process.cc revision 11800:54436a1784dc
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/misc.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "sim/byteswap.hh"
55#include "sim/process_impl.hh"
56#include "sim/syscall_return.hh"
57#include "sim/system.hh"
58
59using namespace std;
60using namespace ArmISA;
61
62ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
63                               ObjectFile::Arch _arch)
64    : LiveProcess(params, objFile), arch(_arch)
65{
66}
67
68ArmLiveProcess32::ArmLiveProcess32(LiveProcessParams *params,
69                                   ObjectFile *objFile, ObjectFile::Arch _arch)
70    : ArmLiveProcess(params, objFile, _arch)
71{
72    stack_base = 0xbf000000L;
73
74    // Set pointer for next thread stack.  Reserve 8M for main stack.
75    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
76
77    // Set up break point (Top of Heap)
78    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
79    brk_point = roundUp(brk_point, PageBytes);
80
81    // Set up region for mmaps. For now, start at bottom of kuseg space.
82    mmap_end = 0x40000000L;
83}
84
85ArmLiveProcess64::ArmLiveProcess64(LiveProcessParams *params,
86                                   ObjectFile *objFile, ObjectFile::Arch _arch)
87    : ArmLiveProcess(params, objFile, _arch)
88{
89    stack_base = 0x7fffff0000L;
90
91    // Set pointer for next thread stack.  Reserve 8M for main stack.
92    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
93
94    // Set up break point (Top of Heap)
95    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
96    brk_point = roundUp(brk_point, PageBytes);
97
98    // Set up region for mmaps. For now, start at bottom of kuseg space.
99    mmap_end = 0x4000000000L;
100}
101
102void
103ArmLiveProcess32::initState()
104{
105    LiveProcess::initState();
106    argsInit<uint32_t>(PageBytes, INTREG_SP);
107    for (int i = 0; i < contextIds.size(); i++) {
108        ThreadContext * tc = system->getThreadContext(contextIds[i]);
109        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
110        // Enable the floating point coprocessors.
111        cpacr.cp10 = 0x3;
112        cpacr.cp11 = 0x3;
113        tc->setMiscReg(MISCREG_CPACR, cpacr);
114        // Generically enable floating point support.
115        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
116        fpexc.en = 1;
117        tc->setMiscReg(MISCREG_FPEXC, fpexc);
118    }
119}
120
121void
122ArmLiveProcess64::initState()
123{
124    LiveProcess::initState();
125    argsInit<uint64_t>(PageBytes, INTREG_SP0);
126    for (int i = 0; i < contextIds.size(); i++) {
127        ThreadContext * tc = system->getThreadContext(contextIds[i]);
128        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
129        cpsr.mode = MODE_EL0T;
130        tc->setMiscReg(MISCREG_CPSR, cpsr);
131        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
132        // Enable the floating point coprocessors.
133        cpacr.cp10 = 0x3;
134        cpacr.cp11 = 0x3;
135        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
136        // Generically enable floating point support.
137        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
138        fpexc.en = 1;
139        tc->setMiscReg(MISCREG_FPEXC, fpexc);
140    }
141}
142
143template <class IntType>
144void
145ArmLiveProcess::argsInit(int pageSize, IntRegIndex spIndex)
146{
147    int intSize = sizeof(IntType);
148
149    typedef AuxVector<IntType> auxv_t;
150    std::vector<auxv_t> auxv;
151
152    string filename;
153    if (argv.size() < 1)
154        filename = "";
155    else
156        filename = argv[0];
157
158    //We want 16 byte alignment
159    uint64_t align = 16;
160
161    // Patch the ld_bias for dynamic executables.
162    updateBias();
163
164    // load object file into target memory
165    objFile->loadSections(initVirtMem);
166
167    enum ArmCpuFeature {
168        Arm_Swp = 1 << 0,
169        Arm_Half = 1 << 1,
170        Arm_Thumb = 1 << 2,
171        Arm_26Bit = 1 << 3,
172        Arm_FastMult = 1 << 4,
173        Arm_Fpa = 1 << 5,
174        Arm_Vfp = 1 << 6,
175        Arm_Edsp = 1 << 7,
176        Arm_Java = 1 << 8,
177        Arm_Iwmmxt = 1 << 9,
178        Arm_Crunch = 1 << 10,
179        Arm_ThumbEE = 1 << 11,
180        Arm_Neon = 1 << 12,
181        Arm_Vfpv3 = 1 << 13,
182        Arm_Vfpv3d16 = 1 << 14
183    };
184
185    //Setup the auxilliary vectors. These will already have endian conversion.
186    //Auxilliary vectors are loaded only for elf formatted executables.
187    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
188    if (elfObject) {
189
190        if (objFile->getOpSys() == ObjectFile::Linux) {
191            IntType features =
192                Arm_Swp |
193                Arm_Half |
194                Arm_Thumb |
195//                Arm_26Bit |
196                Arm_FastMult |
197//                Arm_Fpa |
198                Arm_Vfp |
199                Arm_Edsp |
200//                Arm_Java |
201//                Arm_Iwmmxt |
202//                Arm_Crunch |
203                Arm_ThumbEE |
204                Arm_Neon |
205                Arm_Vfpv3 |
206                Arm_Vfpv3d16 |
207                0;
208
209            //Bits which describe the system hardware capabilities
210            //XXX Figure out what these should be
211            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
212            //Frequency at which times() increments
213            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
214            //Whether to enable "secure mode" in the executable
215            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
216            // Pointer to 16 bytes of random data
217            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
218            //The filename of the program
219            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
220            //The string "v71" -- ARM v7 architecture
221            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
222        }
223
224        //The system page size
225        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
226        // For statically linked executables, this is the virtual address of the
227        // program header tables if they appear in the executable image
228        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
229        // This is the size of a program header entry from the elf file.
230        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
231        // This is the number of program headers from the original elf file.
232        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
233        // This is the base address of the ELF interpreter; it should be
234        // zero for static executables or contain the base address for
235        // dynamic executables.
236        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
237        //XXX Figure out what this should be.
238        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
239        //The entry point to the program
240        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
241        //Different user and group IDs
242        auxv.push_back(auxv_t(M5_AT_UID, uid()));
243        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
244        auxv.push_back(auxv_t(M5_AT_GID, gid()));
245        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
246    }
247
248    //Figure out how big the initial stack nedes to be
249
250    // A sentry NULL void pointer at the top of the stack.
251    int sentry_size = intSize;
252
253    string platform = "v71";
254    int platform_size = platform.size() + 1;
255
256    // Bytes for AT_RANDOM above, we'll just keep them 0
257    int aux_random_size = 16; // as per the specification
258
259    // The aux vectors are put on the stack in two groups. The first group are
260    // the vectors that are generated as the elf is loaded. The second group
261    // are the ones that were computed ahead of time and include the platform
262    // string.
263    int aux_data_size = filename.size() + 1;
264
265    int env_data_size = 0;
266    for (int i = 0; i < envp.size(); ++i) {
267        env_data_size += envp[i].size() + 1;
268    }
269    int arg_data_size = 0;
270    for (int i = 0; i < argv.size(); ++i) {
271        arg_data_size += argv[i].size() + 1;
272    }
273
274    int info_block_size =
275        sentry_size + env_data_size + arg_data_size +
276        aux_data_size + platform_size + aux_random_size;
277
278    //Each auxilliary vector is two 4 byte words
279    int aux_array_size = intSize * 2 * (auxv.size() + 1);
280
281    int envp_array_size = intSize * (envp.size() + 1);
282    int argv_array_size = intSize * (argv.size() + 1);
283
284    int argc_size = intSize;
285
286    //Figure out the size of the contents of the actual initial frame
287    int frame_size =
288        info_block_size +
289        aux_array_size +
290        envp_array_size +
291        argv_array_size +
292        argc_size;
293
294    //There needs to be padding after the auxiliary vector data so that the
295    //very bottom of the stack is aligned properly.
296    int partial_size = frame_size;
297    int aligned_partial_size = roundUp(partial_size, align);
298    int aux_padding = aligned_partial_size - partial_size;
299
300    int space_needed = frame_size + aux_padding;
301
302    stack_min = stack_base - space_needed;
303    stack_min = roundDown(stack_min, align);
304    stack_size = stack_base - stack_min;
305
306    // map memory
307    allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
308
309    // map out initial stack contents
310    IntType sentry_base = stack_base - sentry_size;
311    IntType aux_data_base = sentry_base - aux_data_size;
312    IntType env_data_base = aux_data_base - env_data_size;
313    IntType arg_data_base = env_data_base - arg_data_size;
314    IntType platform_base = arg_data_base - platform_size;
315    IntType aux_random_base = platform_base - aux_random_size;
316    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
317    IntType envp_array_base = auxv_array_base - envp_array_size;
318    IntType argv_array_base = envp_array_base - argv_array_size;
319    IntType argc_base = argv_array_base - argc_size;
320
321    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
322    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
323    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
324    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
325    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
326    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
327    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
328    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
329    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
330    DPRINTF(Stack, "0x%x - argc \n", argc_base);
331    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
332
333    // write contents to stack
334
335    // figure out argc
336    IntType argc = argv.size();
337    IntType guestArgc = ArmISA::htog(argc);
338
339    //Write out the sentry void *
340    IntType sentry_NULL = 0;
341    initVirtMem.writeBlob(sentry_base,
342            (uint8_t*)&sentry_NULL, sentry_size);
343
344    //Fix up the aux vectors which point to other data
345    for (int i = auxv.size() - 1; i >= 0; i--) {
346        if (auxv[i].a_type == M5_AT_PLATFORM) {
347            auxv[i].a_val = platform_base;
348            initVirtMem.writeString(platform_base, platform.c_str());
349        } else if (auxv[i].a_type == M5_AT_EXECFN) {
350            auxv[i].a_val = aux_data_base;
351            initVirtMem.writeString(aux_data_base, filename.c_str());
352        } else if (auxv[i].a_type == M5_AT_RANDOM) {
353            auxv[i].a_val = aux_random_base;
354            // Just leave the value 0, we don't want randomness
355        }
356    }
357
358    //Copy the aux stuff
359    for (int x = 0; x < auxv.size(); x++) {
360        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
361                (uint8_t*)&(auxv[x].a_type), intSize);
362        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
363                (uint8_t*)&(auxv[x].a_val), intSize);
364    }
365    //Write out the terminating zeroed auxilliary vector
366    const uint64_t zero = 0;
367    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
368            (uint8_t*)&zero, 2 * intSize);
369
370    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
371    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
372
373    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
374
375    ThreadContext *tc = system->getThreadContext(contextIds[0]);
376    //Set the stack pointer register
377    tc->setIntReg(spIndex, stack_min);
378    //A pointer to a function to run when the program exits. We'll set this
379    //to zero explicitly to make sure this isn't used.
380    tc->setIntReg(ArgumentReg0, 0);
381    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
382    if (argv.size() > 0) {
383        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
384                                    argv[argv.size() - 1].size() - 1);
385    } else {
386        tc->setIntReg(ArgumentReg1, 0);
387    }
388    if (envp.size() > 0) {
389        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
390                                    envp[envp.size() - 1].size() - 1);
391    } else {
392        tc->setIntReg(ArgumentReg2, 0);
393    }
394
395    PCState pc;
396    pc.thumb(arch == ObjectFile::Thumb);
397    pc.nextThumb(pc.thumb());
398    pc.aarch64(arch == ObjectFile::Arm64);
399    pc.nextAArch64(pc.aarch64());
400    pc.set(getStartPC() & ~mask(1));
401    tc->pcState(pc);
402
403    //Align the "stack_min" to a page boundary.
404    stack_min = roundDown(stack_min, pageSize);
405}
406
407ArmISA::IntReg
408ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i)
409{
410    assert(i < 6);
411    return tc->readIntReg(ArgumentReg0 + i++);
412}
413
414ArmISA::IntReg
415ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i)
416{
417    assert(i < 8);
418    return tc->readIntReg(ArgumentReg0 + i++);
419}
420
421ArmISA::IntReg
422ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
423{
424    assert(width == 32 || width == 64);
425    if (width == 32)
426        return getSyscallArg(tc, i);
427
428    // 64 bit arguments are passed starting in an even register
429    if (i % 2 != 0)
430       i++;
431
432    // Registers r0-r6 can be used
433    assert(i < 5);
434    uint64_t val;
435    val = tc->readIntReg(ArgumentReg0 + i++);
436    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
437    return val;
438}
439
440ArmISA::IntReg
441ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
442{
443    return getSyscallArg(tc, i);
444}
445
446
447void
448ArmLiveProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
449{
450    assert(i < 6);
451    tc->setIntReg(ArgumentReg0 + i, val);
452}
453
454void
455ArmLiveProcess64::setSyscallArg(ThreadContext *tc,
456        int i, ArmISA::IntReg val)
457{
458    assert(i < 8);
459    tc->setIntReg(ArgumentReg0 + i, val);
460}
461
462void
463ArmLiveProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
464{
465
466    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
467        // Decode return value
468        if (sysret.encodedValue() >= 0)
469            // FreeBSD checks the carry bit to determine if syscall is succeeded
470            tc->setCCReg(CCREG_C, 0);
471        else {
472            sysret = -sysret.encodedValue();
473        }
474    }
475
476    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
477}
478
479void
480ArmLiveProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
481{
482
483    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
484        // Decode return value
485        if (sysret.encodedValue() >= 0)
486            // FreeBSD checks the carry bit to determine if syscall is succeeded
487            tc->setCCReg(CCREG_C, 0);
488        else {
489            sysret = -sysret.encodedValue();
490        }
491    }
492
493    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
494}
495