process.cc revision 11386:94c09b607a84
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/isa_traits.hh"
45#include "arch/arm/process.hh"
46#include "arch/arm/types.hh"
47#include "base/loader/elf_object.hh"
48#include "base/loader/object_file.hh"
49#include "base/misc.hh"
50#include "cpu/thread_context.hh"
51#include "debug/Stack.hh"
52#include "mem/page_table.hh"
53#include "sim/byteswap.hh"
54#include "sim/process_impl.hh"
55#include "sim/system.hh"
56
57using namespace std;
58using namespace ArmISA;
59
60ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
61                               ObjectFile::Arch _arch)
62    : LiveProcess(params, objFile), arch(_arch)
63{
64}
65
66ArmLiveProcess32::ArmLiveProcess32(LiveProcessParams *params,
67                                   ObjectFile *objFile, ObjectFile::Arch _arch)
68    : ArmLiveProcess(params, objFile, _arch)
69{
70    stack_base = 0xbf000000L;
71
72    // Set pointer for next thread stack.  Reserve 8M for main stack.
73    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
74
75    // Set up break point (Top of Heap)
76    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
77    brk_point = roundUp(brk_point, PageBytes);
78
79    // Set up region for mmaps. For now, start at bottom of kuseg space.
80    mmap_end = 0x40000000L;
81}
82
83ArmLiveProcess64::ArmLiveProcess64(LiveProcessParams *params,
84                                   ObjectFile *objFile, ObjectFile::Arch _arch)
85    : ArmLiveProcess(params, objFile, _arch)
86{
87    stack_base = 0x7fffff0000L;
88
89    // Set pointer for next thread stack.  Reserve 8M for main stack.
90    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
91
92    // Set up break point (Top of Heap)
93    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
94    brk_point = roundUp(brk_point, PageBytes);
95
96    // Set up region for mmaps. For now, start at bottom of kuseg space.
97    mmap_end = 0x4000000000L;
98}
99
100void
101ArmLiveProcess32::initState()
102{
103    LiveProcess::initState();
104    argsInit<uint32_t>(PageBytes, INTREG_SP);
105    for (int i = 0; i < contextIds.size(); i++) {
106        ThreadContext * tc = system->getThreadContext(contextIds[i]);
107        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
108        // Enable the floating point coprocessors.
109        cpacr.cp10 = 0x3;
110        cpacr.cp11 = 0x3;
111        tc->setMiscReg(MISCREG_CPACR, cpacr);
112        // Generically enable floating point support.
113        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
114        fpexc.en = 1;
115        tc->setMiscReg(MISCREG_FPEXC, fpexc);
116    }
117}
118
119void
120ArmLiveProcess64::initState()
121{
122    LiveProcess::initState();
123    argsInit<uint64_t>(PageBytes, INTREG_SP0);
124    for (int i = 0; i < contextIds.size(); i++) {
125        ThreadContext * tc = system->getThreadContext(contextIds[i]);
126        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
127        cpsr.mode = MODE_EL0T;
128        tc->setMiscReg(MISCREG_CPSR, cpsr);
129        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
130        // Enable the floating point coprocessors.
131        cpacr.cp10 = 0x3;
132        cpacr.cp11 = 0x3;
133        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
134        // Generically enable floating point support.
135        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
136        fpexc.en = 1;
137        tc->setMiscReg(MISCREG_FPEXC, fpexc);
138    }
139}
140
141template <class IntType>
142void
143ArmLiveProcess::argsInit(int pageSize, IntRegIndex spIndex)
144{
145    int intSize = sizeof(IntType);
146
147    typedef AuxVector<IntType> auxv_t;
148    std::vector<auxv_t> auxv;
149
150    string filename;
151    if (argv.size() < 1)
152        filename = "";
153    else
154        filename = argv[0];
155
156    //We want 16 byte alignment
157    uint64_t align = 16;
158
159    // load object file into target memory
160    objFile->loadSections(initVirtMem);
161
162    enum ArmCpuFeature {
163        Arm_Swp = 1 << 0,
164        Arm_Half = 1 << 1,
165        Arm_Thumb = 1 << 2,
166        Arm_26Bit = 1 << 3,
167        Arm_FastMult = 1 << 4,
168        Arm_Fpa = 1 << 5,
169        Arm_Vfp = 1 << 6,
170        Arm_Edsp = 1 << 7,
171        Arm_Java = 1 << 8,
172        Arm_Iwmmxt = 1 << 9,
173        Arm_Crunch = 1 << 10,
174        Arm_ThumbEE = 1 << 11,
175        Arm_Neon = 1 << 12,
176        Arm_Vfpv3 = 1 << 13,
177        Arm_Vfpv3d16 = 1 << 14
178    };
179
180    //Setup the auxilliary vectors. These will already have endian conversion.
181    //Auxilliary vectors are loaded only for elf formatted executables.
182    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
183    if (elfObject) {
184
185        if (objFile->getOpSys() == ObjectFile::Linux) {
186            IntType features =
187                Arm_Swp |
188                Arm_Half |
189                Arm_Thumb |
190//                Arm_26Bit |
191                Arm_FastMult |
192//                Arm_Fpa |
193                Arm_Vfp |
194                Arm_Edsp |
195//                Arm_Java |
196//                Arm_Iwmmxt |
197//                Arm_Crunch |
198                Arm_ThumbEE |
199                Arm_Neon |
200                Arm_Vfpv3 |
201                Arm_Vfpv3d16 |
202                0;
203
204            //Bits which describe the system hardware capabilities
205            //XXX Figure out what these should be
206            auxv.push_back(auxv_t(M5_AT_HWCAP, features));
207            //Frequency at which times() increments
208            auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
209            //Whether to enable "secure mode" in the executable
210            auxv.push_back(auxv_t(M5_AT_SECURE, 0));
211            // Pointer to 16 bytes of random data
212            auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
213            //The filename of the program
214            auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
215            //The string "v71" -- ARM v7 architecture
216            auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
217        }
218
219        //The system page size
220        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
221        // For statically linked executables, this is the virtual address of the
222        // program header tables if they appear in the executable image
223        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
224        // This is the size of a program header entry from the elf file.
225        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
226        // This is the number of program headers from the original elf file.
227        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
228        //This is the address of the elf "interpreter", It should be set
229        //to 0 for regular executables. It should be something else
230        //(not sure what) for dynamic libraries.
231        auxv.push_back(auxv_t(M5_AT_BASE, 0));
232        //XXX Figure out what this should be.
233        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
234        //The entry point to the program
235        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
236        //Different user and group IDs
237        auxv.push_back(auxv_t(M5_AT_UID, uid()));
238        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
239        auxv.push_back(auxv_t(M5_AT_GID, gid()));
240        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
241    }
242
243    //Figure out how big the initial stack nedes to be
244
245    // A sentry NULL void pointer at the top of the stack.
246    int sentry_size = intSize;
247
248    string platform = "v71";
249    int platform_size = platform.size() + 1;
250
251    // Bytes for AT_RANDOM above, we'll just keep them 0
252    int aux_random_size = 16; // as per the specification
253
254    // The aux vectors are put on the stack in two groups. The first group are
255    // the vectors that are generated as the elf is loaded. The second group
256    // are the ones that were computed ahead of time and include the platform
257    // string.
258    int aux_data_size = filename.size() + 1;
259
260    int env_data_size = 0;
261    for (int i = 0; i < envp.size(); ++i) {
262        env_data_size += envp[i].size() + 1;
263    }
264    int arg_data_size = 0;
265    for (int i = 0; i < argv.size(); ++i) {
266        arg_data_size += argv[i].size() + 1;
267    }
268
269    int info_block_size =
270        sentry_size + env_data_size + arg_data_size +
271        aux_data_size + platform_size + aux_random_size;
272
273    //Each auxilliary vector is two 4 byte words
274    int aux_array_size = intSize * 2 * (auxv.size() + 1);
275
276    int envp_array_size = intSize * (envp.size() + 1);
277    int argv_array_size = intSize * (argv.size() + 1);
278
279    int argc_size = intSize;
280
281    //Figure out the size of the contents of the actual initial frame
282    int frame_size =
283        info_block_size +
284        aux_array_size +
285        envp_array_size +
286        argv_array_size +
287        argc_size;
288
289    //There needs to be padding after the auxiliary vector data so that the
290    //very bottom of the stack is aligned properly.
291    int partial_size = frame_size;
292    int aligned_partial_size = roundUp(partial_size, align);
293    int aux_padding = aligned_partial_size - partial_size;
294
295    int space_needed = frame_size + aux_padding;
296
297    stack_min = stack_base - space_needed;
298    stack_min = roundDown(stack_min, align);
299    stack_size = stack_base - stack_min;
300
301    // map memory
302    allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
303
304    // map out initial stack contents
305    IntType sentry_base = stack_base - sentry_size;
306    IntType aux_data_base = sentry_base - aux_data_size;
307    IntType env_data_base = aux_data_base - env_data_size;
308    IntType arg_data_base = env_data_base - arg_data_size;
309    IntType platform_base = arg_data_base - platform_size;
310    IntType aux_random_base = platform_base - aux_random_size;
311    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
312    IntType envp_array_base = auxv_array_base - envp_array_size;
313    IntType argv_array_base = envp_array_base - argv_array_size;
314    IntType argc_base = argv_array_base - argc_size;
315
316    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
317    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
318    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
319    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
320    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
321    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
322    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
323    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
324    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
325    DPRINTF(Stack, "0x%x - argc \n", argc_base);
326    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
327
328    // write contents to stack
329
330    // figure out argc
331    IntType argc = argv.size();
332    IntType guestArgc = ArmISA::htog(argc);
333
334    //Write out the sentry void *
335    IntType sentry_NULL = 0;
336    initVirtMem.writeBlob(sentry_base,
337            (uint8_t*)&sentry_NULL, sentry_size);
338
339    //Fix up the aux vectors which point to other data
340    for (int i = auxv.size() - 1; i >= 0; i--) {
341        if (auxv[i].a_type == M5_AT_PLATFORM) {
342            auxv[i].a_val = platform_base;
343            initVirtMem.writeString(platform_base, platform.c_str());
344        } else if (auxv[i].a_type == M5_AT_EXECFN) {
345            auxv[i].a_val = aux_data_base;
346            initVirtMem.writeString(aux_data_base, filename.c_str());
347        } else if (auxv[i].a_type == M5_AT_RANDOM) {
348            auxv[i].a_val = aux_random_base;
349            // Just leave the value 0, we don't want randomness
350        }
351    }
352
353    //Copy the aux stuff
354    for (int x = 0; x < auxv.size(); x++) {
355        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
356                (uint8_t*)&(auxv[x].a_type), intSize);
357        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
358                (uint8_t*)&(auxv[x].a_val), intSize);
359    }
360    //Write out the terminating zeroed auxilliary vector
361    const uint64_t zero = 0;
362    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
363            (uint8_t*)&zero, 2 * intSize);
364
365    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
366    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
367
368    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
369
370    ThreadContext *tc = system->getThreadContext(contextIds[0]);
371    //Set the stack pointer register
372    tc->setIntReg(spIndex, stack_min);
373    //A pointer to a function to run when the program exits. We'll set this
374    //to zero explicitly to make sure this isn't used.
375    tc->setIntReg(ArgumentReg0, 0);
376    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
377    if (argv.size() > 0) {
378        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
379                                    argv[argv.size() - 1].size() - 1);
380    } else {
381        tc->setIntReg(ArgumentReg1, 0);
382    }
383    if (envp.size() > 0) {
384        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
385                                    envp[envp.size() - 1].size() - 1);
386    } else {
387        tc->setIntReg(ArgumentReg2, 0);
388    }
389
390    PCState pc;
391    pc.thumb(arch == ObjectFile::Thumb);
392    pc.nextThumb(pc.thumb());
393    pc.aarch64(arch == ObjectFile::Arm64);
394    pc.nextAArch64(pc.aarch64());
395    pc.set(objFile->entryPoint() & ~mask(1));
396    tc->pcState(pc);
397
398    //Align the "stack_min" to a page boundary.
399    stack_min = roundDown(stack_min, pageSize);
400}
401
402ArmISA::IntReg
403ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i)
404{
405    assert(i < 6);
406    return tc->readIntReg(ArgumentReg0 + i++);
407}
408
409ArmISA::IntReg
410ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i)
411{
412    assert(i < 8);
413    return tc->readIntReg(ArgumentReg0 + i++);
414}
415
416ArmISA::IntReg
417ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
418{
419    assert(width == 32 || width == 64);
420    if (width == 32)
421        return getSyscallArg(tc, i);
422
423    // 64 bit arguments are passed starting in an even register
424    if (i % 2 != 0)
425       i++;
426
427    // Registers r0-r6 can be used
428    assert(i < 5);
429    uint64_t val;
430    val = tc->readIntReg(ArgumentReg0 + i++);
431    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
432    return val;
433}
434
435ArmISA::IntReg
436ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
437{
438    return getSyscallArg(tc, i);
439}
440
441
442void
443ArmLiveProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
444{
445    assert(i < 6);
446    tc->setIntReg(ArgumentReg0 + i, val);
447}
448
449void
450ArmLiveProcess64::setSyscallArg(ThreadContext *tc,
451        int i, ArmISA::IntReg val)
452{
453    assert(i < 8);
454    tc->setIntReg(ArgumentReg0 + i, val);
455}
456
457void
458ArmLiveProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
459{
460
461    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
462        // Decode return value
463        if (sysret.encodedValue() >= 0)
464            // FreeBSD checks the carry bit to determine if syscall is succeeded
465            tc->setCCReg(CCREG_C, 0);
466        else {
467            sysret = -sysret.encodedValue();
468        }
469    }
470
471    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
472}
473
474void
475ArmLiveProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
476{
477
478    if (objFile->getOpSys() == ObjectFile::FreeBSD) {
479        // Decode return value
480        if (sysret.encodedValue() >= 0)
481            // FreeBSD checks the carry bit to determine if syscall is succeeded
482            tc->setCCReg(CCREG_C, 0);
483        else {
484            sysret = -sysret.encodedValue();
485        }
486    }
487
488    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
489}
490