isa.cc revision 14228
1/* 2 * Copyright (c) 2010-2019 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Gabe Black 38 * Ali Saidi 39 */ 40 41#include "arch/arm/isa.hh" 42#include "arch/arm/pmu.hh" 43#include "arch/arm/system.hh" 44#include "arch/arm/tlb.hh" 45#include "arch/arm/tlbi_op.hh" 46#include "cpu/base.hh" 47#include "cpu/checker/cpu.hh" 48#include "debug/Arm.hh" 49#include "debug/MiscRegs.hh" 50#include "dev/arm/generic_timer.hh" 51#include "dev/arm/gic_v3.hh" 52#include "dev/arm/gic_v3_cpu_interface.hh" 53#include "params/ArmISA.hh" 54#include "sim/faults.hh" 55#include "sim/stat_control.hh" 56#include "sim/system.hh" 57 58namespace ArmISA 59{ 60 61ISA::ISA(Params *p) 62 : SimObject(p), 63 system(NULL), 64 _decoderFlavour(p->decoderFlavour), 65 _vecRegRenameMode(Enums::Full), 66 pmu(p->pmu), 67 haveGICv3CPUInterface(false), 68 impdefAsNop(p->impdef_nop), 69 afterStartup(false) 70{ 71 miscRegs[MISCREG_SCTLR_RST] = 0; 72 73 // Hook up a dummy device if we haven't been configured with a 74 // real PMU. By using a dummy device, we don't need to check that 75 // the PMU exist every time we try to access a PMU register. 76 if (!pmu) 77 pmu = &dummyDevice; 78 79 // Give all ISA devices a pointer to this ISA 80 pmu->setISA(this); 81 82 system = dynamic_cast<ArmSystem *>(p->system); 83 84 // Cache system-level properties 85 if (FullSystem && system) { 86 highestELIs64 = system->highestELIs64(); 87 haveSecurity = system->haveSecurity(); 88 haveLPAE = system->haveLPAE(); 89 haveCrypto = system->haveCrypto(); 90 haveVirtualization = system->haveVirtualization(); 91 haveLargeAsid64 = system->haveLargeAsid64(); 92 physAddrRange = system->physAddrRange(); 93 haveSVE = system->haveSVE(); 94 havePAN = system->havePAN(); 95 sveVL = system->sveVL(); 96 haveLSE = system->haveLSE(); 97 } else { 98 highestELIs64 = true; // ArmSystem::highestELIs64 does the same 99 haveSecurity = haveLPAE = haveVirtualization = false; 100 haveCrypto = true; 101 haveLargeAsid64 = false; 102 physAddrRange = 32; // dummy value 103 haveSVE = true; 104 havePAN = false; 105 sveVL = p->sve_vl_se; 106 haveLSE = true; 107 } 108 109 // Initial rename mode depends on highestEL 110 const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) = 111 highestELIs64 ? Enums::Full : Enums::Elem; 112 113 initializeMiscRegMetadata(); 114 preUnflattenMiscReg(); 115 116 clear(); 117} 118 119std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS); 120 121const ArmISAParams * 122ISA::params() const 123{ 124 return dynamic_cast<const Params *>(_params); 125} 126 127void 128ISA::clear() 129{ 130 const Params *p(params()); 131 132 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; 133 memset(miscRegs, 0, sizeof(miscRegs)); 134 135 initID32(p); 136 137 // We always initialize AArch64 ID registers even 138 // if we are in AArch32. This is done since if we 139 // are in SE mode we don't know if our ArmProcess is 140 // AArch32 or AArch64 141 initID64(p); 142 143 // Start with an event in the mailbox 144 miscRegs[MISCREG_SEV_MAILBOX] = 1; 145 146 // Separate Instruction and Data TLBs 147 miscRegs[MISCREG_TLBTR] = 1; 148 149 MVFR0 mvfr0 = 0; 150 mvfr0.advSimdRegisters = 2; 151 mvfr0.singlePrecision = 2; 152 mvfr0.doublePrecision = 2; 153 mvfr0.vfpExceptionTrapping = 0; 154 mvfr0.divide = 1; 155 mvfr0.squareRoot = 1; 156 mvfr0.shortVectors = 1; 157 mvfr0.roundingModes = 1; 158 miscRegs[MISCREG_MVFR0] = mvfr0; 159 160 MVFR1 mvfr1 = 0; 161 mvfr1.flushToZero = 1; 162 mvfr1.defaultNaN = 1; 163 mvfr1.advSimdLoadStore = 1; 164 mvfr1.advSimdInteger = 1; 165 mvfr1.advSimdSinglePrecision = 1; 166 mvfr1.advSimdHalfPrecision = 1; 167 mvfr1.vfpHalfPrecision = 1; 168 miscRegs[MISCREG_MVFR1] = mvfr1; 169 170 // Reset values of PRRR and NMRR are implementation dependent 171 172 // @todo: PRRR and NMRR in secure state? 173 miscRegs[MISCREG_PRRR_NS] = 174 (1 << 19) | // 19 175 (0 << 18) | // 18 176 (0 << 17) | // 17 177 (1 << 16) | // 16 178 (2 << 14) | // 15:14 179 (0 << 12) | // 13:12 180 (2 << 10) | // 11:10 181 (2 << 8) | // 9:8 182 (2 << 6) | // 7:6 183 (2 << 4) | // 5:4 184 (1 << 2) | // 3:2 185 0; // 1:0 186 187 miscRegs[MISCREG_NMRR_NS] = 188 (1 << 30) | // 31:30 189 (0 << 26) | // 27:26 190 (0 << 24) | // 25:24 191 (3 << 22) | // 23:22 192 (2 << 20) | // 21:20 193 (0 << 18) | // 19:18 194 (0 << 16) | // 17:16 195 (1 << 14) | // 15:14 196 (0 << 12) | // 13:12 197 (2 << 10) | // 11:10 198 (0 << 8) | // 9:8 199 (3 << 6) | // 7:6 200 (2 << 4) | // 5:4 201 (0 << 2) | // 3:2 202 0; // 1:0 203 204 if (FullSystem && system->highestELIs64()) { 205 // Initialize AArch64 state 206 clear64(p); 207 return; 208 } 209 210 // Initialize AArch32 state... 211 clear32(p, sctlr_rst); 212} 213 214void 215ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst) 216{ 217 CPSR cpsr = 0; 218 cpsr.mode = MODE_USER; 219 220 if (FullSystem) { 221 miscRegs[MISCREG_MVBAR] = system->resetAddr(); 222 } 223 224 miscRegs[MISCREG_CPSR] = cpsr; 225 updateRegMap(cpsr); 226 227 SCTLR sctlr = 0; 228 sctlr.te = (bool) sctlr_rst.te; 229 sctlr.nmfi = (bool) sctlr_rst.nmfi; 230 sctlr.v = (bool) sctlr_rst.v; 231 sctlr.u = 1; 232 sctlr.xp = 1; 233 sctlr.rao2 = 1; 234 sctlr.rao3 = 1; 235 sctlr.rao4 = 0xf; // SCTLR[6:3] 236 sctlr.uci = 1; 237 sctlr.dze = 1; 238 miscRegs[MISCREG_SCTLR_NS] = sctlr; 239 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; 240 miscRegs[MISCREG_HCPTR] = 0; 241 242 miscRegs[MISCREG_CPACR] = 0; 243 244 miscRegs[MISCREG_FPSID] = p->fpsid; 245 246 if (haveLPAE) { 247 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; 248 ttbcr.eae = 0; 249 miscRegs[MISCREG_TTBCR_NS] = ttbcr; 250 // Enforce consistency with system-level settings 251 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; 252 } 253 254 if (haveSecurity) { 255 miscRegs[MISCREG_SCTLR_S] = sctlr; 256 miscRegs[MISCREG_SCR] = 0; 257 miscRegs[MISCREG_VBAR_S] = 0; 258 } else { 259 // we're always non-secure 260 miscRegs[MISCREG_SCR] = 1; 261 } 262 263 //XXX We need to initialize the rest of the state. 264} 265 266void 267ISA::clear64(const ArmISAParams *p) 268{ 269 CPSR cpsr = 0; 270 Addr rvbar = system->resetAddr(); 271 switch (system->highestEL()) { 272 // Set initial EL to highest implemented EL using associated stack 273 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset 274 // value 275 case EL3: 276 cpsr.mode = MODE_EL3H; 277 miscRegs[MISCREG_RVBAR_EL3] = rvbar; 278 break; 279 case EL2: 280 cpsr.mode = MODE_EL2H; 281 miscRegs[MISCREG_RVBAR_EL2] = rvbar; 282 break; 283 case EL1: 284 cpsr.mode = MODE_EL1H; 285 miscRegs[MISCREG_RVBAR_EL1] = rvbar; 286 break; 287 default: 288 panic("Invalid highest implemented exception level"); 289 break; 290 } 291 292 // Initialize rest of CPSR 293 cpsr.daif = 0xf; // Mask all interrupts 294 cpsr.ss = 0; 295 cpsr.il = 0; 296 miscRegs[MISCREG_CPSR] = cpsr; 297 updateRegMap(cpsr); 298 299 // Initialize other control registers 300 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; 301 if (haveSecurity) { 302 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830; 303 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields 304 } else if (haveVirtualization) { 305 // also MISCREG_SCTLR_EL2 (by mapping) 306 miscRegs[MISCREG_HSCTLR] = 0x30c50830; 307 } else { 308 // also MISCREG_SCTLR_EL1 (by mapping) 309 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init 310 // Always non-secure 311 miscRegs[MISCREG_SCR_EL3] = 1; 312 } 313} 314 315void 316ISA::initID32(const ArmISAParams *p) 317{ 318 // Initialize configurable default values 319 miscRegs[MISCREG_MIDR] = p->midr; 320 miscRegs[MISCREG_MIDR_EL1] = p->midr; 321 miscRegs[MISCREG_VPIDR] = p->midr; 322 323 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; 324 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; 325 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; 326 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; 327 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; 328 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; 329 330 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; 331 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; 332 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; 333 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; 334 335 miscRegs[MISCREG_ID_ISAR5] = insertBits( 336 miscRegs[MISCREG_ID_ISAR5], 19, 4, 337 haveCrypto ? 0x1112 : 0x0); 338} 339 340void 341ISA::initID64(const ArmISAParams *p) 342{ 343 // Initialize configurable id registers 344 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; 345 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; 346 miscRegs[MISCREG_ID_AA64DFR0_EL1] = 347 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) | 348 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3 349 350 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; 351 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; 352 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; 353 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; 354 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; 355 miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1; 356 357 miscRegs[MISCREG_ID_DFR0_EL1] = 358 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3 359 360 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1]; 361 362 // SVE 363 miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0; // SVEver 0 364 if (haveSecurity) { 365 miscRegs[MISCREG_ZCR_EL3] = sveVL - 1; 366 } else if (haveVirtualization) { 367 miscRegs[MISCREG_ZCR_EL2] = sveVL - 1; 368 } else { 369 miscRegs[MISCREG_ZCR_EL1] = sveVL - 1; 370 } 371 372 // Enforce consistency with system-level settings... 373 374 // EL3 375 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 376 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, 377 haveSecurity ? 0x2 : 0x0); 378 // EL2 379 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 380 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, 381 haveVirtualization ? 0x2 : 0x0); 382 // SVE 383 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 384 miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32, 385 haveSVE ? 0x1 : 0x0); 386 // Large ASID support 387 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 388 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, 389 haveLargeAsid64 ? 0x2 : 0x0); 390 // Physical address size 391 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 392 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, 393 encodePhysAddrRange64(physAddrRange)); 394 // Crypto 395 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits( 396 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4, 397 haveCrypto ? 0x1112 : 0x0); 398 // LSE 399 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits( 400 miscRegs[MISCREG_ID_AA64ISAR0_EL1], 23, 20, 401 haveLSE ? 0x2 : 0x0); 402 // PAN 403 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = insertBits( 404 miscRegs[MISCREG_ID_AA64MMFR1_EL1], 23, 20, 405 havePAN ? 0x1 : 0x0); 406} 407 408void 409ISA::startup(ThreadContext *tc) 410{ 411 pmu->setThreadContext(tc); 412 413 if (system) { 414 Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC()); 415 if (gicv3) { 416 haveGICv3CPUInterface = true; 417 gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId())); 418 gicv3CpuInterface->setISA(this); 419 gicv3CpuInterface->setThreadContext(tc); 420 } 421 } 422 423 afterStartup = true; 424} 425 426 427RegVal 428ISA::readMiscRegNoEffect(int misc_reg) const 429{ 430 assert(misc_reg < NumMiscRegs); 431 432 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 433 const auto &map = getMiscIndices(misc_reg); 434 int lower = map.first, upper = map.second; 435 // NB!: apply architectural masks according to desired register, 436 // despite possibly getting value from different (mapped) register. 437 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32)) 438 |(miscRegs[upper] << 32)); 439 if (val & reg.res0()) { 440 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n", 441 miscRegName[misc_reg], val & reg.res0()); 442 } 443 if ((val & reg.res1()) != reg.res1()) { 444 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n", 445 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1()); 446 } 447 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao 448} 449 450 451RegVal 452ISA::readMiscReg(int misc_reg, ThreadContext *tc) 453{ 454 CPSR cpsr = 0; 455 PCState pc = 0; 456 SCR scr = 0; 457 458 if (misc_reg == MISCREG_CPSR) { 459 cpsr = miscRegs[misc_reg]; 460 pc = tc->pcState(); 461 cpsr.j = pc.jazelle() ? 1 : 0; 462 cpsr.t = pc.thumb() ? 1 : 0; 463 return cpsr; 464 } 465 466#ifndef NDEBUG 467 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 468 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 469 warn("Unimplemented system register %s read.\n", 470 miscRegName[misc_reg]); 471 else 472 panic("Unimplemented system register %s read.\n", 473 miscRegName[misc_reg]); 474 } 475#endif 476 477 switch (unflattenMiscReg(misc_reg)) { 478 case MISCREG_HCR: 479 { 480 if (!haveVirtualization) 481 return 0; 482 else 483 return readMiscRegNoEffect(MISCREG_HCR); 484 } 485 case MISCREG_CPACR: 486 { 487 const uint32_t ones = (uint32_t)(-1); 488 CPACR cpacrMask = 0; 489 // Only cp10, cp11, and ase are implemented, nothing else should 490 // be readable? (straight copy from the write code) 491 cpacrMask.cp10 = ones; 492 cpacrMask.cp11 = ones; 493 cpacrMask.asedis = ones; 494 495 // Security Extensions may limit the readability of CPACR 496 if (haveSecurity) { 497 scr = readMiscRegNoEffect(MISCREG_SCR); 498 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 499 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { 500 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 501 // NB: Skipping the full loop, here 502 if (!nsacr.cp10) cpacrMask.cp10 = 0; 503 if (!nsacr.cp11) cpacrMask.cp11 = 0; 504 } 505 } 506 RegVal val = readMiscRegNoEffect(MISCREG_CPACR); 507 val &= cpacrMask; 508 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", 509 miscRegName[misc_reg], val); 510 return val; 511 } 512 case MISCREG_MPIDR: 513 case MISCREG_MPIDR_EL1: 514 return readMPIDR(system, tc); 515 case MISCREG_VMPIDR: 516 case MISCREG_VMPIDR_EL2: 517 // top bit defined as RES1 518 return readMiscRegNoEffect(misc_reg) | 0x80000000; 519 case MISCREG_ID_AFR0: // not implemented, so alias MIDR 520 case MISCREG_REVIDR: // not implemented, so alias MIDR 521 case MISCREG_MIDR: 522 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 523 scr = readMiscRegNoEffect(MISCREG_SCR); 524 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 525 return readMiscRegNoEffect(misc_reg); 526 } else { 527 return readMiscRegNoEffect(MISCREG_VPIDR); 528 } 529 break; 530 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI 531 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI 532 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI 533 case MISCREG_AIDR: // AUX ID set to 0 534 case MISCREG_TCMTR: // No TCM's 535 return 0; 536 537 case MISCREG_CLIDR: 538 warn_once("The clidr register always reports 0 caches.\n"); 539 warn_once("clidr LoUIS field of 0b001 to match current " 540 "ARM implementations.\n"); 541 return 0x00200000; 542 case MISCREG_CCSIDR: 543 warn_once("The ccsidr register isn't implemented and " 544 "always reads as 0.\n"); 545 break; 546 case MISCREG_CTR: // AArch32, ARMv7, top bit set 547 case MISCREG_CTR_EL0: // AArch64 548 { 549 //all caches have the same line size in gem5 550 //4 byte words in ARM 551 unsigned lineSizeWords = 552 tc->getSystemPtr()->cacheLineSize() / 4; 553 unsigned log2LineSizeWords = 0; 554 555 while (lineSizeWords >>= 1) { 556 ++log2LineSizeWords; 557 } 558 559 CTR ctr = 0; 560 //log2 of minimun i-cache line size (words) 561 ctr.iCacheLineSize = log2LineSizeWords; 562 //b11 - gem5 uses pipt 563 ctr.l1IndexPolicy = 0x3; 564 //log2 of minimum d-cache line size (words) 565 ctr.dCacheLineSize = log2LineSizeWords; 566 //log2 of max reservation size (words) 567 ctr.erg = log2LineSizeWords; 568 //log2 of max writeback size (words) 569 ctr.cwg = log2LineSizeWords; 570 //b100 - gem5 format is ARMv7 571 ctr.format = 0x4; 572 573 return ctr; 574 } 575 case MISCREG_ACTLR: 576 warn("Not doing anything for miscreg ACTLR\n"); 577 break; 578 579 case MISCREG_PMXEVTYPER_PMCCFILTR: 580 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 581 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 582 case MISCREG_PMCR ... MISCREG_PMOVSSET: 583 return pmu->readMiscReg(misc_reg); 584 585 case MISCREG_CPSR_Q: 586 panic("shouldn't be reading this register seperately\n"); 587 case MISCREG_FPSCR_QC: 588 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; 589 case MISCREG_FPSCR_EXC: 590 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; 591 case MISCREG_FPSR: 592 { 593 const uint32_t ones = (uint32_t)(-1); 594 FPSCR fpscrMask = 0; 595 fpscrMask.ioc = ones; 596 fpscrMask.dzc = ones; 597 fpscrMask.ofc = ones; 598 fpscrMask.ufc = ones; 599 fpscrMask.ixc = ones; 600 fpscrMask.idc = ones; 601 fpscrMask.qc = ones; 602 fpscrMask.v = ones; 603 fpscrMask.c = ones; 604 fpscrMask.z = ones; 605 fpscrMask.n = ones; 606 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 607 } 608 case MISCREG_FPCR: 609 { 610 const uint32_t ones = (uint32_t)(-1); 611 FPSCR fpscrMask = 0; 612 fpscrMask.len = ones; 613 fpscrMask.fz16 = ones; 614 fpscrMask.stride = ones; 615 fpscrMask.rMode = ones; 616 fpscrMask.fz = ones; 617 fpscrMask.dn = ones; 618 fpscrMask.ahp = ones; 619 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 620 } 621 case MISCREG_NZCV: 622 { 623 CPSR cpsr = 0; 624 cpsr.nz = tc->readCCReg(CCREG_NZ); 625 cpsr.c = tc->readCCReg(CCREG_C); 626 cpsr.v = tc->readCCReg(CCREG_V); 627 return cpsr; 628 } 629 case MISCREG_DAIF: 630 { 631 CPSR cpsr = 0; 632 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; 633 return cpsr; 634 } 635 case MISCREG_SP_EL0: 636 { 637 return tc->readIntReg(INTREG_SP0); 638 } 639 case MISCREG_SP_EL1: 640 { 641 return tc->readIntReg(INTREG_SP1); 642 } 643 case MISCREG_SP_EL2: 644 { 645 return tc->readIntReg(INTREG_SP2); 646 } 647 case MISCREG_SPSEL: 648 { 649 return miscRegs[MISCREG_CPSR] & 0x1; 650 } 651 case MISCREG_CURRENTEL: 652 { 653 return miscRegs[MISCREG_CPSR] & 0xc; 654 } 655 case MISCREG_PAN: 656 { 657 return miscRegs[MISCREG_CPSR] & 0x400000; 658 } 659 case MISCREG_L2CTLR: 660 { 661 // mostly unimplemented, just set NumCPUs field from sim and return 662 L2CTLR l2ctlr = 0; 663 // b00:1CPU to b11:4CPUs 664 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; 665 return l2ctlr; 666 } 667 case MISCREG_DBGDIDR: 668 /* For now just implement the version number. 669 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5) 670 */ 671 return 0x5 << 16; 672 case MISCREG_DBGDSCRint: 673 return 0; 674 case MISCREG_ISR: 675 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 676 readMiscRegNoEffect(MISCREG_HCR), 677 readMiscRegNoEffect(MISCREG_CPSR), 678 readMiscRegNoEffect(MISCREG_SCR)); 679 case MISCREG_ISR_EL1: 680 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 681 readMiscRegNoEffect(MISCREG_HCR_EL2), 682 readMiscRegNoEffect(MISCREG_CPSR), 683 readMiscRegNoEffect(MISCREG_SCR_EL3)); 684 case MISCREG_DCZID_EL0: 685 return 0x04; // DC ZVA clear 64-byte chunks 686 case MISCREG_HCPTR: 687 { 688 RegVal val = readMiscRegNoEffect(misc_reg); 689 // The trap bit associated with CP14 is defined as RAZ 690 val &= ~(1 << 14); 691 // If a CP bit in NSACR is 0 then the corresponding bit in 692 // HCPTR is RAO/WI 693 bool secure_lookup = haveSecurity && 694 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 695 readMiscRegNoEffect(MISCREG_CPSR)); 696 if (!secure_lookup) { 697 RegVal mask = readMiscRegNoEffect(MISCREG_NSACR); 698 val |= (mask ^ 0x7FFF) & 0xBFFF; 699 } 700 // Set the bits for unimplemented coprocessors to RAO/WI 701 val |= 0x33FF; 702 return (val); 703 } 704 case MISCREG_HDFAR: // alias for secure DFAR 705 return readMiscRegNoEffect(MISCREG_DFAR_S); 706 case MISCREG_HIFAR: // alias for secure IFAR 707 return readMiscRegNoEffect(MISCREG_IFAR_S); 708 709 case MISCREG_ID_PFR0: 710 // !ThumbEE | !Jazelle | Thumb | ARM 711 return 0x00000031; 712 case MISCREG_ID_PFR1: 713 { // Timer | Virti | !M Profile | TrustZone | ARMv4 714 bool haveTimer = (system->getGenericTimer() != NULL); 715 return 0x00000001 716 | (haveSecurity ? 0x00000010 : 0x0) 717 | (haveVirtualization ? 0x00001000 : 0x0) 718 | (haveTimer ? 0x00010000 : 0x0); 719 } 720 case MISCREG_ID_AA64PFR0_EL1: 721 return 0x0000000000000002 | // AArch{64,32} supported at EL0 722 0x0000000000000020 | // EL1 723 (haveVirtualization ? 0x0000000000000200 : 0) | // EL2 724 (haveSecurity ? 0x0000000000002000 : 0) | // EL3 725 (haveSVE ? 0x0000000100000000 : 0) | // SVE 726 (haveGICv3CPUInterface ? 0x0000000001000000 : 0); 727 case MISCREG_ID_AA64PFR1_EL1: 728 return 0; // bits [63:0] RES0 (reserved for future use) 729 730 // Generic Timer registers 731 case MISCREG_CNTHV_CTL_EL2: 732 case MISCREG_CNTHV_CVAL_EL2: 733 case MISCREG_CNTHV_TVAL_EL2: 734 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 735 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 736 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 737 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 738 return getGenericTimer(tc).readMiscReg(misc_reg); 739 740 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15: 741 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: 742 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: 743 return getGICv3CPUInterface(tc).readMiscReg(misc_reg); 744 745 default: 746 break; 747 748 } 749 return readMiscRegNoEffect(misc_reg); 750} 751 752void 753ISA::setMiscRegNoEffect(int misc_reg, RegVal val) 754{ 755 assert(misc_reg < NumMiscRegs); 756 757 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 758 const auto &map = getMiscIndices(misc_reg); 759 int lower = map.first, upper = map.second; 760 761 auto v = (val & ~reg.wi()) | reg.rao(); 762 if (upper > 0) { 763 miscRegs[lower] = bits(v, 31, 0); 764 miscRegs[upper] = bits(v, 63, 32); 765 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", 766 misc_reg, lower, upper, v); 767 } else { 768 miscRegs[lower] = v; 769 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", 770 misc_reg, lower, v); 771 } 772} 773 774void 775ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc) 776{ 777 778 RegVal newVal = val; 779 bool secure_lookup; 780 SCR scr; 781 782 if (misc_reg == MISCREG_CPSR) { 783 updateRegMap(val); 784 785 786 CPSR old_cpsr = miscRegs[MISCREG_CPSR]; 787 int old_mode = old_cpsr.mode; 788 CPSR cpsr = val; 789 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) { 790 getITBPtr(tc)->invalidateMiscReg(); 791 getDTBPtr(tc)->invalidateMiscReg(); 792 } 793 794 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", 795 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); 796 PCState pc = tc->pcState(); 797 pc.nextThumb(cpsr.t); 798 pc.nextJazelle(cpsr.j); 799 pc.illegalExec(cpsr.il == 1); 800 801 tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1); 802 803 // Follow slightly different semantics if a CheckerCPU object 804 // is connected 805 CheckerCPU *checker = tc->getCheckerCpuPtr(); 806 if (checker) { 807 tc->pcStateNoRecord(pc); 808 } else { 809 tc->pcState(pc); 810 } 811 } else { 812#ifndef NDEBUG 813 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 814 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 815 warn("Unimplemented system register %s write with %#x.\n", 816 miscRegName[misc_reg], val); 817 else 818 panic("Unimplemented system register %s write with %#x.\n", 819 miscRegName[misc_reg], val); 820 } 821#endif 822 switch (unflattenMiscReg(misc_reg)) { 823 case MISCREG_CPACR: 824 { 825 826 const uint32_t ones = (uint32_t)(-1); 827 CPACR cpacrMask = 0; 828 // Only cp10, cp11, and ase are implemented, nothing else should 829 // be writable 830 cpacrMask.cp10 = ones; 831 cpacrMask.cp11 = ones; 832 cpacrMask.asedis = ones; 833 834 // Security Extensions may limit the writability of CPACR 835 if (haveSecurity) { 836 scr = readMiscRegNoEffect(MISCREG_SCR); 837 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 838 if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) { 839 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 840 // NB: Skipping the full loop, here 841 if (!nsacr.cp10) cpacrMask.cp10 = 0; 842 if (!nsacr.cp11) cpacrMask.cp11 = 0; 843 } 844 } 845 846 RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR); 847 newVal &= cpacrMask; 848 newVal |= old_val & ~cpacrMask; 849 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 850 miscRegName[misc_reg], newVal); 851 } 852 break; 853 case MISCREG_CPACR_EL1: 854 { 855 const uint32_t ones = (uint32_t)(-1); 856 CPACR cpacrMask = 0; 857 cpacrMask.tta = ones; 858 cpacrMask.fpen = ones; 859 if (haveSVE) { 860 cpacrMask.zen = ones; 861 } 862 newVal &= cpacrMask; 863 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 864 miscRegName[misc_reg], newVal); 865 } 866 break; 867 case MISCREG_CPTR_EL2: 868 { 869 const uint32_t ones = (uint32_t)(-1); 870 CPTR cptrMask = 0; 871 cptrMask.tcpac = ones; 872 cptrMask.tta = ones; 873 cptrMask.tfp = ones; 874 if (haveSVE) { 875 cptrMask.tz = ones; 876 } 877 newVal &= cptrMask; 878 cptrMask = 0; 879 cptrMask.res1_13_12_el2 = ones; 880 cptrMask.res1_7_0_el2 = ones; 881 if (!haveSVE) { 882 cptrMask.res1_8_el2 = ones; 883 } 884 cptrMask.res1_9_el2 = ones; 885 newVal |= cptrMask; 886 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 887 miscRegName[misc_reg], newVal); 888 } 889 break; 890 case MISCREG_CPTR_EL3: 891 { 892 const uint32_t ones = (uint32_t)(-1); 893 CPTR cptrMask = 0; 894 cptrMask.tcpac = ones; 895 cptrMask.tta = ones; 896 cptrMask.tfp = ones; 897 if (haveSVE) { 898 cptrMask.ez = ones; 899 } 900 newVal &= cptrMask; 901 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 902 miscRegName[misc_reg], newVal); 903 } 904 break; 905 case MISCREG_CSSELR: 906 warn_once("The csselr register isn't implemented.\n"); 907 return; 908 909 case MISCREG_DC_ZVA_Xt: 910 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); 911 return; 912 913 case MISCREG_FPSCR: 914 { 915 const uint32_t ones = (uint32_t)(-1); 916 FPSCR fpscrMask = 0; 917 fpscrMask.ioc = ones; 918 fpscrMask.dzc = ones; 919 fpscrMask.ofc = ones; 920 fpscrMask.ufc = ones; 921 fpscrMask.ixc = ones; 922 fpscrMask.idc = ones; 923 fpscrMask.ioe = ones; 924 fpscrMask.dze = ones; 925 fpscrMask.ofe = ones; 926 fpscrMask.ufe = ones; 927 fpscrMask.ixe = ones; 928 fpscrMask.ide = ones; 929 fpscrMask.len = ones; 930 fpscrMask.fz16 = ones; 931 fpscrMask.stride = ones; 932 fpscrMask.rMode = ones; 933 fpscrMask.fz = ones; 934 fpscrMask.dn = ones; 935 fpscrMask.ahp = ones; 936 fpscrMask.qc = ones; 937 fpscrMask.v = ones; 938 fpscrMask.c = ones; 939 fpscrMask.z = ones; 940 fpscrMask.n = ones; 941 newVal = (newVal & (uint32_t)fpscrMask) | 942 (readMiscRegNoEffect(MISCREG_FPSCR) & 943 ~(uint32_t)fpscrMask); 944 tc->getDecoderPtr()->setContext(newVal); 945 } 946 break; 947 case MISCREG_FPSR: 948 { 949 const uint32_t ones = (uint32_t)(-1); 950 FPSCR fpscrMask = 0; 951 fpscrMask.ioc = ones; 952 fpscrMask.dzc = ones; 953 fpscrMask.ofc = ones; 954 fpscrMask.ufc = ones; 955 fpscrMask.ixc = ones; 956 fpscrMask.idc = ones; 957 fpscrMask.qc = ones; 958 fpscrMask.v = ones; 959 fpscrMask.c = ones; 960 fpscrMask.z = ones; 961 fpscrMask.n = ones; 962 newVal = (newVal & (uint32_t)fpscrMask) | 963 (readMiscRegNoEffect(MISCREG_FPSCR) & 964 ~(uint32_t)fpscrMask); 965 misc_reg = MISCREG_FPSCR; 966 } 967 break; 968 case MISCREG_FPCR: 969 { 970 const uint32_t ones = (uint32_t)(-1); 971 FPSCR fpscrMask = 0; 972 fpscrMask.len = ones; 973 fpscrMask.fz16 = ones; 974 fpscrMask.stride = ones; 975 fpscrMask.rMode = ones; 976 fpscrMask.fz = ones; 977 fpscrMask.dn = ones; 978 fpscrMask.ahp = ones; 979 newVal = (newVal & (uint32_t)fpscrMask) | 980 (readMiscRegNoEffect(MISCREG_FPSCR) & 981 ~(uint32_t)fpscrMask); 982 misc_reg = MISCREG_FPSCR; 983 } 984 break; 985 case MISCREG_CPSR_Q: 986 { 987 assert(!(newVal & ~CpsrMaskQ)); 988 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; 989 misc_reg = MISCREG_CPSR; 990 } 991 break; 992 case MISCREG_FPSCR_QC: 993 { 994 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 995 (newVal & FpscrQcMask); 996 misc_reg = MISCREG_FPSCR; 997 } 998 break; 999 case MISCREG_FPSCR_EXC: 1000 { 1001 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 1002 (newVal & FpscrExcMask); 1003 misc_reg = MISCREG_FPSCR; 1004 } 1005 break; 1006 case MISCREG_FPEXC: 1007 { 1008 // vfpv3 architecture, section B.6.1 of DDI04068 1009 // bit 29 - valid only if fpexc[31] is 0 1010 const uint32_t fpexcMask = 0x60000000; 1011 newVal = (newVal & fpexcMask) | 1012 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); 1013 } 1014 break; 1015 case MISCREG_HCR: 1016 { 1017 if (!haveVirtualization) 1018 return; 1019 } 1020 break; 1021 case MISCREG_IFSR: 1022 { 1023 // ARM ARM (ARM DDI 0406C.b) B4.1.96 1024 const uint32_t ifsrMask = 1025 mask(31, 13) | mask(11, 11) | mask(8, 6); 1026 newVal = newVal & ~ifsrMask; 1027 } 1028 break; 1029 case MISCREG_DFSR: 1030 { 1031 // ARM ARM (ARM DDI 0406C.b) B4.1.52 1032 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); 1033 newVal = newVal & ~dfsrMask; 1034 } 1035 break; 1036 case MISCREG_AMAIR0: 1037 case MISCREG_AMAIR1: 1038 { 1039 // ARM ARM (ARM DDI 0406C.b) B4.1.5 1040 // Valid only with LPAE 1041 if (!haveLPAE) 1042 return; 1043 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); 1044 } 1045 break; 1046 case MISCREG_SCR: 1047 getITBPtr(tc)->invalidateMiscReg(); 1048 getDTBPtr(tc)->invalidateMiscReg(); 1049 break; 1050 case MISCREG_SCTLR: 1051 { 1052 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); 1053 scr = readMiscRegNoEffect(MISCREG_SCR); 1054 1055 MiscRegIndex sctlr_idx; 1056 if (haveSecurity && !highestELIs64 && !scr.ns) { 1057 sctlr_idx = MISCREG_SCTLR_S; 1058 } else { 1059 sctlr_idx = MISCREG_SCTLR_NS; 1060 } 1061 1062 SCTLR sctlr = miscRegs[sctlr_idx]; 1063 SCTLR new_sctlr = newVal; 1064 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; 1065 miscRegs[sctlr_idx] = (RegVal)new_sctlr; 1066 getITBPtr(tc)->invalidateMiscReg(); 1067 getDTBPtr(tc)->invalidateMiscReg(); 1068 } 1069 case MISCREG_MIDR: 1070 case MISCREG_ID_PFR0: 1071 case MISCREG_ID_PFR1: 1072 case MISCREG_ID_DFR0: 1073 case MISCREG_ID_MMFR0: 1074 case MISCREG_ID_MMFR1: 1075 case MISCREG_ID_MMFR2: 1076 case MISCREG_ID_MMFR3: 1077 case MISCREG_ID_ISAR0: 1078 case MISCREG_ID_ISAR1: 1079 case MISCREG_ID_ISAR2: 1080 case MISCREG_ID_ISAR3: 1081 case MISCREG_ID_ISAR4: 1082 case MISCREG_ID_ISAR5: 1083 1084 case MISCREG_MPIDR: 1085 case MISCREG_FPSID: 1086 case MISCREG_TLBTR: 1087 case MISCREG_MVFR0: 1088 case MISCREG_MVFR1: 1089 1090 case MISCREG_ID_AA64AFR0_EL1: 1091 case MISCREG_ID_AA64AFR1_EL1: 1092 case MISCREG_ID_AA64DFR0_EL1: 1093 case MISCREG_ID_AA64DFR1_EL1: 1094 case MISCREG_ID_AA64ISAR0_EL1: 1095 case MISCREG_ID_AA64ISAR1_EL1: 1096 case MISCREG_ID_AA64MMFR0_EL1: 1097 case MISCREG_ID_AA64MMFR1_EL1: 1098 case MISCREG_ID_AA64MMFR2_EL1: 1099 case MISCREG_ID_AA64PFR0_EL1: 1100 case MISCREG_ID_AA64PFR1_EL1: 1101 // ID registers are constants. 1102 return; 1103 1104 // TLB Invalidate All 1105 case MISCREG_TLBIALL: // TLBI all entries, EL0&1, 1106 { 1107 assert32(tc); 1108 scr = readMiscReg(MISCREG_SCR, tc); 1109 1110 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1111 tlbiOp(tc); 1112 return; 1113 } 1114 // TLB Invalidate All, Inner Shareable 1115 case MISCREG_TLBIALLIS: 1116 { 1117 assert32(tc); 1118 scr = readMiscReg(MISCREG_SCR, tc); 1119 1120 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1121 tlbiOp.broadcast(tc); 1122 return; 1123 } 1124 // Instruction TLB Invalidate All 1125 case MISCREG_ITLBIALL: 1126 { 1127 assert32(tc); 1128 scr = readMiscReg(MISCREG_SCR, tc); 1129 1130 ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1131 tlbiOp(tc); 1132 return; 1133 } 1134 // Data TLB Invalidate All 1135 case MISCREG_DTLBIALL: 1136 { 1137 assert32(tc); 1138 scr = readMiscReg(MISCREG_SCR, tc); 1139 1140 DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1141 tlbiOp(tc); 1142 return; 1143 } 1144 // TLB Invalidate by VA 1145 // mcr tlbimval(is) is invalidating all matching entries 1146 // regardless of the level of lookup, since in gem5 we cache 1147 // in the tlb the last level of lookup only. 1148 case MISCREG_TLBIMVA: 1149 case MISCREG_TLBIMVAL: 1150 { 1151 assert32(tc); 1152 scr = readMiscReg(MISCREG_SCR, tc); 1153 1154 TLBIMVA tlbiOp(EL1, 1155 haveSecurity && !scr.ns, 1156 mbits(newVal, 31, 12), 1157 bits(newVal, 7,0)); 1158 1159 tlbiOp(tc); 1160 return; 1161 } 1162 // TLB Invalidate by VA, Inner Shareable 1163 case MISCREG_TLBIMVAIS: 1164 case MISCREG_TLBIMVALIS: 1165 { 1166 assert32(tc); 1167 scr = readMiscReg(MISCREG_SCR, tc); 1168 1169 TLBIMVA tlbiOp(EL1, 1170 haveSecurity && !scr.ns, 1171 mbits(newVal, 31, 12), 1172 bits(newVal, 7,0)); 1173 1174 tlbiOp.broadcast(tc); 1175 return; 1176 } 1177 // TLB Invalidate by ASID match 1178 case MISCREG_TLBIASID: 1179 { 1180 assert32(tc); 1181 scr = readMiscReg(MISCREG_SCR, tc); 1182 1183 TLBIASID tlbiOp(EL1, 1184 haveSecurity && !scr.ns, 1185 bits(newVal, 7,0)); 1186 1187 tlbiOp(tc); 1188 return; 1189 } 1190 // TLB Invalidate by ASID match, Inner Shareable 1191 case MISCREG_TLBIASIDIS: 1192 { 1193 assert32(tc); 1194 scr = readMiscReg(MISCREG_SCR, tc); 1195 1196 TLBIASID tlbiOp(EL1, 1197 haveSecurity && !scr.ns, 1198 bits(newVal, 7,0)); 1199 1200 tlbiOp.broadcast(tc); 1201 return; 1202 } 1203 // mcr tlbimvaal(is) is invalidating all matching entries 1204 // regardless of the level of lookup, since in gem5 we cache 1205 // in the tlb the last level of lookup only. 1206 // TLB Invalidate by VA, All ASID 1207 case MISCREG_TLBIMVAA: 1208 case MISCREG_TLBIMVAAL: 1209 { 1210 assert32(tc); 1211 scr = readMiscReg(MISCREG_SCR, tc); 1212 1213 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1214 mbits(newVal, 31,12)); 1215 1216 tlbiOp(tc); 1217 return; 1218 } 1219 // TLB Invalidate by VA, All ASID, Inner Shareable 1220 case MISCREG_TLBIMVAAIS: 1221 case MISCREG_TLBIMVAALIS: 1222 { 1223 assert32(tc); 1224 scr = readMiscReg(MISCREG_SCR, tc); 1225 1226 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1227 mbits(newVal, 31,12)); 1228 1229 tlbiOp.broadcast(tc); 1230 return; 1231 } 1232 // mcr tlbimvalh(is) is invalidating all matching entries 1233 // regardless of the level of lookup, since in gem5 we cache 1234 // in the tlb the last level of lookup only. 1235 // TLB Invalidate by VA, Hyp mode 1236 case MISCREG_TLBIMVAH: 1237 case MISCREG_TLBIMVALH: 1238 { 1239 assert32(tc); 1240 scr = readMiscReg(MISCREG_SCR, tc); 1241 1242 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns, 1243 mbits(newVal, 31,12)); 1244 1245 tlbiOp(tc); 1246 return; 1247 } 1248 // TLB Invalidate by VA, Hyp mode, Inner Shareable 1249 case MISCREG_TLBIMVAHIS: 1250 case MISCREG_TLBIMVALHIS: 1251 { 1252 assert32(tc); 1253 scr = readMiscReg(MISCREG_SCR, tc); 1254 1255 TLBIMVAA tlbiOp(EL2, haveSecurity && !scr.ns, 1256 mbits(newVal, 31,12)); 1257 1258 tlbiOp.broadcast(tc); 1259 return; 1260 } 1261 // mcr tlbiipas2l(is) is invalidating all matching entries 1262 // regardless of the level of lookup, since in gem5 we cache 1263 // in the tlb the last level of lookup only. 1264 // TLB Invalidate by Intermediate Physical Address, Stage 2 1265 case MISCREG_TLBIIPAS2: 1266 case MISCREG_TLBIIPAS2L: 1267 { 1268 assert32(tc); 1269 scr = readMiscReg(MISCREG_SCR, tc); 1270 1271 TLBIIPA tlbiOp(EL1, 1272 haveSecurity && !scr.ns, 1273 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1274 1275 tlbiOp(tc); 1276 return; 1277 } 1278 // TLB Invalidate by Intermediate Physical Address, Stage 2, 1279 // Inner Shareable 1280 case MISCREG_TLBIIPAS2IS: 1281 case MISCREG_TLBIIPAS2LIS: 1282 { 1283 assert32(tc); 1284 scr = readMiscReg(MISCREG_SCR, tc); 1285 1286 TLBIIPA tlbiOp(EL1, 1287 haveSecurity && !scr.ns, 1288 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1289 1290 tlbiOp.broadcast(tc); 1291 return; 1292 } 1293 // Instruction TLB Invalidate by VA 1294 case MISCREG_ITLBIMVA: 1295 { 1296 assert32(tc); 1297 scr = readMiscReg(MISCREG_SCR, tc); 1298 1299 ITLBIMVA tlbiOp(EL1, 1300 haveSecurity && !scr.ns, 1301 mbits(newVal, 31, 12), 1302 bits(newVal, 7,0)); 1303 1304 tlbiOp(tc); 1305 return; 1306 } 1307 // Data TLB Invalidate by VA 1308 case MISCREG_DTLBIMVA: 1309 { 1310 assert32(tc); 1311 scr = readMiscReg(MISCREG_SCR, tc); 1312 1313 DTLBIMVA tlbiOp(EL1, 1314 haveSecurity && !scr.ns, 1315 mbits(newVal, 31, 12), 1316 bits(newVal, 7,0)); 1317 1318 tlbiOp(tc); 1319 return; 1320 } 1321 // Instruction TLB Invalidate by ASID match 1322 case MISCREG_ITLBIASID: 1323 { 1324 assert32(tc); 1325 scr = readMiscReg(MISCREG_SCR, tc); 1326 1327 ITLBIASID tlbiOp(EL1, 1328 haveSecurity && !scr.ns, 1329 bits(newVal, 7,0)); 1330 1331 tlbiOp(tc); 1332 return; 1333 } 1334 // Data TLB Invalidate by ASID match 1335 case MISCREG_DTLBIASID: 1336 { 1337 assert32(tc); 1338 scr = readMiscReg(MISCREG_SCR, tc); 1339 1340 DTLBIASID tlbiOp(EL1, 1341 haveSecurity && !scr.ns, 1342 bits(newVal, 7,0)); 1343 1344 tlbiOp(tc); 1345 return; 1346 } 1347 // TLB Invalidate All, Non-Secure Non-Hyp 1348 case MISCREG_TLBIALLNSNH: 1349 { 1350 assert32(tc); 1351 1352 TLBIALLN tlbiOp(EL1); 1353 tlbiOp(tc); 1354 return; 1355 } 1356 // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable 1357 case MISCREG_TLBIALLNSNHIS: 1358 { 1359 assert32(tc); 1360 1361 TLBIALLN tlbiOp(EL1); 1362 tlbiOp.broadcast(tc); 1363 return; 1364 } 1365 // TLB Invalidate All, Hyp mode 1366 case MISCREG_TLBIALLH: 1367 { 1368 assert32(tc); 1369 1370 TLBIALLN tlbiOp(EL2); 1371 tlbiOp(tc); 1372 return; 1373 } 1374 // TLB Invalidate All, Hyp mode, Inner Shareable 1375 case MISCREG_TLBIALLHIS: 1376 { 1377 assert32(tc); 1378 1379 TLBIALLN tlbiOp(EL2); 1380 tlbiOp.broadcast(tc); 1381 return; 1382 } 1383 // AArch64 TLB Invalidate All, EL3 1384 case MISCREG_TLBI_ALLE3: 1385 { 1386 assert64(tc); 1387 1388 TLBIALL tlbiOp(EL3, true); 1389 tlbiOp(tc); 1390 return; 1391 } 1392 // AArch64 TLB Invalidate All, EL3, Inner Shareable 1393 case MISCREG_TLBI_ALLE3IS: 1394 { 1395 assert64(tc); 1396 1397 TLBIALL tlbiOp(EL3, true); 1398 tlbiOp.broadcast(tc); 1399 return; 1400 } 1401 // AArch64 TLB Invalidate All, EL2, Inner Shareable 1402 case MISCREG_TLBI_ALLE2: 1403 case MISCREG_TLBI_ALLE2IS: 1404 { 1405 assert64(tc); 1406 scr = readMiscReg(MISCREG_SCR, tc); 1407 1408 TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns); 1409 tlbiOp(tc); 1410 return; 1411 } 1412 // AArch64 TLB Invalidate All, EL1 1413 case MISCREG_TLBI_ALLE1: 1414 case MISCREG_TLBI_VMALLE1: 1415 case MISCREG_TLBI_VMALLS12E1: 1416 // @todo: handle VMID and stage 2 to enable Virtualization 1417 { 1418 assert64(tc); 1419 scr = readMiscReg(MISCREG_SCR, tc); 1420 1421 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1422 tlbiOp(tc); 1423 return; 1424 } 1425 // AArch64 TLB Invalidate All, EL1, Inner Shareable 1426 case MISCREG_TLBI_ALLE1IS: 1427 case MISCREG_TLBI_VMALLE1IS: 1428 case MISCREG_TLBI_VMALLS12E1IS: 1429 // @todo: handle VMID and stage 2 to enable Virtualization 1430 { 1431 assert64(tc); 1432 scr = readMiscReg(MISCREG_SCR, tc); 1433 1434 TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns); 1435 tlbiOp.broadcast(tc); 1436 return; 1437 } 1438 // VAEx(IS) and VALEx(IS) are the same because TLBs 1439 // only store entries 1440 // from the last level of translation table walks 1441 // @todo: handle VMID to enable Virtualization 1442 // AArch64 TLB Invalidate by VA, EL3 1443 case MISCREG_TLBI_VAE3_Xt: 1444 case MISCREG_TLBI_VALE3_Xt: 1445 { 1446 assert64(tc); 1447 1448 TLBIMVA tlbiOp(EL3, true, 1449 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1450 0xbeef); 1451 tlbiOp(tc); 1452 return; 1453 } 1454 // AArch64 TLB Invalidate by VA, EL3, Inner Shareable 1455 case MISCREG_TLBI_VAE3IS_Xt: 1456 case MISCREG_TLBI_VALE3IS_Xt: 1457 { 1458 assert64(tc); 1459 1460 TLBIMVA tlbiOp(EL3, true, 1461 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1462 0xbeef); 1463 1464 tlbiOp.broadcast(tc); 1465 return; 1466 } 1467 // AArch64 TLB Invalidate by VA, EL2 1468 case MISCREG_TLBI_VAE2_Xt: 1469 case MISCREG_TLBI_VALE2_Xt: 1470 { 1471 assert64(tc); 1472 scr = readMiscReg(MISCREG_SCR, tc); 1473 1474 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, 1475 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1476 0xbeef); 1477 tlbiOp(tc); 1478 return; 1479 } 1480 // AArch64 TLB Invalidate by VA, EL2, Inner Shareable 1481 case MISCREG_TLBI_VAE2IS_Xt: 1482 case MISCREG_TLBI_VALE2IS_Xt: 1483 { 1484 assert64(tc); 1485 scr = readMiscReg(MISCREG_SCR, tc); 1486 1487 TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns, 1488 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1489 0xbeef); 1490 1491 tlbiOp.broadcast(tc); 1492 return; 1493 } 1494 // AArch64 TLB Invalidate by VA, EL1 1495 case MISCREG_TLBI_VAE1_Xt: 1496 case MISCREG_TLBI_VALE1_Xt: 1497 { 1498 assert64(tc); 1499 scr = readMiscReg(MISCREG_SCR, tc); 1500 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1501 bits(newVal, 55, 48); 1502 1503 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, 1504 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1505 asid); 1506 1507 tlbiOp(tc); 1508 return; 1509 } 1510 // AArch64 TLB Invalidate by VA, EL1, Inner Shareable 1511 case MISCREG_TLBI_VAE1IS_Xt: 1512 case MISCREG_TLBI_VALE1IS_Xt: 1513 { 1514 assert64(tc); 1515 scr = readMiscReg(MISCREG_SCR, tc); 1516 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1517 bits(newVal, 55, 48); 1518 1519 TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns, 1520 static_cast<Addr>(bits(newVal, 43, 0)) << 12, 1521 asid); 1522 1523 tlbiOp.broadcast(tc); 1524 return; 1525 } 1526 // AArch64 TLB Invalidate by ASID, EL1 1527 // @todo: handle VMID to enable Virtualization 1528 case MISCREG_TLBI_ASIDE1_Xt: 1529 { 1530 assert64(tc); 1531 scr = readMiscReg(MISCREG_SCR, tc); 1532 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1533 bits(newVal, 55, 48); 1534 1535 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); 1536 tlbiOp(tc); 1537 return; 1538 } 1539 // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable 1540 case MISCREG_TLBI_ASIDE1IS_Xt: 1541 { 1542 assert64(tc); 1543 scr = readMiscReg(MISCREG_SCR, tc); 1544 auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) : 1545 bits(newVal, 55, 48); 1546 1547 TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid); 1548 tlbiOp.broadcast(tc); 1549 return; 1550 } 1551 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store 1552 // entries from the last level of translation table walks 1553 // AArch64 TLB Invalidate by VA, All ASID, EL1 1554 case MISCREG_TLBI_VAAE1_Xt: 1555 case MISCREG_TLBI_VAALE1_Xt: 1556 { 1557 assert64(tc); 1558 scr = readMiscReg(MISCREG_SCR, tc); 1559 1560 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1561 static_cast<Addr>(bits(newVal, 43, 0)) << 12); 1562 1563 tlbiOp(tc); 1564 return; 1565 } 1566 // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable 1567 case MISCREG_TLBI_VAAE1IS_Xt: 1568 case MISCREG_TLBI_VAALE1IS_Xt: 1569 { 1570 assert64(tc); 1571 scr = readMiscReg(MISCREG_SCR, tc); 1572 1573 TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns, 1574 static_cast<Addr>(bits(newVal, 43, 0)) << 12); 1575 1576 tlbiOp.broadcast(tc); 1577 return; 1578 } 1579 // AArch64 TLB Invalidate by Intermediate Physical Address, 1580 // Stage 2, EL1 1581 case MISCREG_TLBI_IPAS2E1_Xt: 1582 case MISCREG_TLBI_IPAS2LE1_Xt: 1583 { 1584 assert64(tc); 1585 scr = readMiscReg(MISCREG_SCR, tc); 1586 1587 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, 1588 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1589 1590 tlbiOp(tc); 1591 return; 1592 } 1593 // AArch64 TLB Invalidate by Intermediate Physical Address, 1594 // Stage 2, EL1, Inner Shareable 1595 case MISCREG_TLBI_IPAS2E1IS_Xt: 1596 case MISCREG_TLBI_IPAS2LE1IS_Xt: 1597 { 1598 assert64(tc); 1599 scr = readMiscReg(MISCREG_SCR, tc); 1600 1601 TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns, 1602 static_cast<Addr>(bits(newVal, 35, 0)) << 12); 1603 1604 tlbiOp.broadcast(tc); 1605 return; 1606 } 1607 case MISCREG_ACTLR: 1608 warn("Not doing anything for write of miscreg ACTLR\n"); 1609 break; 1610 1611 case MISCREG_PMXEVTYPER_PMCCFILTR: 1612 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 1613 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 1614 case MISCREG_PMCR ... MISCREG_PMOVSSET: 1615 pmu->setMiscReg(misc_reg, newVal); 1616 break; 1617 1618 1619 case MISCREG_HSTR: // TJDBX, now redifined to be RES0 1620 { 1621 HSTR hstrMask = 0; 1622 hstrMask.tjdbx = 1; 1623 newVal &= ~((uint32_t) hstrMask); 1624 break; 1625 } 1626 case MISCREG_HCPTR: 1627 { 1628 // If a CP bit in NSACR is 0 then the corresponding bit in 1629 // HCPTR is RAO/WI. Same applies to NSASEDIS 1630 secure_lookup = haveSecurity && 1631 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 1632 readMiscRegNoEffect(MISCREG_CPSR)); 1633 if (!secure_lookup) { 1634 RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR); 1635 RegVal mask = 1636 (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; 1637 newVal = (newVal & ~mask) | (oldValue & mask); 1638 } 1639 break; 1640 } 1641 case MISCREG_HDFAR: // alias for secure DFAR 1642 misc_reg = MISCREG_DFAR_S; 1643 break; 1644 case MISCREG_HIFAR: // alias for secure IFAR 1645 misc_reg = MISCREG_IFAR_S; 1646 break; 1647 case MISCREG_ATS1CPR: 1648 case MISCREG_ATS1CPW: 1649 case MISCREG_ATS1CUR: 1650 case MISCREG_ATS1CUW: 1651 case MISCREG_ATS12NSOPR: 1652 case MISCREG_ATS12NSOPW: 1653 case MISCREG_ATS12NSOUR: 1654 case MISCREG_ATS12NSOUW: 1655 case MISCREG_ATS1HR: 1656 case MISCREG_ATS1HW: 1657 { 1658 Request::Flags flags = 0; 1659 BaseTLB::Mode mode = BaseTLB::Read; 1660 TLB::ArmTranslationType tranType = TLB::NormalTran; 1661 Fault fault; 1662 switch(misc_reg) { 1663 case MISCREG_ATS1CPR: 1664 flags = TLB::MustBeOne; 1665 tranType = TLB::S1CTran; 1666 mode = BaseTLB::Read; 1667 break; 1668 case MISCREG_ATS1CPW: 1669 flags = TLB::MustBeOne; 1670 tranType = TLB::S1CTran; 1671 mode = BaseTLB::Write; 1672 break; 1673 case MISCREG_ATS1CUR: 1674 flags = TLB::MustBeOne | TLB::UserMode; 1675 tranType = TLB::S1CTran; 1676 mode = BaseTLB::Read; 1677 break; 1678 case MISCREG_ATS1CUW: 1679 flags = TLB::MustBeOne | TLB::UserMode; 1680 tranType = TLB::S1CTran; 1681 mode = BaseTLB::Write; 1682 break; 1683 case MISCREG_ATS12NSOPR: 1684 if (!haveSecurity) 1685 panic("Security Extensions required for ATS12NSOPR"); 1686 flags = TLB::MustBeOne; 1687 tranType = TLB::S1S2NsTran; 1688 mode = BaseTLB::Read; 1689 break; 1690 case MISCREG_ATS12NSOPW: 1691 if (!haveSecurity) 1692 panic("Security Extensions required for ATS12NSOPW"); 1693 flags = TLB::MustBeOne; 1694 tranType = TLB::S1S2NsTran; 1695 mode = BaseTLB::Write; 1696 break; 1697 case MISCREG_ATS12NSOUR: 1698 if (!haveSecurity) 1699 panic("Security Extensions required for ATS12NSOUR"); 1700 flags = TLB::MustBeOne | TLB::UserMode; 1701 tranType = TLB::S1S2NsTran; 1702 mode = BaseTLB::Read; 1703 break; 1704 case MISCREG_ATS12NSOUW: 1705 if (!haveSecurity) 1706 panic("Security Extensions required for ATS12NSOUW"); 1707 flags = TLB::MustBeOne | TLB::UserMode; 1708 tranType = TLB::S1S2NsTran; 1709 mode = BaseTLB::Write; 1710 break; 1711 case MISCREG_ATS1HR: // only really useful from secure mode. 1712 flags = TLB::MustBeOne; 1713 tranType = TLB::HypMode; 1714 mode = BaseTLB::Read; 1715 break; 1716 case MISCREG_ATS1HW: 1717 flags = TLB::MustBeOne; 1718 tranType = TLB::HypMode; 1719 mode = BaseTLB::Write; 1720 break; 1721 } 1722 // If we're in timing mode then doing the translation in 1723 // functional mode then we're slightly distorting performance 1724 // results obtained from simulations. The translation should be 1725 // done in the same mode the core is running in. NOTE: This 1726 // can't be an atomic translation because that causes problems 1727 // with unexpected atomic snoop requests. 1728 warn("Translating via %s in functional mode! Fix Me!\n", 1729 miscRegName[misc_reg]); 1730 1731 auto req = std::make_shared<Request>( 1732 0, val, 0, flags, Request::funcMasterId, 1733 tc->pcState().pc(), tc->contextId()); 1734 1735 fault = getDTBPtr(tc)->translateFunctional( 1736 req, tc, mode, tranType); 1737 1738 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1739 HCR hcr = readMiscRegNoEffect(MISCREG_HCR); 1740 1741 RegVal newVal; 1742 if (fault == NoFault) { 1743 Addr paddr = req->getPaddr(); 1744 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || 1745 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { 1746 newVal = (paddr & mask(39, 12)) | 1747 (getDTBPtr(tc)->getAttr()); 1748 } else { 1749 newVal = (paddr & 0xfffff000) | 1750 (getDTBPtr(tc)->getAttr()); 1751 } 1752 DPRINTF(MiscRegs, 1753 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", 1754 val, newVal); 1755 } else { 1756 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 1757 armFault->update(tc); 1758 // Set fault bit and FSR 1759 FSR fsr = armFault->getFsr(tc); 1760 1761 newVal = ((fsr >> 9) & 1) << 11; 1762 if (newVal) { 1763 // LPAE - rearange fault status 1764 newVal |= ((fsr >> 0) & 0x3f) << 1; 1765 } else { 1766 // VMSA - rearange fault status 1767 newVal |= ((fsr >> 0) & 0xf) << 1; 1768 newVal |= ((fsr >> 10) & 0x1) << 5; 1769 newVal |= ((fsr >> 12) & 0x1) << 6; 1770 } 1771 newVal |= 0x1; // F bit 1772 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1773 newVal |= armFault->isStage2() ? 0x200 : 0; 1774 DPRINTF(MiscRegs, 1775 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", 1776 val, fsr, newVal); 1777 } 1778 setMiscRegNoEffect(MISCREG_PAR, newVal); 1779 return; 1780 } 1781 case MISCREG_TTBCR: 1782 { 1783 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1784 const uint32_t ones = (uint32_t)(-1); 1785 TTBCR ttbcrMask = 0; 1786 TTBCR ttbcrNew = newVal; 1787 1788 // ARM DDI 0406C.b, ARMv7-32 1789 ttbcrMask.n = ones; // T0SZ 1790 if (haveSecurity) { 1791 ttbcrMask.pd0 = ones; 1792 ttbcrMask.pd1 = ones; 1793 } 1794 ttbcrMask.epd0 = ones; 1795 ttbcrMask.irgn0 = ones; 1796 ttbcrMask.orgn0 = ones; 1797 ttbcrMask.sh0 = ones; 1798 ttbcrMask.ps = ones; // T1SZ 1799 ttbcrMask.a1 = ones; 1800 ttbcrMask.epd1 = ones; 1801 ttbcrMask.irgn1 = ones; 1802 ttbcrMask.orgn1 = ones; 1803 ttbcrMask.sh1 = ones; 1804 if (haveLPAE) 1805 ttbcrMask.eae = ones; 1806 1807 if (haveLPAE && ttbcrNew.eae) { 1808 newVal = newVal & ttbcrMask; 1809 } else { 1810 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); 1811 } 1812 // Invalidate TLB MiscReg 1813 getITBPtr(tc)->invalidateMiscReg(); 1814 getDTBPtr(tc)->invalidateMiscReg(); 1815 break; 1816 } 1817 case MISCREG_TTBR0: 1818 case MISCREG_TTBR1: 1819 { 1820 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1821 if (haveLPAE) { 1822 if (ttbcr.eae) { 1823 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP 1824 // ARMv8 AArch32 bit 63-56 only 1825 uint64_t ttbrMask = mask(63,56) | mask(47,40); 1826 newVal = (newVal & (~ttbrMask)); 1827 } 1828 } 1829 // Invalidate TLB MiscReg 1830 getITBPtr(tc)->invalidateMiscReg(); 1831 getDTBPtr(tc)->invalidateMiscReg(); 1832 break; 1833 } 1834 case MISCREG_SCTLR_EL1: 1835 case MISCREG_CONTEXTIDR: 1836 case MISCREG_PRRR: 1837 case MISCREG_NMRR: 1838 case MISCREG_MAIR0: 1839 case MISCREG_MAIR1: 1840 case MISCREG_DACR: 1841 case MISCREG_VTTBR: 1842 case MISCREG_SCR_EL3: 1843 case MISCREG_HCR_EL2: 1844 case MISCREG_TCR_EL1: 1845 case MISCREG_TCR_EL2: 1846 case MISCREG_TCR_EL3: 1847 case MISCREG_SCTLR_EL2: 1848 case MISCREG_SCTLR_EL3: 1849 case MISCREG_HSCTLR: 1850 case MISCREG_TTBR0_EL1: 1851 case MISCREG_TTBR1_EL1: 1852 case MISCREG_TTBR0_EL2: 1853 case MISCREG_TTBR1_EL2: 1854 case MISCREG_TTBR0_EL3: 1855 getITBPtr(tc)->invalidateMiscReg(); 1856 getDTBPtr(tc)->invalidateMiscReg(); 1857 break; 1858 case MISCREG_NZCV: 1859 { 1860 CPSR cpsr = val; 1861 1862 tc->setCCReg(CCREG_NZ, cpsr.nz); 1863 tc->setCCReg(CCREG_C, cpsr.c); 1864 tc->setCCReg(CCREG_V, cpsr.v); 1865 } 1866 break; 1867 case MISCREG_DAIF: 1868 { 1869 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1870 cpsr.daif = (uint8_t) ((CPSR) newVal).daif; 1871 newVal = cpsr; 1872 misc_reg = MISCREG_CPSR; 1873 } 1874 break; 1875 case MISCREG_SP_EL0: 1876 tc->setIntReg(INTREG_SP0, newVal); 1877 break; 1878 case MISCREG_SP_EL1: 1879 tc->setIntReg(INTREG_SP1, newVal); 1880 break; 1881 case MISCREG_SP_EL2: 1882 tc->setIntReg(INTREG_SP2, newVal); 1883 break; 1884 case MISCREG_SPSEL: 1885 { 1886 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1887 cpsr.sp = (uint8_t) ((CPSR) newVal).sp; 1888 newVal = cpsr; 1889 misc_reg = MISCREG_CPSR; 1890 } 1891 break; 1892 case MISCREG_CURRENTEL: 1893 { 1894 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1895 cpsr.el = (uint8_t) ((CPSR) newVal).el; 1896 newVal = cpsr; 1897 misc_reg = MISCREG_CPSR; 1898 } 1899 break; 1900 case MISCREG_PAN: 1901 { 1902 // PAN is affecting data accesses 1903 getDTBPtr(tc)->invalidateMiscReg(); 1904 1905 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1906 cpsr.pan = (uint8_t) ((CPSR) newVal).pan; 1907 newVal = cpsr; 1908 misc_reg = MISCREG_CPSR; 1909 } 1910 break; 1911 case MISCREG_AT_S1E1R_Xt: 1912 case MISCREG_AT_S1E1W_Xt: 1913 case MISCREG_AT_S1E0R_Xt: 1914 case MISCREG_AT_S1E0W_Xt: 1915 case MISCREG_AT_S1E2R_Xt: 1916 case MISCREG_AT_S1E2W_Xt: 1917 case MISCREG_AT_S12E1R_Xt: 1918 case MISCREG_AT_S12E1W_Xt: 1919 case MISCREG_AT_S12E0R_Xt: 1920 case MISCREG_AT_S12E0W_Xt: 1921 case MISCREG_AT_S1E3R_Xt: 1922 case MISCREG_AT_S1E3W_Xt: 1923 { 1924 RequestPtr req = std::make_shared<Request>(); 1925 Request::Flags flags = 0; 1926 BaseTLB::Mode mode = BaseTLB::Read; 1927 TLB::ArmTranslationType tranType = TLB::NormalTran; 1928 Fault fault; 1929 switch(misc_reg) { 1930 case MISCREG_AT_S1E1R_Xt: 1931 flags = TLB::MustBeOne; 1932 tranType = TLB::S1E1Tran; 1933 mode = BaseTLB::Read; 1934 break; 1935 case MISCREG_AT_S1E1W_Xt: 1936 flags = TLB::MustBeOne; 1937 tranType = TLB::S1E1Tran; 1938 mode = BaseTLB::Write; 1939 break; 1940 case MISCREG_AT_S1E0R_Xt: 1941 flags = TLB::MustBeOne | TLB::UserMode; 1942 tranType = TLB::S1E0Tran; 1943 mode = BaseTLB::Read; 1944 break; 1945 case MISCREG_AT_S1E0W_Xt: 1946 flags = TLB::MustBeOne | TLB::UserMode; 1947 tranType = TLB::S1E0Tran; 1948 mode = BaseTLB::Write; 1949 break; 1950 case MISCREG_AT_S1E2R_Xt: 1951 flags = TLB::MustBeOne; 1952 tranType = TLB::S1E2Tran; 1953 mode = BaseTLB::Read; 1954 break; 1955 case MISCREG_AT_S1E2W_Xt: 1956 flags = TLB::MustBeOne; 1957 tranType = TLB::S1E2Tran; 1958 mode = BaseTLB::Write; 1959 break; 1960 case MISCREG_AT_S12E0R_Xt: 1961 flags = TLB::MustBeOne | TLB::UserMode; 1962 tranType = TLB::S12E0Tran; 1963 mode = BaseTLB::Read; 1964 break; 1965 case MISCREG_AT_S12E0W_Xt: 1966 flags = TLB::MustBeOne | TLB::UserMode; 1967 tranType = TLB::S12E0Tran; 1968 mode = BaseTLB::Write; 1969 break; 1970 case MISCREG_AT_S12E1R_Xt: 1971 flags = TLB::MustBeOne; 1972 tranType = TLB::S12E1Tran; 1973 mode = BaseTLB::Read; 1974 break; 1975 case MISCREG_AT_S12E1W_Xt: 1976 flags = TLB::MustBeOne; 1977 tranType = TLB::S12E1Tran; 1978 mode = BaseTLB::Write; 1979 break; 1980 case MISCREG_AT_S1E3R_Xt: 1981 flags = TLB::MustBeOne; 1982 tranType = TLB::S1E3Tran; 1983 mode = BaseTLB::Read; 1984 break; 1985 case MISCREG_AT_S1E3W_Xt: 1986 flags = TLB::MustBeOne; 1987 tranType = TLB::S1E3Tran; 1988 mode = BaseTLB::Write; 1989 break; 1990 } 1991 // If we're in timing mode then doing the translation in 1992 // functional mode then we're slightly distorting performance 1993 // results obtained from simulations. The translation should be 1994 // done in the same mode the core is running in. NOTE: This 1995 // can't be an atomic translation because that causes problems 1996 // with unexpected atomic snoop requests. 1997 warn("Translating via %s in functional mode! Fix Me!\n", 1998 miscRegName[misc_reg]); 1999 2000 req->setVirt(0, val, 0, flags, Request::funcMasterId, 2001 tc->pcState().pc()); 2002 req->setContext(tc->contextId()); 2003 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode, 2004 tranType); 2005 2006 RegVal newVal; 2007 if (fault == NoFault) { 2008 Addr paddr = req->getPaddr(); 2009 uint64_t attr = getDTBPtr(tc)->getAttr(); 2010 uint64_t attr1 = attr >> 56; 2011 if (!attr1 || attr1 ==0x44) { 2012 attr |= 0x100; 2013 attr &= ~ uint64_t(0x80); 2014 } 2015 newVal = (paddr & mask(47, 12)) | attr; 2016 DPRINTF(MiscRegs, 2017 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", 2018 val, newVal); 2019 } else { 2020 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 2021 armFault->update(tc); 2022 // Set fault bit and FSR 2023 FSR fsr = armFault->getFsr(tc); 2024 2025 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 2026 if (cpsr.width) { // AArch32 2027 newVal = ((fsr >> 9) & 1) << 11; 2028 // rearrange fault status 2029 newVal |= ((fsr >> 0) & 0x3f) << 1; 2030 newVal |= 0x1; // F bit 2031 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 2032 newVal |= armFault->isStage2() ? 0x200 : 0; 2033 } else { // AArch64 2034 newVal = 1; // F bit 2035 newVal |= fsr << 1; // FST 2036 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit. 2037 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW 2038 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S 2039 newVal |= 1 << 11; // RES1 2040 } 2041 DPRINTF(MiscRegs, 2042 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", 2043 val, fsr, newVal); 2044 } 2045 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); 2046 return; 2047 } 2048 case MISCREG_SPSR_EL3: 2049 case MISCREG_SPSR_EL2: 2050 case MISCREG_SPSR_EL1: 2051 { 2052 RegVal spsr_mask = havePAN ? 2053 ~(0x5 << 21) : ~(0x7 << 21); 2054 2055 newVal = val & spsr_mask; 2056 break; 2057 } 2058 case MISCREG_L2CTLR: 2059 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", 2060 miscRegName[misc_reg], uint32_t(val)); 2061 break; 2062 2063 // Generic Timer registers 2064 case MISCREG_CNTHV_CTL_EL2: 2065 case MISCREG_CNTHV_CVAL_EL2: 2066 case MISCREG_CNTHV_TVAL_EL2: 2067 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 2068 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 2069 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 2070 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 2071 getGenericTimer(tc).setMiscReg(misc_reg, newVal); 2072 break; 2073 case MISCREG_ICC_AP0R0 ... MISCREG_ICH_LRC15: 2074 case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3: 2075 case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2: 2076 getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal); 2077 return; 2078 case MISCREG_ZCR_EL3: 2079 case MISCREG_ZCR_EL2: 2080 case MISCREG_ZCR_EL1: 2081 tc->getDecoderPtr()->setSveLen( 2082 (getCurSveVecLenInBits(tc) >> 7) - 1); 2083 break; 2084 } 2085 } 2086 setMiscRegNoEffect(misc_reg, newVal); 2087} 2088 2089BaseISADevice & 2090ISA::getGenericTimer(ThreadContext *tc) 2091{ 2092 // We only need to create an ISA interface the first time we try 2093 // to access the timer. 2094 if (timer) 2095 return *timer.get(); 2096 2097 assert(system); 2098 GenericTimer *generic_timer(system->getGenericTimer()); 2099 if (!generic_timer) { 2100 panic("Trying to get a generic timer from a system that hasn't " 2101 "been configured to use a generic timer.\n"); 2102 } 2103 2104 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId())); 2105 timer->setThreadContext(tc); 2106 2107 return *timer.get(); 2108} 2109 2110BaseISADevice & 2111ISA::getGICv3CPUInterface(ThreadContext *tc) 2112{ 2113 panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!"); 2114 return *gicv3CpuInterface.get(); 2115} 2116 2117unsigned 2118ISA::getCurSveVecLenInBits(ThreadContext *tc) const 2119{ 2120 if (!FullSystem) { 2121 return sveVL * 128; 2122 } 2123 2124 panic_if(!tc, 2125 "A ThreadContext is needed to determine the SVE vector length " 2126 "in full-system mode"); 2127 2128 CPSR cpsr = miscRegs[MISCREG_CPSR]; 2129 ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el; 2130 2131 unsigned len = 0; 2132 2133 if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) { 2134 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len; 2135 } 2136 2137 if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) { 2138 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len; 2139 } else if (haveVirtualization && !inSecureState(tc) && 2140 (el == EL0 || el == EL1)) { 2141 len = std::min( 2142 len, 2143 static_cast<unsigned>( 2144 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len)); 2145 } 2146 2147 if (el == EL3) { 2148 len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len; 2149 } else if (haveSecurity) { 2150 len = std::min( 2151 len, 2152 static_cast<unsigned>( 2153 static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len)); 2154 } 2155 2156 len = std::min(len, sveVL - 1); 2157 2158 return (len + 1) * 128; 2159} 2160 2161void 2162ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount) 2163{ 2164 auto vv = vc.as<uint64_t>(); 2165 for (int i = 2; i < eCount; ++i) { 2166 vv[i] = 0; 2167 } 2168} 2169 2170} // namespace ArmISA 2171 2172ArmISA::ISA * 2173ArmISAParams::create() 2174{ 2175 return new ArmISA::ISA(this); 2176} 2177