process.cc revision 11793:ef606668d247
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/process.hh"
45
46#include "arch/arm/isa_traits.hh"
47#include "arch/arm/types.hh"
48#include "base/loader/elf_object.hh"
49#include "base/loader/object_file.hh"
50#include "base/misc.hh"
51#include "cpu/thread_context.hh"
52#include "debug/Stack.hh"
53#include "mem/page_table.hh"
54#include "sim/byteswap.hh"
55#include "sim/process_impl.hh"
56#include "sim/system.hh"
57
58using namespace std;
59using namespace ArmISA;
60
61ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
62                               ObjectFile::Arch _arch)
63    : LiveProcess(params, objFile), arch(_arch)
64{
65}
66
67ArmLiveProcess32::ArmLiveProcess32(LiveProcessParams *params,
68                                   ObjectFile *objFile, ObjectFile::Arch _arch)
69    : ArmLiveProcess(params, objFile, _arch)
70{
71    stack_base = 0xbf000000L;
72
73    // Set pointer for next thread stack.  Reserve 8M for main stack.
74    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
75
76    // Set up break point (Top of Heap)
77    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
78    brk_point = roundUp(brk_point, PageBytes);
79
80    // Set up region for mmaps. For now, start at bottom of kuseg space.
81    mmap_end = 0x40000000L;
82}
83
84ArmLiveProcess64::ArmLiveProcess64(LiveProcessParams *params,
85                                   ObjectFile *objFile, ObjectFile::Arch _arch)
86    : ArmLiveProcess(params, objFile, _arch)
87{
88    stack_base = 0x7fffff0000L;
89
90    // Set pointer for next thread stack.  Reserve 8M for main stack.
91    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
92
93    // Set up break point (Top of Heap)
94    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
95    brk_point = roundUp(brk_point, PageBytes);
96
97    // Set up region for mmaps. For now, start at bottom of kuseg space.
98    mmap_end = 0x4000000000L;
99}
100
101void
102ArmLiveProcess32::initState()
103{
104    LiveProcess::initState();
105    argsInit<uint32_t>(PageBytes, INTREG_SP);
106    for (int i = 0; i < contextIds.size(); i++) {
107        ThreadContext * tc = system->getThreadContext(contextIds[i]);
108        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
109        // Enable the floating point coprocessors.
110        cpacr.cp10 = 0x3;
111        cpacr.cp11 = 0x3;
112        tc->setMiscReg(MISCREG_CPACR, cpacr);
113        // Generically enable floating point support.
114        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
115        fpexc.en = 1;
116        tc->setMiscReg(MISCREG_FPEXC, fpexc);
117    }
118}
119
120void
121ArmLiveProcess64::initState()
122{
123    LiveProcess::initState();
124    argsInit<uint64_t>(PageBytes, INTREG_SP0);
125    for (int i = 0; i < contextIds.size(); i++) {
126        ThreadContext * tc = system->getThreadContext(contextIds[i]);
127        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
128        cpsr.mode = MODE_EL0T;
129        tc->setMiscReg(MISCREG_CPSR, cpsr);
130        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
131        // Enable the floating point coprocessors.
132        cpacr.cp10 = 0x3;
133        cpacr.cp11 = 0x3;
134        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
135        // Generically enable floating point support.
136        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
137        fpexc.en = 1;
138        tc->setMiscReg(MISCREG_FPEXC, fpexc);
139    }
140}
141
142template <class IntType>
143void
144ArmLiveProcess::argsInit(int pageSize, IntRegIndex spIndex)
145{
146    int intSize = sizeof(IntType);
147
148    typedef AuxVector<IntType> auxv_t;
149    std::vector<auxv_t> auxv;
150
151    string filename;
152    if (argv.size() < 1)
153        filename = "";
154    else
155        filename = argv[0];
156
157    //We want 16 byte alignment
158    uint64_t align = 16;
159
160    // Patch the ld_bias for dynamic executables.
161    updateBias();
162
163    // load object file into target memory
164    objFile->loadSections(initVirtMem);
165
166    enum ArmCpuFeature {
167        Arm_Swp = 1 << 0,
168        Arm_Half = 1 << 1,
169        Arm_Thumb = 1 << 2,
170        Arm_26Bit = 1 << 3,
171        Arm_FastMult = 1 << 4,
172        Arm_Fpa = 1 << 5,
173        Arm_Vfp = 1 << 6,
174        Arm_Edsp = 1 << 7,
175        Arm_Java = 1 << 8,
176        Arm_Iwmmxt = 1 << 9,
177        Arm_Crunch = 1 << 10,
178        Arm_ThumbEE = 1 << 11,
179        Arm_Neon = 1 << 12,
180        Arm_Vfpv3 = 1 << 13,
181        Arm_Vfpv3d16 = 1 << 14
182    };
183
184    //Setup the auxilliary vectors. These will already have endian conversion.
185    //Auxilliary vectors are loaded only for elf formatted executables.
186    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
187    if (elfObject) {
188
189        if (objFile->getOpSys() == ObjectFile::Linux) {
190            IntType features =
191                Arm_Swp |
192                Arm_Half |
193                Arm_Thumb |
194//                Arm_26Bit |
195                Arm_FastMult |
196//                Arm_Fpa |
197                Arm_Vfp |
198                Arm_Edsp |
199//                Arm_Java |
200//                Arm_Iwmmxt |
201//                Arm_Crunch |
202                Arm_ThumbEE |
203                Arm_Neon |
204                Arm_Vfpv3 |
205                Arm_Vfpv3d16 |
206                0;
207
208            //Bits which describe the system hardware capabilities
209            //XXX Figure out what these should be
210            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
211            //Frequency at which times() increments
212            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
213            //Whether to enable "secure mode" in the executable
214            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
215            // Pointer to 16 bytes of random data
216            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
217            //The filename of the program
218            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
219            //The string "v71" -- ARM v7 architecture
220            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
221        }
222
223        //The system page size
224        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
225        // For statically linked executables, this is the virtual address of the
226        // program header tables if they appear in the executable image
227        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
228        // This is the size of a program header entry from the elf file.
229        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
230        // This is the number of program headers from the original elf file.
231        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
232        // This is the base address of the ELF interpreter; it should be
233        // zero for static executables or contain the base address for
234        // dynamic executables.
235        auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
236        //XXX Figure out what this should be.
237        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
238        //The entry point to the program
239        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
240        //Different user and group IDs
241        auxv.push_back(auxv_t(M5_AT_UID, uid()));
242        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
243        auxv.push_back(auxv_t(M5_AT_GID, gid()));
244        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
245    }
246
247    //Figure out how big the initial stack nedes to be
248
249    // A sentry NULL void pointer at the top of the stack.
250    int sentry_size = intSize;
251
252    string platform = "v71";
253    int platform_size = platform.size() + 1;
254
255    // Bytes for AT_RANDOM above, we'll just keep them 0
256    int aux_random_size = 16; // as per the specification
257
258    // The aux vectors are put on the stack in two groups. The first group are
259    // the vectors that are generated as the elf is loaded. The second group
260    // are the ones that were computed ahead of time and include the platform
261    // string.
262    int aux_data_size = filename.size() + 1;
263
264    int env_data_size = 0;
265    for (int i = 0; i < envp.size(); ++i) {
266        env_data_size += envp[i].size() + 1;
267    }
268    int arg_data_size = 0;
269    for (int i = 0; i < argv.size(); ++i) {
270        arg_data_size += argv[i].size() + 1;
271    }
272
273    int info_block_size =
274        sentry_size + env_data_size + arg_data_size +
275        aux_data_size + platform_size + aux_random_size;
276
277    //Each auxilliary vector is two 4 byte words
278    int aux_array_size = intSize * 2 * (auxv.size() + 1);
279
280    int envp_array_size = intSize * (envp.size() + 1);
281    int argv_array_size = intSize * (argv.size() + 1);
282
283    int argc_size = intSize;
284
285    //Figure out the size of the contents of the actual initial frame
286    int frame_size =
287        info_block_size +
288        aux_array_size +
289        envp_array_size +
290        argv_array_size +
291        argc_size;
292
293    //There needs to be padding after the auxiliary vector data so that the
294    //very bottom of the stack is aligned properly.
295    int partial_size = frame_size;
296    int aligned_partial_size = roundUp(partial_size, align);
297    int aux_padding = aligned_partial_size - partial_size;
298
299    int space_needed = frame_size + aux_padding;
300
301    stack_min = stack_base - space_needed;
302    stack_min = roundDown(stack_min, align);
303    stack_size = stack_base - stack_min;
304
305    // map memory
306    allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
307
308    // map out initial stack contents
309    IntType sentry_base = stack_base - sentry_size;
310    IntType aux_data_base = sentry_base - aux_data_size;
311    IntType env_data_base = aux_data_base - env_data_size;
312    IntType arg_data_base = env_data_base - arg_data_size;
313    IntType platform_base = arg_data_base - platform_size;
314    IntType aux_random_base = platform_base - aux_random_size;
315    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
316    IntType envp_array_base = auxv_array_base - envp_array_size;
317    IntType argv_array_base = envp_array_base - argv_array_size;
318    IntType argc_base = argv_array_base - argc_size;
319
320    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
321    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
322    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
323    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
324    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
325    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
326    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
327    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
328    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
329    DPRINTF(Stack, "0x%x - argc \n", argc_base);
330    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
331
332    // write contents to stack
333
334    // figure out argc
335    IntType argc = argv.size();
336    IntType guestArgc = ArmISA::htog(argc);
337
338    //Write out the sentry void *
339    IntType sentry_NULL = 0;
340    initVirtMem.writeBlob(sentry_base,
341            (uint8_t*)&sentry_NULL, sentry_size);
342
343    //Fix up the aux vectors which point to other data
344    for (int i = auxv.size() - 1; i >= 0; i--) {
345        if (auxv[i].a_type == M5_AT_PLATFORM) {
346            auxv[i].a_val = platform_base;
347            initVirtMem.writeString(platform_base, platform.c_str());
348        } else if (auxv[i].a_type == M5_AT_EXECFN) {
349            auxv[i].a_val = aux_data_base;
350            initVirtMem.writeString(aux_data_base, filename.c_str());
351        } else if (auxv[i].a_type == M5_AT_RANDOM) {
352            auxv[i].a_val = aux_random_base;
353            // Just leave the value 0, we don't want randomness
354        }
355    }
356
357    //Copy the aux stuff
358    for (int x = 0; x < auxv.size(); x++) {
359        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
360                (uint8_t*)&(auxv[x].a_type), intSize);
361        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
362                (uint8_t*)&(auxv[x].a_val), intSize);
363    }
364    //Write out the terminating zeroed auxilliary vector
365    const uint64_t zero = 0;
366    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
367            (uint8_t*)&zero, 2 * intSize);
368
369    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
370    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
371
372    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
373
374    ThreadContext *tc = system->getThreadContext(contextIds[0]);
375    //Set the stack pointer register
376    tc->setIntReg(spIndex, stack_min);
377    //A pointer to a function to run when the program exits. We'll set this
378    //to zero explicitly to make sure this isn't used.
379    tc->setIntReg(ArgumentReg0, 0);
380    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
381    if (argv.size() > 0) {
382        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
383                                    argv[argv.size() - 1].size() - 1);
384    } else {
385        tc->setIntReg(ArgumentReg1, 0);
386    }
387    if (envp.size() > 0) {
388        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
389                                    envp[envp.size() - 1].size() - 1);
390    } else {
391        tc->setIntReg(ArgumentReg2, 0);
392    }
393
394    PCState pc;
395    pc.thumb(arch == ObjectFile::Thumb);
396    pc.nextThumb(pc.thumb());
397    pc.aarch64(arch == ObjectFile::Arm64);
398    pc.nextAArch64(pc.aarch64());
399    pc.set(getStartPC() & ~mask(1));
400    tc->pcState(pc);
401
402    //Align the "stack_min" to a page boundary.
403    stack_min = roundDown(stack_min, pageSize);
404}
405
406ArmISA::IntReg
407ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i)
408{
409    assert(i < 6);
410    return tc->readIntReg(ArgumentReg0 + i++);
411}
412
413ArmISA::IntReg
414ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i)
415{
416    assert(i < 8);
417    return tc->readIntReg(ArgumentReg0 + i++);
418}
419
420ArmISA::IntReg
421ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
422{
423    assert(width == 32 || width == 64);
424    if (width == 32)
425        return getSyscallArg(tc, i);
426
427    // 64 bit arguments are passed starting in an even register
428    if (i % 2 != 0)
429       i++;
430
431    // Registers r0-r6 can be used
432    assert(i < 5);
433    uint64_t val;
434    val = tc->readIntReg(ArgumentReg0 + i++);
435    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
436    return val;
437}
438
439ArmISA::IntReg
440ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
441{
442    return getSyscallArg(tc, i);
443}
444
445
446void
447ArmLiveProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
448{
449    assert(i < 6);
450    tc->setIntReg(ArgumentReg0 + i, val);
451}
452
453void
454ArmLiveProcess64::setSyscallArg(ThreadContext *tc,
455        int i, ArmISA::IntReg val)
456{
457    assert(i < 8);
458    tc->setIntReg(ArgumentReg0 + i, val);
459}
460
461void
462ArmLiveProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
463{
464
465    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
466        // Decode return value
467        if (sysret.encodedValue() >= 0)
468            // FreeBSD checks the carry bit to determine if syscall is succeeded
469            tc->setCCReg(CCREG_C, 0);
470        else {
471            sysret = -sysret.encodedValue();
472        }
473    }
474
475    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
476}
477
478void
479ArmLiveProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
480{
481
482    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
483        // Decode return value
484        if (sysret.encodedValue() >= 0)
485            // FreeBSD checks the carry bit to determine if syscall is succeeded
486            tc->setCCReg(CCREG_C, 0);
487        else {
488            sysret = -sysret.encodedValue();
489        }
490    }
491
492    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
493}
494