process.cc revision 10318:98771a936b61
1/*
2 * Copyright (c) 2010, 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2007-2008 The Florida State University
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Stephen Hines
41 *          Ali Saidi
42 */
43
44#include "arch/arm/isa_traits.hh"
45#include "arch/arm/process.hh"
46#include "arch/arm/types.hh"
47#include "base/loader/elf_object.hh"
48#include "base/loader/object_file.hh"
49#include "base/misc.hh"
50#include "cpu/thread_context.hh"
51#include "debug/Stack.hh"
52#include "mem/page_table.hh"
53#include "sim/byteswap.hh"
54#include "sim/process_impl.hh"
55#include "sim/system.hh"
56
57using namespace std;
58using namespace ArmISA;
59
60ArmLiveProcess::ArmLiveProcess(LiveProcessParams *params, ObjectFile *objFile,
61                               ObjectFile::Arch _arch)
62    : LiveProcess(params, objFile), arch(_arch)
63{
64}
65
66ArmLiveProcess32::ArmLiveProcess32(LiveProcessParams *params,
67                                   ObjectFile *objFile, ObjectFile::Arch _arch)
68    : ArmLiveProcess(params, objFile, _arch)
69{
70    stack_base = 0xbf000000L;
71
72    // Set pointer for next thread stack.  Reserve 8M for main stack.
73    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
74
75    // Set up break point (Top of Heap)
76    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
77    brk_point = roundUp(brk_point, PageBytes);
78
79    // Set up region for mmaps. For now, start at bottom of kuseg space.
80    mmap_start = mmap_end = 0x40000000L;
81}
82
83ArmLiveProcess64::ArmLiveProcess64(LiveProcessParams *params,
84                                   ObjectFile *objFile, ObjectFile::Arch _arch)
85    : ArmLiveProcess(params, objFile, _arch)
86{
87    stack_base = 0x7fffff0000L;
88
89    // Set pointer for next thread stack.  Reserve 8M for main stack.
90    next_thread_stack_base = stack_base - (8 * 1024 * 1024);
91
92    // Set up break point (Top of Heap)
93    brk_point = objFile->dataBase() + objFile->dataSize() + objFile->bssSize();
94    brk_point = roundUp(brk_point, PageBytes);
95
96    // Set up region for mmaps. For now, start at bottom of kuseg space.
97    mmap_start = mmap_end = 0x4000000000L;
98}
99
100void
101ArmLiveProcess32::initState()
102{
103    LiveProcess::initState();
104    argsInit<uint32_t>(PageBytes, INTREG_SP);
105    for (int i = 0; i < contextIds.size(); i++) {
106        ThreadContext * tc = system->getThreadContext(contextIds[i]);
107        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR);
108        // Enable the floating point coprocessors.
109        cpacr.cp10 = 0x3;
110        cpacr.cp11 = 0x3;
111        tc->setMiscReg(MISCREG_CPACR, cpacr);
112        // Generically enable floating point support.
113        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
114        fpexc.en = 1;
115        tc->setMiscReg(MISCREG_FPEXC, fpexc);
116    }
117}
118
119void
120ArmLiveProcess64::initState()
121{
122    LiveProcess::initState();
123    argsInit<uint64_t>(PageBytes, INTREG_SP0);
124    for (int i = 0; i < contextIds.size(); i++) {
125        ThreadContext * tc = system->getThreadContext(contextIds[i]);
126        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
127        cpsr.mode = MODE_EL0T;
128        tc->setMiscReg(MISCREG_CPSR, cpsr);
129        CPACR cpacr = tc->readMiscReg(MISCREG_CPACR_EL1);
130        // Enable the floating point coprocessors.
131        cpacr.cp10 = 0x3;
132        cpacr.cp11 = 0x3;
133        tc->setMiscReg(MISCREG_CPACR_EL1, cpacr);
134        // Generically enable floating point support.
135        FPEXC fpexc = tc->readMiscReg(MISCREG_FPEXC);
136        fpexc.en = 1;
137        tc->setMiscReg(MISCREG_FPEXC, fpexc);
138    }
139}
140
141template <class IntType>
142void
143ArmLiveProcess::argsInit(int pageSize, IntRegIndex spIndex)
144{
145    int intSize = sizeof(IntType);
146
147    typedef AuxVector<IntType> auxv_t;
148    std::vector<auxv_t> auxv;
149
150    string filename;
151    if (argv.size() < 1)
152        filename = "";
153    else
154        filename = argv[0];
155
156    //We want 16 byte alignment
157    uint64_t align = 16;
158
159    // load object file into target memory
160    objFile->loadSections(initVirtMem);
161
162    enum ArmCpuFeature {
163        Arm_Swp = 1 << 0,
164        Arm_Half = 1 << 1,
165        Arm_Thumb = 1 << 2,
166        Arm_26Bit = 1 << 3,
167        Arm_FastMult = 1 << 4,
168        Arm_Fpa = 1 << 5,
169        Arm_Vfp = 1 << 6,
170        Arm_Edsp = 1 << 7,
171        Arm_Java = 1 << 8,
172        Arm_Iwmmxt = 1 << 9,
173        Arm_Crunch = 1 << 10,
174        Arm_ThumbEE = 1 << 11,
175        Arm_Neon = 1 << 12,
176        Arm_Vfpv3 = 1 << 13,
177        Arm_Vfpv3d16 = 1 << 14
178    };
179
180    //Setup the auxilliary vectors. These will already have endian conversion.
181    //Auxilliary vectors are loaded only for elf formatted executables.
182    ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
183    if (elfObject) {
184        IntType features =
185            Arm_Swp |
186            Arm_Half |
187            Arm_Thumb |
188//            Arm_26Bit |
189            Arm_FastMult |
190//            Arm_Fpa |
191            Arm_Vfp |
192            Arm_Edsp |
193//            Arm_Java |
194//            Arm_Iwmmxt |
195//            Arm_Crunch |
196            Arm_ThumbEE |
197            Arm_Neon |
198            Arm_Vfpv3 |
199            Arm_Vfpv3d16 |
200            0;
201
202        //Bits which describe the system hardware capabilities
203        //XXX Figure out what these should be
204        auxv.push_back(auxv_t(M5_AT_HWCAP, features));
205        //The system page size
206        auxv.push_back(auxv_t(M5_AT_PAGESZ, ArmISA::PageBytes));
207        //Frequency at which times() increments
208        auxv.push_back(auxv_t(M5_AT_CLKTCK, 0x64));
209        // For statically linked executables, this is the virtual address of the
210        // program header tables if they appear in the executable image
211        auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
212        // This is the size of a program header entry from the elf file.
213        auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
214        // This is the number of program headers from the original elf file.
215        auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
216        //This is the address of the elf "interpreter", It should be set
217        //to 0 for regular executables. It should be something else
218        //(not sure what) for dynamic libraries.
219        auxv.push_back(auxv_t(M5_AT_BASE, 0));
220
221        //XXX Figure out what this should be.
222        auxv.push_back(auxv_t(M5_AT_FLAGS, 0));
223        //The entry point to the program
224        auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
225        //Different user and group IDs
226        auxv.push_back(auxv_t(M5_AT_UID, uid()));
227        auxv.push_back(auxv_t(M5_AT_EUID, euid()));
228        auxv.push_back(auxv_t(M5_AT_GID, gid()));
229        auxv.push_back(auxv_t(M5_AT_EGID, egid()));
230        //Whether to enable "secure mode" in the executable
231        auxv.push_back(auxv_t(M5_AT_SECURE, 0));
232
233        // Pointer to 16 bytes of random data
234        auxv.push_back(auxv_t(M5_AT_RANDOM, 0));
235
236        //The filename of the program
237        auxv.push_back(auxv_t(M5_AT_EXECFN, 0));
238        //The string "v71" -- ARM v7 architecture
239        auxv.push_back(auxv_t(M5_AT_PLATFORM, 0));
240    }
241
242    //Figure out how big the initial stack nedes to be
243
244    // A sentry NULL void pointer at the top of the stack.
245    int sentry_size = intSize;
246
247    string platform = "v71";
248    int platform_size = platform.size() + 1;
249
250    // Bytes for AT_RANDOM above, we'll just keep them 0
251    int aux_random_size = 16; // as per the specification
252
253    // The aux vectors are put on the stack in two groups. The first group are
254    // the vectors that are generated as the elf is loaded. The second group
255    // are the ones that were computed ahead of time and include the platform
256    // string.
257    int aux_data_size = filename.size() + 1;
258
259    int env_data_size = 0;
260    for (int i = 0; i < envp.size(); ++i) {
261        env_data_size += envp[i].size() + 1;
262    }
263    int arg_data_size = 0;
264    for (int i = 0; i < argv.size(); ++i) {
265        arg_data_size += argv[i].size() + 1;
266    }
267
268    int info_block_size =
269        sentry_size + env_data_size + arg_data_size +
270        aux_data_size + platform_size + aux_random_size;
271
272    //Each auxilliary vector is two 4 byte words
273    int aux_array_size = intSize * 2 * (auxv.size() + 1);
274
275    int envp_array_size = intSize * (envp.size() + 1);
276    int argv_array_size = intSize * (argv.size() + 1);
277
278    int argc_size = intSize;
279
280    //Figure out the size of the contents of the actual initial frame
281    int frame_size =
282        info_block_size +
283        aux_array_size +
284        envp_array_size +
285        argv_array_size +
286        argc_size;
287
288    //There needs to be padding after the auxiliary vector data so that the
289    //very bottom of the stack is aligned properly.
290    int partial_size = frame_size;
291    int aligned_partial_size = roundUp(partial_size, align);
292    int aux_padding = aligned_partial_size - partial_size;
293
294    int space_needed = frame_size + aux_padding;
295
296    stack_min = stack_base - space_needed;
297    stack_min = roundDown(stack_min, align);
298    stack_size = stack_base - stack_min;
299
300    // map memory
301    allocateMem(roundDown(stack_min, pageSize), roundUp(stack_size, pageSize));
302
303    // map out initial stack contents
304    IntType sentry_base = stack_base - sentry_size;
305    IntType aux_data_base = sentry_base - aux_data_size;
306    IntType env_data_base = aux_data_base - env_data_size;
307    IntType arg_data_base = env_data_base - arg_data_size;
308    IntType platform_base = arg_data_base - platform_size;
309    IntType aux_random_base = platform_base - aux_random_size;
310    IntType auxv_array_base = aux_random_base - aux_array_size - aux_padding;
311    IntType envp_array_base = auxv_array_base - envp_array_size;
312    IntType argv_array_base = envp_array_base - argv_array_size;
313    IntType argc_base = argv_array_base - argc_size;
314
315    DPRINTF(Stack, "The addresses of items on the initial stack:\n");
316    DPRINTF(Stack, "0x%x - aux data\n", aux_data_base);
317    DPRINTF(Stack, "0x%x - env data\n", env_data_base);
318    DPRINTF(Stack, "0x%x - arg data\n", arg_data_base);
319    DPRINTF(Stack, "0x%x - random data\n", aux_random_base);
320    DPRINTF(Stack, "0x%x - platform base\n", platform_base);
321    DPRINTF(Stack, "0x%x - auxv array\n", auxv_array_base);
322    DPRINTF(Stack, "0x%x - envp array\n", envp_array_base);
323    DPRINTF(Stack, "0x%x - argv array\n", argv_array_base);
324    DPRINTF(Stack, "0x%x - argc \n", argc_base);
325    DPRINTF(Stack, "0x%x - stack min\n", stack_min);
326
327    // write contents to stack
328
329    // figure out argc
330    IntType argc = argv.size();
331    IntType guestArgc = ArmISA::htog(argc);
332
333    //Write out the sentry void *
334    IntType sentry_NULL = 0;
335    initVirtMem.writeBlob(sentry_base,
336            (uint8_t*)&sentry_NULL, sentry_size);
337
338    //Fix up the aux vectors which point to other data
339    for (int i = auxv.size() - 1; i >= 0; i--) {
340        if (auxv[i].a_type == M5_AT_PLATFORM) {
341            auxv[i].a_val = platform_base;
342            initVirtMem.writeString(platform_base, platform.c_str());
343        } else if (auxv[i].a_type == M5_AT_EXECFN) {
344            auxv[i].a_val = aux_data_base;
345            initVirtMem.writeString(aux_data_base, filename.c_str());
346        } else if (auxv[i].a_type == M5_AT_RANDOM) {
347            auxv[i].a_val = aux_random_base;
348            // Just leave the value 0, we don't want randomness
349        }
350    }
351
352    //Copy the aux stuff
353    for (int x = 0; x < auxv.size(); x++) {
354        initVirtMem.writeBlob(auxv_array_base + x * 2 * intSize,
355                (uint8_t*)&(auxv[x].a_type), intSize);
356        initVirtMem.writeBlob(auxv_array_base + (x * 2 + 1) * intSize,
357                (uint8_t*)&(auxv[x].a_val), intSize);
358    }
359    //Write out the terminating zeroed auxilliary vector
360    const uint64_t zero = 0;
361    initVirtMem.writeBlob(auxv_array_base + 2 * intSize * auxv.size(),
362            (uint8_t*)&zero, 2 * intSize);
363
364    copyStringArray(envp, envp_array_base, env_data_base, initVirtMem);
365    copyStringArray(argv, argv_array_base, arg_data_base, initVirtMem);
366
367    initVirtMem.writeBlob(argc_base, (uint8_t*)&guestArgc, intSize);
368
369    ThreadContext *tc = system->getThreadContext(contextIds[0]);
370    //Set the stack pointer register
371    tc->setIntReg(spIndex, stack_min);
372    //A pointer to a function to run when the program exits. We'll set this
373    //to zero explicitly to make sure this isn't used.
374    tc->setIntReg(ArgumentReg0, 0);
375    //Set argument regs 1 and 2 to argv[0] and envp[0] respectively
376    if (argv.size() > 0) {
377        tc->setIntReg(ArgumentReg1, arg_data_base + arg_data_size -
378                                    argv[argv.size() - 1].size() - 1);
379    } else {
380        tc->setIntReg(ArgumentReg1, 0);
381    }
382    if (envp.size() > 0) {
383        tc->setIntReg(ArgumentReg2, env_data_base + env_data_size -
384                                    envp[envp.size() - 1].size() - 1);
385    } else {
386        tc->setIntReg(ArgumentReg2, 0);
387    }
388
389    PCState pc;
390    pc.thumb(arch == ObjectFile::Thumb);
391    pc.nextThumb(pc.thumb());
392    pc.aarch64(arch == ObjectFile::Arm64);
393    pc.nextAArch64(pc.aarch64());
394    pc.set(objFile->entryPoint() & ~mask(1));
395    tc->pcState(pc);
396
397    //Align the "stack_min" to a page boundary.
398    stack_min = roundDown(stack_min, pageSize);
399}
400
401ArmISA::IntReg
402ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i)
403{
404    assert(i < 6);
405    return tc->readIntReg(ArgumentReg0 + i++);
406}
407
408ArmISA::IntReg
409ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i)
410{
411    assert(i < 8);
412    return tc->readIntReg(ArgumentReg0 + i++);
413}
414
415ArmISA::IntReg
416ArmLiveProcess32::getSyscallArg(ThreadContext *tc, int &i, int width)
417{
418    assert(width == 32 || width == 64);
419    if (width == 32)
420        return getSyscallArg(tc, i);
421
422    // 64 bit arguments are passed starting in an even register
423    if (i % 2 != 0)
424       i++;
425
426    // Registers r0-r6 can be used
427    assert(i < 5);
428    uint64_t val;
429    val = tc->readIntReg(ArgumentReg0 + i++);
430    val |= ((uint64_t)tc->readIntReg(ArgumentReg0 + i++) << 32);
431    return val;
432}
433
434ArmISA::IntReg
435ArmLiveProcess64::getSyscallArg(ThreadContext *tc, int &i, int width)
436{
437    return getSyscallArg(tc, i);
438}
439
440
441void
442ArmLiveProcess32::setSyscallArg(ThreadContext *tc, int i, ArmISA::IntReg val)
443{
444    assert(i < 6);
445    tc->setIntReg(ArgumentReg0 + i, val);
446}
447
448void
449ArmLiveProcess64::setSyscallArg(ThreadContext *tc,
450        int i, ArmISA::IntReg val)
451{
452    assert(i < 8);
453    tc->setIntReg(ArgumentReg0 + i, val);
454}
455
456void
457ArmLiveProcess32::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
458{
459    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
460}
461
462void
463ArmLiveProcess64::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
464{
465    tc->setIntReg(ReturnValueReg, sysret.encodedValue());
466}
467