process.cc revision 11886:43b882cada33
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/misc.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "sim/aux_vector.hh"
55#include "sim/byteswap.hh"
56#include "sim/process_impl.hh"
57#include "sim/syscall_return.hh"
58#include "sim/system.hh"
59
60using namespace std;
61using namespace ArmISA;
62
63ArmProcess::ArmProcess(ProcessParams *params, ObjectFile *objFile,
64                       ObjectFile::Arch _arch)
65    : Process(params, objFile), arch(_arch)
66{
67}
68
69ArmProcess32::ArmProcess32(ProcessParams *params, ObjectFile *objFile,
70                           ObjectFile::Arch _arch)
71    : ArmProcess(params, objFile, _arch)
72{
73    memState->stackBase = 0xbf000000L;
74
75    // Set pointer for next thread stack.  Reserve 8M for main stack.
76    memState->nextThreadStackBase = memState->stackBase - (8 * 1024 * 1024);
77
78    // Set up break point (Top of Heap)
79    memState->brkPoint = objFile->dataBase() + objFile->dataSize() +
80                         objFile->bssSize();
81    memState->brkPoint = roundUp(memState->brkPoint, PageBytes);
82
83    // Set up region for mmaps. For now, start at bottom of kuseg space.
84    memState->mmapEnd = 0x40000000L;
85}
86
87ArmProcess64::ArmProcess64(ProcessParams *params, ObjectFile *objFile,
88                           ObjectFile::Arch _arch)
89    : ArmProcess(params, objFile, _arch)
90{
91    memState->stackBase = 0x7fffff0000L;
92
93    // Set pointer for next thread stack.  Reserve 8M for main stack.
94    memState->nextThreadStackBase = memState->stackBase - (8 * 1024 * 1024);
95
96    // Set up break point (Top of Heap)
97    memState->brkPoint = objFile->dataBase() + objFile->dataSize() +
98                         objFile->bssSize();
99    memState->brkPoint = roundUp(memState->brkPoint, PageBytes);
100
101    // Set up region for mmaps. For now, start at bottom of kuseg space.
102    memState->mmapEnd = 0x4000000000L;
103}
104
105void
106ArmProcess32::initState()
107{
108    Process::initState();
109    argsInit<uint32_t>(PageBytes, INTREG_SP);
110    for (int i = 0; i < contextIds.size(); i++) {
111        ThreadContext * tc = system->getThreadContext(contextIds[i]);
112        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
113        // Enable the floating point coprocessors.
114        cpacr.cp10 = 0x3;
115        cpacr.cp11 = 0x3;
116        tc->setMiscReg(MISCREG_CPACR, cpacr);
117        // Generically enable floating point support.
118        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
119        fpexc.en = 1;
120        tc->setMiscReg(MISCREG_FPEXC, fpexc);
121    }
122}
123
124void
125ArmProcess64::initState()
126{
127    Process::initState();
128    argsInit<uint64_t>(PageBytes, INTREG_SP0);
129    for (int i = 0; i < contextIds.size(); i++) {
130        ThreadContext * tc = system->getThreadContext(contextIds[i]);
131        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
132        cpsr.mode = MODE_EL0T;
133        tc->setMiscReg(MISCREG_CPSR, cpsr);
134        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
135        // Enable the floating point coprocessors.
136        cpacr.cp10 = 0x3;
137        cpacr.cp11 = 0x3;
138        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
139        // Generically enable floating point support.
140        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
141        fpexc.en = 1;
142        tc->setMiscReg(MISCREG_FPEXC, fpexc);
143    }
144}
145
146template <class IntType>
147void
148ArmProcess::argsInit(int pageSize, IntRegIndex spIndex)
149{
150    int intSize = sizeof(IntType);
151
152    typedef AuxVector<IntType> auxv_t;
153    std::vector<auxv_t> auxv;
154
155    string filename;
156    if (argv.size() < 1)
157        filename = "";
158    else
159        filename = argv[0];
160
161    //We want 16 byte alignment
162    uint64_t align = 16;
163
164    // Patch the ld_bias for dynamic executables.
165    updateBias();
166
167    // load object file into target memory
168    objFile->loadSections(initVirtMem);
169
170    enum ArmCpuFeature {
171        Arm_Swp = 1 << 0,
172        Arm_Half = 1 << 1,
173        Arm_Thumb = 1 << 2,
174        Arm_26Bit = 1 << 3,
175        Arm_FastMult = 1 << 4,
176        Arm_Fpa = 1 << 5,
177        Arm_Vfp = 1 << 6,
178        Arm_Edsp = 1 << 7,
179        Arm_Java = 1 << 8,
180        Arm_Iwmmxt = 1 << 9,
181        Arm_Crunch = 1 << 10,
182        Arm_ThumbEE = 1 << 11,
183        Arm_Neon = 1 << 12,
184        Arm_Vfpv3 = 1 << 13,
185        Arm_Vfpv3d16 = 1 << 14
186    };
187
188    //Setup the auxilliary vectors. These will already have endian conversion.
189    //Auxilliary vectors are loaded only for elf formatted executables.
190    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
191    if (elfObject) {
192
193        if (objFile->getOpSys() == ObjectFile::Linux) {
194            IntType features =
195                Arm_Swp |
196                Arm_Half |
197                Arm_Thumb |
198//                Arm_26Bit |
199                Arm_FastMult |
200//                Arm_Fpa |
201                Arm_Vfp |
202                Arm_Edsp |
203//                Arm_Java |
204//                Arm_Iwmmxt |
205//                Arm_Crunch |
206                Arm_ThumbEE |
207                Arm_Neon |
208                Arm_Vfpv3 |
209                Arm_Vfpv3d16 |
210                0;
211
212            //Bits which describe the system hardware capabilities
213            //XXX Figure out what these should be
214            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
215            //Frequency at which times() increments
216            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
217            //Whether to enable "secure mode" in the executable
218            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
219            // Pointer to 16 bytes of random data
220            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
221            //The filename of the program
222            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
223            //The string "v71" -- ARM v7 architecture
224            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
225        }
226
227        //The system page size
228        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
229        // For statically linked executables, this is the virtual address of the
230        // program header tables if they appear in the executable image
231        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
232        // This is the size of a program header entry from the elf file.
233        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
234        // This is the number of program headers from the original elf file.
235        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
236        // This is the base address of the ELF interpreter; it should be
237        // zero for static executables or contain the base address for
238        // dynamic executables.
239        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
240        //XXX Figure out what this should be.
241        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
242        //The entry point to the program
243        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
244        //Different user and group IDs
245        auxv.push_back(auxv_t(M5_AT_UID, uid()));
246        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
247        auxv.push_back(auxv_t(M5_AT_GID, gid()));
248        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
249    }
250
251    //Figure out how big the initial stack nedes to be
252
253    // A sentry NULL void pointer at the top of the stack.
254    int sentry_size = intSize;
255
256    string platform = "v71";
257    int platform_size = platform.size() + 1;
258
259    // Bytes for AT_RANDOM above, we'll just keep them 0
260    int aux_random_size = 16; // as per the specification
261
262    // The aux vectors are put on the stack in two groups. The first group are
263    // the vectors that are generated as the elf is loaded. The second group
264    // are the ones that were computed ahead of time and include the platform
265    // string.
266    int aux_data_size = filename.size() + 1;
267
268    int env_data_size = 0;
269    for (int i = 0; i < envp.size(); ++i) {
270        env_data_size += envp[i].size() + 1;
271    }
272    int arg_data_size = 0;
273    for (int i = 0; i < argv.size(); ++i) {
274        arg_data_size += argv[i].size() + 1;
275    }
276
277    int info_block_size =
278        sentry_size + env_data_size + arg_data_size +
279        aux_data_size + platform_size + aux_random_size;
280
281    //Each auxilliary vector is two 4 byte words
282    int aux_array_size = intSize * 2 * (auxv.size() + 1);
283
284    int envp_array_size = intSize * (envp.size() + 1);
285    int argv_array_size = intSize * (argv.size() + 1);
286
287    int argc_size = intSize;
288
289    //Figure out the size of the contents of the actual initial frame
290    int frame_size =
291        info_block_size +
292        aux_array_size +
293        envp_array_size +
294        argv_array_size +
295        argc_size;
296
297    //There needs to be padding after the auxiliary vector data so that the
298    //very bottom of the stack is aligned properly.
299    int partial_size = frame_size;
300    int aligned_partial_size = roundUp(partial_size, align);
301    int aux_padding = aligned_partial_size - partial_size;
302
303    int space_needed = frame_size + aux_padding;
304
305    memState->stackMin = memState->stackBase - space_needed;
306    memState->stackMin = roundDown(memState->stackMin, align);
307    memState->stackSize = memState->stackBase - memState->stackMin;
308
309    // map memory
310    allocateMem(roundDown(memState->stackMin, pageSize),
311                          roundUp(memState->stackSize, pageSize));
312
313    // map out initial stack contents
314    IntType sentry_base = memState->stackBase - sentry_size;
315    IntType aux_data_base = sentry_base - aux_data_size;
316    IntType env_data_base = aux_data_base - env_data_size;
317    IntType arg_data_base = env_data_base - arg_data_size;
318    IntType platform_base = arg_data_base - platform_size;
319    IntType aux_random_base = platform_base - aux_random_size;
320    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
321    IntType envp_array_base = auxv_array_base - envp_array_size;
322    IntType argv_array_base = envp_array_base - argv_array_size;
323    IntType argc_base = argv_array_base - argc_size;
324
325    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
326    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
327    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
328    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
329    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
330    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
331    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
332    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
333    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
334    DPRINTF(Stack, "0x%x - argc \n", argc_base);
335    DPRINTF(Stack, "0x%x - stack min\n", memState->stackMin);
336
337    // write contents to stack
338
339    // figure out argc
340    IntType argc = argv.size();
341    IntType guestArgc = ArmISA::htog(argc);
342
343    //Write out the sentry void *
344    IntType sentry_NULL = 0;
345    initVirtMem.writeBlob(sentry_base,
346            (uint8_t*)&sentry_NULL, sentry_size);
347
348    //Fix up the aux vectors which point to other data
349    for (int i = auxv.size() - 1; i >= 0; i--) {
350        if (auxv[i].a_type == M5_AT_PLATFORM) {
351            auxv[i].a_val = platform_base;
352            initVirtMem.writeString(platform_base, platform.c_str());
353        } else if (auxv[i].a_type == M5_AT_EXECFN) {
354            auxv[i].a_val = aux_data_base;
355            initVirtMem.writeString(aux_data_base, filename.c_str());
356        } else if (auxv[i].a_type == M5_AT_RANDOM) {
357            auxv[i].a_val = aux_random_base;
358            // Just leave the value 0, we don't want randomness
359        }
360    }
361
362    //Copy the aux stuff
363    for (int x = 0; x < auxv.size(); x++) {
364        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
365                (uint8_t*)&(auxv[x].a_type), intSize);
366        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
367                (uint8_t*)&(auxv[x].a_val), intSize);
368    }
369    //Write out the terminating zeroed auxilliary vector
370    const uint64_t zero = 0;
371    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
372            (uint8_t*)&zero, 2 * intSize);
373
374    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
375    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
376
377    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
378
379    ThreadContext *tc = system->getThreadContext(contextIds[0]);
380    //Set the stack pointer register
381    tc->setIntReg(spIndex, memState->stackMin);
382    //A pointer to a function to run when the program exits. We'll set this
383    //to zero explicitly to make sure this isn't used.
384    tc->setIntReg(ArgumentReg0, 0);
385    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
386    if (argv.size() > 0) {
387        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
388                                    argv[argv.size() - 1].size() - 1);
389    } else {
390        tc->setIntReg(ArgumentReg1, 0);
391    }
392    if (envp.size() > 0) {
393        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
394                                    envp[envp.size() - 1].size() - 1);
395    } else {
396        tc->setIntReg(ArgumentReg2, 0);
397    }
398
399    PCState pc;
400    pc.thumb(arch == ObjectFile::Thumb);
401    pc.nextThumb(pc.thumb());
402    pc.aarch64(arch == ObjectFile::Arm64);
403    pc.nextAArch64(pc.aarch64());
404    pc.set(getStartPC() & ~mask(1));
405    tc->pcState(pc);
406
407    //Align the "stackMin" to a page boundary.
408    memState->stackMin = roundDown(memState->stackMin, pageSize);
409}
410
411ArmISA::IntReg
412ArmProcess32::getSyscallArg(ThreadContext *tc, int &i)
413{
414    assert(i < 6);
415    return tc->readIntReg(ArgumentReg0 + i++);
416}
417
418ArmISA::IntReg
419ArmProcess64::getSyscallArg(ThreadContext *tc, int &i)
420{
421    assert(i < 8);
422    return tc->readIntReg(ArgumentReg0 + i++);
423}
424
425ArmISA::IntReg
426ArmProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
427{
428    assert(width == 32 || width == 64);
429    if (width == 32)
430        return getSyscallArg(tc, i);
431
432    // 64 bit arguments are passed starting in an even register
433    if (i % 2 != 0)
434       i++;
435
436    // Registers r0-r6 can be used
437    assert(i < 5);
438    uint64_t val;
439    val = tc->readIntReg(ArgumentReg0 + i++);
440    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
441    return val;
442}
443
444ArmISA::IntReg
445ArmProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
446{
447    return getSyscallArg(tc, i);
448}
449
450
451void
452ArmProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
453{
454    assert(i < 6);
455    tc->setIntReg(ArgumentReg0 + i, val);
456}
457
458void
459ArmProcess64::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
460{
461    assert(i < 8);
462    tc->setIntReg(ArgumentReg0 + i, val);
463}
464
465void
466ArmProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
467{
468
469    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
470        // Decode return value
471        if (sysret.encodedValue() >= 0)
472            // FreeBSD checks the carry bit to determine if syscall is succeeded
473            tc->setCCReg(CCREG_C, 0);
474        else {
475            sysret = -sysret.encodedValue();
476        }
477    }
478
479    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
480}
481
482void
483ArmProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
484{
485
486    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
487        // Decode return value
488        if (sysret.encodedValue() >= 0)
489            // FreeBSD checks the carry bit to determine if syscall is succeeded
490            tc->setCCReg(CCREG_C, 0);
491        else {
492            sysret = -sysret.encodedValue();
493        }
494    }
495
496    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
497}
498