFile::Thumb);
395    pc.nextThumb(pc.thumb());
396    pc.aarch64(arch == ObjectFile::Arm64);
397    pc.nextAArch64(pc.aarch64());
398    pc.set(getStartPC() & ~mask(1));
399    tc->pcState(pc);
400
401    //Align the "stackMin" to a page boundary.
402    memState->setStackMin(roundDown(memState->getStackMin(), pageSize));
403}
404
405ArmISA::IntReg
406ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
407{
408    assert(i < 6);
409    return tc->readIntReg(ArgumentReg0 + i++);
410}
411
412ArmISA::IntReg
413ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
414{
415    assert(i < 8);
416    return tc->readIntReg(ArgumentReg0 + i++);
417}
418
419ArmISA::IntReg
420ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
421{
422    assert(width == 32 || width == 64);
423    if (width == 32)
424        return getSyscallArg(tc, i);
425
426    // 64 bit arguments are passed starting in an even register
427    if (i % 2 != 0)
428       i++;
429
430    // Registers r0-r6 can be used
431    assert(i < 5);
432    uint64_t val;
433    val = tc->readIntReg(ArgumentReg0 + i++);
434    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
435    return val;
436}
437
438ArmISA::IntReg
439ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
440{
441    return getSyscallArg(tc, i);
442}
443
444
445void
446ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
447{
448    assert(i < 6);
449    tc->setIntReg(ArgumentReg0 + i, val);
450}
451
452void
453ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
454{
455    assert(i < 8);
456    tc->setIntReg(ArgumentReg0 + i, val);
457}
458
459void
460ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
461{
462
463    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
464        // Decode return value
465        if (sysret.encodedValue() >= 0)
466            // FreeBSD checks the carry bit to determine if syscall is succeeded
467            tc->setCCReg(CCREG_C, 0);
468        else {
469            sysret = -sysret.encodedValue();
470        }
471    }
472
473    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
474}
475
476void
477ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
478{
479
480    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
481        // Decode return value
482        if (sysret.encodedValue() >= 0)
483            // FreeBSD checks the carry bit to determine if syscall is succeeded
484            tc->setCCReg(CCREG_C, 0);
485        else {
486            sysret = -sysret.encodedValue();
487        }
488    }
489
490    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
491}
492