arm.isa revision 7161
1// -*- mode:c++ -*-
2
3// Copyright (c) 2010 ARM Limited
4// All rights reserved
5//
6// The license below extends only to copyright in the software and shall
7// not be construed as granting a license to any other intellectual
8// property including but not limited to intellectual property relating
9// to a hardware implementation of the functionality of the software
10// licensed hereunder.  You may use the software subject to the license
11// terms below provided that you ensure that this notice is replicated
12// unmodified and in its entirety in all distributions of the software,
13// modified or unmodified, in source code or in binary form.
14//
15// Copyright (c) 2007-2008 The Florida State University
16// All rights reserved.
17//
18// Redistribution and use in source and binary forms, with or without
19// modification, are permitted provided that the following conditions are
20// met: redistributions of source code must retain the above copyright
21// notice, this list of conditions and the following disclaimer;
22// redistributions in binary form must reproduce the above copyright
23// notice, this list of conditions and the following disclaimer in the
24// documentation and/or other materials provided with the distribution;
25// neither the name of the copyright holders nor the names of its
26// contributors may be used to endorse or promote products derived from
27// this software without specific prior written permission.
28//
29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40//
41// Authors: Stephen Hines
42
43////////////////////////////////////////////////////////////////////
44//
45// The actual ARM ISA decoder
46// --------------------------
47// The following instructions are specified in the ARM ISA
48// Specification. Decoding closely follows the style specified
49// in the ARM ISA specification document starting with Table B.1 or 3-1
50//
51//
52
530: decode ENCODING {
54format DataOp {
55    0x0: decode SEVEN_AND_FOUR {
56        1: decode MISC_OPCODE {
57            0x9: decode PREPOST {
58                0: ArmMultAndMultAcc::armMultAndMultAcc();
59                1: decode PUBWL {
60                    0x10: WarnUnimpl::swp();
61                    0x14: WarnUnimpl::swpb();
62                    0x18: WarnUnimpl::strex();
63                    0x19: WarnUnimpl::ldrex();
64                }
65            }
66            0xb, 0xd, 0xf: AddrMode3::addrMode3();
67        }
68        0: decode IS_MISC {
69            0: ArmDataProcReg::armDataProcReg();
70            1: decode OPCODE_7 {
71                0x0: decode MISC_OPCODE {
72                    0x0: decode OPCODE {
73                        0x8: PredOp::mrs_cpsr({{
74                            Rd = (Cpsr | CondCodes) & 0xF8FF03DF;
75                        }});
76                        0x9: decode USEIMM {
77                            // The mask field is the same as the RN index.
78                            0: PredOp::msr_cpsr_reg({{
79                                uint32_t newCpsr =
80                                    cpsrWriteByInstr(Cpsr | CondCodes,
81                                                     Rm, RN, false);
82                                Cpsr = ~CondCodesMask & newCpsr;
83                                CondCodes = CondCodesMask & newCpsr;
84                            }});
85                            1: PredImmOp::msr_cpsr_imm({{
86                                uint32_t newCpsr =
87                                    cpsrWriteByInstr(Cpsr | CondCodes,
88                                                     rotated_imm, RN, false);
89                                Cpsr = ~CondCodesMask & newCpsr;
90                                CondCodes = CondCodesMask & newCpsr;
91                            }});
92                        }
93                        0xa: PredOp::mrs_spsr({{ Rd = Spsr; }});
94                        0xb: decode USEIMM {
95                            // The mask field is the same as the RN index.
96                            0: PredOp::msr_spsr_reg({{
97                                Spsr = spsrWriteByInstr(Spsr, Rm, RN, false);
98                            }});
99                            1: PredImmOp::msr_spsr_imm({{
100                                Spsr = spsrWriteByInstr(Spsr, rotated_imm,
101                                                        RN, false);
102                            }});
103                        }
104                    }
105                    0x1: decode OPCODE {
106                        0x9: ArmBx::armBx();
107                        0xb: PredOp::clz({{
108                            Rd = ((Rm == 0) ? 32 : (31 - findMsbSet(Rm)));
109                        }});
110                    }
111                    0x2: decode OPCODE {
112                        0x9: WarnUnimpl::bxj();
113                    }
114                    0x3: decode OPCODE {
115                        0x9: ArmBlxReg::armBlxReg();
116                    }
117                    0x5: decode OPCODE {
118                        0x8: WarnUnimpl::qadd();
119                        0x9: WarnUnimpl::qsub();
120                        0xa: WarnUnimpl::qdadd();
121                        0xb: WarnUnimpl::qdsub();
122                    }
123                }
124                0x1: ArmHalfWordMultAndMultAcc::armHalfWordMultAndMultAcc();
125            }
126        }
127    }
128    0x1: decode IS_MISC {
129        0: ArmDataProcImm::armDataProcImm();
130        1: decode OPCODE {
131            // The following two instructions aren't supposed to be defined
132            0x8: DataOp::movw({{ Rd = IMMED_11_0 | (RN << 12) ; }});
133            0x9: decode RN {
134                0: decode IMM {
135                    0: PredImmOp::nop({{ ; }});
136                    1: WarnUnimpl::yield();
137                    2: WarnUnimpl::wfe();
138                    3: WarnUnimpl::wfi();
139                    4: WarnUnimpl::sev();
140                }
141                default: PredImmOp::msr_i_cpsr({{
142                            uint32_t newCpsr =
143                                cpsrWriteByInstr(Cpsr | CondCodes,
144                                                 rotated_imm, RN, false);
145                            Cpsr = ~CondCodesMask & newCpsr;
146                            CondCodes = CondCodesMask & newCpsr;
147                }});
148            }
149            0xa: PredOp::movt({{ Rd = IMMED_11_0 << 16 | RN << 28 | Rd<15:0>; }});
150            0xb: PredImmOp::msr_i_spsr({{
151                       Spsr = spsrWriteByInstr(Spsr, rotated_imm, RN, false);
152            }});
153        }
154    }
155    0x2: AddrMode2::addrMode2(True);
156    0x3: decode OPCODE_4 {
157        0: AddrMode2::addrMode2(False);
158        1: decode OPCODE_24_23 {
159            0x0: WarnUnimpl::parallel_add_subtract_instructions();
160            0x1: decode MEDIA_OPCODE {
161                0x8: decode MISC_OPCODE {
162                    0x1, 0x9: WarnUnimpl::pkhbt();
163                    0x7: WarnUnimpl::sxtab16();
164                    0xb: WarnUnimpl::sel();
165                    0x5, 0xd: WarnUnimpl::pkhtb();
166                    0x3: WarnUnimpl::sign_zero_extend_add();
167                }
168                0xa, 0xb: decode SHIFT {
169                    0x0, 0x2: WarnUnimpl::ssat();
170                    0x1: WarnUnimpl::ssat16();
171                }
172                0xe, 0xf: decode SHIFT {
173                    0x0, 0x2: WarnUnimpl::usat();
174                    0x1: WarnUnimpl::usat16();
175                }
176            }
177            0x2: ArmSignedMultiplies::armSignedMultiplies();
178            0x3: decode MEDIA_OPCODE {
179                0x18: decode RN {
180                    0xf: WarnUnimpl::usada8();
181                    default: WarnUnimpl::usad8();
182                }
183            }
184        }
185    }
186    0x4: ArmMacroMem::armMacroMem();
187    0x5: decode OPCODE_24 {
188        0: ArmBBlxImm::armBBlxImm();
189        1: ArmBlBlxImm::armBlBlxImm();
190    }
191    0x6: decode CPNUM {
192        0xb: decode LOADOP {
193            0x0: WarnUnimpl::fstmx();
194            0x1: WarnUnimpl::fldmx();
195        }
196    }
197    0x7: decode OPCODE_24 {
198        0: decode OPCODE_4 {
199            0: decode CPNUM {
200                0xa, 0xb: decode OPCODE_23_20 {
201##include "vfp.isa"
202                }
203            } // CPNUM
204            1: decode CPNUM { // 27-24=1110,4 ==1
205                1: decode OPCODE_15_12 {
206                    format FloatOp {
207                        0xf: decode OPCODE_23_21 {
208                            format FloatCmp {
209                                0x4: cmf({{ Fn.df }}, {{ Fm.df }});
210                                0x5: cnf({{ Fn.df }}, {{ -Fm.df }});
211                                0x6: cmfe({{ Fn.df }}, {{ Fm.df}});
212                                0x7: cnfe({{ Fn.df }}, {{ -Fm.df}});
213                            }
214                        }
215                        default: decode OPCODE_23_20 {
216                            0x0: decode OPCODE_7 {
217                                0: flts({{ Fn.sf = (float) Rd.sw; }});
218                                1: fltd({{ Fn.df = (double) Rd.sw; }});
219                            }
220                            0x1: decode OPCODE_7 {
221                                0: fixs({{ Rd = (uint32_t) Fm.sf; }});
222                                1: fixd({{ Rd = (uint32_t) Fm.df; }});
223                            }
224                            0x2: wfs({{ Fpsr = Rd; }});
225                            0x3: rfs({{ Rd = Fpsr; }});
226                            0x4: FailUnimpl::wfc();
227                            0x5: FailUnimpl::rfc();
228                        }
229                    } // format FloatOp
230                }
231                0xa: decode MISC_OPCODE {
232                    0x1: decode MEDIA_OPCODE {
233                        0xf: decode RN {
234                            0x0: FloatOp::fmrx_fpsid({{ Rd = Fpsid; }});
235                            0x1: FloatOp::fmrx_fpscr({{ Rd = Fpscr; }});
236                            0x8: FloatOp::fmrx_fpexc({{ Rd = Fpexc; }});
237                        }
238                        0xe: decode RN {
239                            0x0: FloatOp::fmxr_fpsid({{ Fpsid = Rd; }});
240                            0x1: FloatOp::fmxr_fpscr({{ Fpscr = Rd; }});
241                            0x8: FloatOp::fmxr_fpexc({{ Fpexc = Rd; }});
242                        }
243                    } // MEDIA_OPCODE (MISC_OPCODE 0x1)
244                } // MISC_OPCODE (CPNUM 0xA)
245                0xf: decode RN {
246                    // Barrriers, Cache Maintence, NOPS
247                    7: decode OPCODE_23_21 {
248                        0: decode RM {
249                            0: decode OPC2 {
250                                4: decode OPCODE_20 {
251                                    0: PredOp::mcr_cp15_nop1({{ }}); // was wfi
252                                }
253                            }
254                            1: WarnUnimpl::cp15_cache_maint();
255                            4: WarnUnimpl::cp15_par();
256                            5: decode OPC2 {
257                                0,1: WarnUnimpl::cp15_cache_maint2();
258                                4: PredOp::cp15_isb({{ ; }}, IsMemBarrier, IsSerializeBefore);
259                                6,7: WarnUnimpl::cp15_bp_maint();
260                            }
261                            6: WarnUnimpl::cp15_cache_maint3();
262                            8: WarnUnimpl::cp15_va_to_pa();
263                            10: decode OPC2 {
264                                1,2: WarnUnimpl::cp15_cache_maint3();
265                                4: PredOp::cp15_dsb({{ ; }}, IsMemBarrier, IsSerializeBefore);
266                                5: PredOp::cp15_dmb({{ ; }}, IsMemBarrier, IsSerializeBefore);
267                            }
268                            11: WarnUnimpl::cp15_cache_maint4();
269                            13: decode OPC2 {
270                                1: decode OPCODE_20 {
271                                    0: PredOp::mcr_cp15_nop2({{ }}); // was prefetch
272                                }
273                            }
274                            14: WarnUnimpl::cp15_cache_maint5();
275                        } // RM
276                    } // OPCODE_23_21 CR
277
278                    // Thread ID and context ID registers
279                    // Thread ID register needs cheaper access than miscreg
280                    13: WarnUnimpl::mcr_mrc_cp15_c7();
281
282                    // All the rest
283                    default: decode OPCODE_20 {
284                        0: PredOp::mcr_cp15({{
285                               fault = setCp15Register(Rd, RN, OPCODE_23_21, RM, OPC2);
286                        }});
287                        1: PredOp::mrc_cp15({{
288                               fault = readCp15Register(Rd, RN, OPCODE_23_21, RM, OPC2);
289                        }});
290                    }
291                }  // RN
292            } // CPNUM  (OP4 == 1)
293        } //OPCODE_4
294
295#if FULL_SYSTEM
296        1: PredOp::swi({{ fault = new SupervisorCall; }}, IsSerializeAfter, IsNonSpeculative, IsSyscall);
297#else
298        1: PredOp::swi({{ if (testPredicate(CondCodes, condCode))
299            {
300                if (IMMED_23_0)
301                    xc->syscall(IMMED_23_0);
302                else
303                    xc->syscall(R7);
304            }
305        }});
306#endif // FULL_SYSTEM
307    } // OPCODE_24
308
309}
310}
311
312