isa.cc revision 13759
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "arch/arm/tlbi_op.hh"
46#include "cpu/base.hh"
47#include "cpu/checker/cpu.hh"
48#include "debug/Arm.hh"
49#include "debug/MiscRegs.hh"
50#include "dev/arm/generic_timer.hh"
51#include "dev/arm/gic_v3.hh"
52#include "dev/arm/gic_v3_cpu_interface.hh"
53#include "params/ArmISA.hh"
54#include "sim/faults.hh"
55#include "sim/stat_control.hh"
56#include "sim/system.hh"
57
58namespace ArmISA
59{
60
61ISA::ISA(Params *p)
62    : SimObject(p),
63      system(NULL),
64      _decoderFlavour(p->decoderFlavour),
65      _vecRegRenameMode(Enums::Full),
66      pmu(p->pmu),
67      haveGICv3CPUInterface(false),
68      impdefAsNop(p->impdef_nop)
69{
70    miscRegs[MISCREG_SCTLR_RST] = 0;
71
72    // Hook up a dummy device if we haven't been configured with a
73    // real PMU. By using a dummy device, we don't need to check that
74    // the PMU exist every time we try to access a PMU register.
75    if (!pmu)
76        pmu = &dummyDevice;
77
78    // Give all ISA devices a pointer to this ISA
79    pmu->setISA(this);
80
81    system = dynamic_cast<ArmSystem *>(p->system);
82
83    // Cache system-level properties
84    if (FullSystem && system) {
85        highestELIs64 = system->highestELIs64();
86        haveSecurity = system->haveSecurity();
87        haveLPAE = system->haveLPAE();
88        haveCrypto = system->haveCrypto();
89        haveVirtualization = system->haveVirtualization();
90        haveLargeAsid64 = system->haveLargeAsid64();
91        physAddrRange = system->physAddrRange();
92        haveSVE = system->haveSVE();
93        sveVL = system->sveVL();
94    } else {
95        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
96        haveSecurity = haveLPAE = haveVirtualization = false;
97        haveCrypto = true;
98        haveLargeAsid64 = false;
99        physAddrRange = 32;  // dummy value
100        haveSVE = true;
101        sveVL = p->sve_vl_se;
102    }
103
104    // Initial rename mode depends on highestEL
105    const_cast<Enums::VecRegRenameMode&>(_vecRegRenameMode) =
106        highestELIs64 ? Enums::Full : Enums::Elem;
107
108    initializeMiscRegMetadata();
109    preUnflattenMiscReg();
110
111    clear();
112}
113
114std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS);
115
116const ArmISAParams *
117ISA::params() const
118{
119    return dynamic_cast<const Params *>(_params);
120}
121
122void
123ISA::clear()
124{
125    const Params *p(params());
126
127    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
128    memset(miscRegs, 0, sizeof(miscRegs));
129
130    initID32(p);
131
132    // We always initialize AArch64 ID registers even
133    // if we are in AArch32. This is done since if we
134    // are in SE mode we don't know if our ArmProcess is
135    // AArch32 or AArch64
136    initID64(p);
137
138    // Start with an event in the mailbox
139    miscRegs[MISCREG_SEV_MAILBOX] = 1;
140
141    // Separate Instruction and Data TLBs
142    miscRegs[MISCREG_TLBTR] = 1;
143
144    MVFR0 mvfr0 = 0;
145    mvfr0.advSimdRegisters = 2;
146    mvfr0.singlePrecision = 2;
147    mvfr0.doublePrecision = 2;
148    mvfr0.vfpExceptionTrapping = 0;
149    mvfr0.divide = 1;
150    mvfr0.squareRoot = 1;
151    mvfr0.shortVectors = 1;
152    mvfr0.roundingModes = 1;
153    miscRegs[MISCREG_MVFR0] = mvfr0;
154
155    MVFR1 mvfr1 = 0;
156    mvfr1.flushToZero = 1;
157    mvfr1.defaultNaN = 1;
158    mvfr1.advSimdLoadStore = 1;
159    mvfr1.advSimdInteger = 1;
160    mvfr1.advSimdSinglePrecision = 1;
161    mvfr1.advSimdHalfPrecision = 1;
162    mvfr1.vfpHalfPrecision = 1;
163    miscRegs[MISCREG_MVFR1] = mvfr1;
164
165    // Reset values of PRRR and NMRR are implementation dependent
166
167    // @todo: PRRR and NMRR in secure state?
168    miscRegs[MISCREG_PRRR_NS] =
169        (1 << 19) | // 19
170        (0 << 18) | // 18
171        (0 << 17) | // 17
172        (1 << 16) | // 16
173        (2 << 14) | // 15:14
174        (0 << 12) | // 13:12
175        (2 << 10) | // 11:10
176        (2 << 8)  | // 9:8
177        (2 << 6)  | // 7:6
178        (2 << 4)  | // 5:4
179        (1 << 2)  | // 3:2
180        0;          // 1:0
181
182    miscRegs[MISCREG_NMRR_NS] =
183        (1 << 30) | // 31:30
184        (0 << 26) | // 27:26
185        (0 << 24) | // 25:24
186        (3 << 22) | // 23:22
187        (2 << 20) | // 21:20
188        (0 << 18) | // 19:18
189        (0 << 16) | // 17:16
190        (1 << 14) | // 15:14
191        (0 << 12) | // 13:12
192        (2 << 10) | // 11:10
193        (0 << 8)  | // 9:8
194        (3 << 6)  | // 7:6
195        (2 << 4)  | // 5:4
196        (0 << 2)  | // 3:2
197        0;          // 1:0
198
199    if (FullSystem && system->highestELIs64()) {
200        // Initialize AArch64 state
201        clear64(p);
202        return;
203    }
204
205    // Initialize AArch32 state...
206    clear32(p, sctlr_rst);
207}
208
209void
210ISA::clear32(const ArmISAParams *p, const SCTLR &sctlr_rst)
211{
212    CPSR cpsr = 0;
213    cpsr.mode = MODE_USER;
214
215    if (FullSystem) {
216        miscRegs[MISCREG_MVBAR] = system->resetAddr();
217    }
218
219    miscRegs[MISCREG_CPSR] = cpsr;
220    updateRegMap(cpsr);
221
222    SCTLR sctlr = 0;
223    sctlr.te = (bool) sctlr_rst.te;
224    sctlr.nmfi = (bool) sctlr_rst.nmfi;
225    sctlr.v = (bool) sctlr_rst.v;
226    sctlr.u = 1;
227    sctlr.xp = 1;
228    sctlr.rao2 = 1;
229    sctlr.rao3 = 1;
230    sctlr.rao4 = 0xf;  // SCTLR[6:3]
231    sctlr.uci = 1;
232    sctlr.dze = 1;
233    miscRegs[MISCREG_SCTLR_NS] = sctlr;
234    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
235    miscRegs[MISCREG_HCPTR] = 0;
236
237    miscRegs[MISCREG_CPACR] = 0;
238
239    miscRegs[MISCREG_FPSID] = p->fpsid;
240
241    if (haveLPAE) {
242        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
243        ttbcr.eae = 0;
244        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
245        // Enforce consistency with system-level settings
246        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
247    }
248
249    if (haveSecurity) {
250        miscRegs[MISCREG_SCTLR_S] = sctlr;
251        miscRegs[MISCREG_SCR] = 0;
252        miscRegs[MISCREG_VBAR_S] = 0;
253    } else {
254        // we're always non-secure
255        miscRegs[MISCREG_SCR] = 1;
256    }
257
258    //XXX We need to initialize the rest of the state.
259}
260
261void
262ISA::clear64(const ArmISAParams *p)
263{
264    CPSR cpsr = 0;
265    Addr rvbar = system->resetAddr();
266    switch (system->highestEL()) {
267        // Set initial EL to highest implemented EL using associated stack
268        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
269        // value
270      case EL3:
271        cpsr.mode = MODE_EL3H;
272        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
273        break;
274      case EL2:
275        cpsr.mode = MODE_EL2H;
276        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
277        break;
278      case EL1:
279        cpsr.mode = MODE_EL1H;
280        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
281        break;
282      default:
283        panic("Invalid highest implemented exception level");
284        break;
285    }
286
287    // Initialize rest of CPSR
288    cpsr.daif = 0xf;  // Mask all interrupts
289    cpsr.ss = 0;
290    cpsr.il = 0;
291    miscRegs[MISCREG_CPSR] = cpsr;
292    updateRegMap(cpsr);
293
294    // Initialize other control registers
295    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
296    if (haveSecurity) {
297        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
298        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
299    } else if (haveVirtualization) {
300        // also  MISCREG_SCTLR_EL2 (by mapping)
301        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
302    } else {
303        // also  MISCREG_SCTLR_EL1 (by mapping)
304        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
305        // Always non-secure
306        miscRegs[MISCREG_SCR_EL3] = 1;
307    }
308}
309
310void
311ISA::initID32(const ArmISAParams *p)
312{
313    // Initialize configurable default values
314    miscRegs[MISCREG_MIDR] = p->midr;
315    miscRegs[MISCREG_MIDR_EL1] = p->midr;
316    miscRegs[MISCREG_VPIDR] = p->midr;
317
318    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
319    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
320    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
321    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
322    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
323    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
324
325    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
326    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
327    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
328    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
329
330    miscRegs[MISCREG_ID_ISAR5] = insertBits(
331        miscRegs[MISCREG_ID_ISAR5], 19, 4,
332        haveCrypto ? 0x1112 : 0x0);
333}
334
335void
336ISA::initID64(const ArmISAParams *p)
337{
338    // Initialize configurable id registers
339    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
340    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
341    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
342        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
343        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
344
345    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
346    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
347    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
348    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
349    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
350    miscRegs[MISCREG_ID_AA64MMFR2_EL1] = p->id_aa64mmfr2_el1;
351
352    miscRegs[MISCREG_ID_DFR0_EL1] =
353        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
354
355    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
356
357    // SVE
358    miscRegs[MISCREG_ID_AA64ZFR0_EL1] = 0;  // SVEver 0
359    if (haveSecurity) {
360        miscRegs[MISCREG_ZCR_EL3] = sveVL - 1;
361    } else if (haveVirtualization) {
362        miscRegs[MISCREG_ZCR_EL2] = sveVL - 1;
363    } else {
364        miscRegs[MISCREG_ZCR_EL1] = sveVL - 1;
365    }
366
367    // Enforce consistency with system-level settings...
368
369    // EL3
370    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
371        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
372        haveSecurity ? 0x2 : 0x0);
373    // EL2
374    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
375        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
376        haveVirtualization ? 0x2 : 0x0);
377    // SVE
378    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
379        miscRegs[MISCREG_ID_AA64PFR0_EL1], 35, 32,
380        haveSVE ? 0x1 : 0x0);
381    // Large ASID support
382    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
383        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
384        haveLargeAsid64 ? 0x2 : 0x0);
385    // Physical address size
386    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
387        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
388        encodePhysAddrRange64(physAddrRange));
389    // Crypto
390    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = insertBits(
391        miscRegs[MISCREG_ID_AA64ISAR0_EL1], 19, 4,
392        haveCrypto ? 0x1112 : 0x0);
393}
394
395void
396ISA::startup(ThreadContext *tc)
397{
398    pmu->setThreadContext(tc);
399
400    if (system) {
401        Gicv3 *gicv3 = dynamic_cast<Gicv3 *>(system->getGIC());
402        if (gicv3) {
403            haveGICv3CPUInterface = true;
404            gicv3CpuInterface.reset(gicv3->getCPUInterface(tc->contextId()));
405            gicv3CpuInterface->setISA(this);
406        }
407    }
408}
409
410
411RegVal
412ISA::readMiscRegNoEffect(int misc_reg) const
413{
414    assert(misc_reg < NumMiscRegs);
415
416    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
417    const auto &map = getMiscIndices(misc_reg);
418    int lower = map.first, upper = map.second;
419    // NB!: apply architectural masks according to desired register,
420    // despite possibly getting value from different (mapped) register.
421    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
422                                          |(miscRegs[upper] << 32));
423    if (val & reg.res0()) {
424        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
425                miscRegName[misc_reg], val & reg.res0());
426    }
427    if ((val & reg.res1()) != reg.res1()) {
428        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
429                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
430    }
431    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
432}
433
434
435RegVal
436ISA::readMiscReg(int misc_reg, ThreadContext *tc)
437{
438    CPSR cpsr = 0;
439    PCState pc = 0;
440    SCR scr = 0;
441
442    if (misc_reg == MISCREG_CPSR) {
443        cpsr = miscRegs[misc_reg];
444        pc = tc->pcState();
445        cpsr.j = pc.jazelle() ? 1 : 0;
446        cpsr.t = pc.thumb() ? 1 : 0;
447        return cpsr;
448    }
449
450#ifndef NDEBUG
451    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
452        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
453            warn("Unimplemented system register %s read.\n",
454                 miscRegName[misc_reg]);
455        else
456            panic("Unimplemented system register %s read.\n",
457                  miscRegName[misc_reg]);
458    }
459#endif
460
461    switch (unflattenMiscReg(misc_reg)) {
462      case MISCREG_HCR:
463        {
464            if (!haveVirtualization)
465                return 0;
466            else
467                return readMiscRegNoEffect(MISCREG_HCR);
468        }
469      case MISCREG_CPACR:
470        {
471            const uint32_t ones = (uint32_t)(-1);
472            CPACR cpacrMask = 0;
473            // Only cp10, cp11, and ase are implemented, nothing else should
474            // be readable? (straight copy from the write code)
475            cpacrMask.cp10 = ones;
476            cpacrMask.cp11 = ones;
477            cpacrMask.asedis = ones;
478
479            // Security Extensions may limit the readability of CPACR
480            if (haveSecurity) {
481                scr = readMiscRegNoEffect(MISCREG_SCR);
482                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
483                if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
484                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
485                    // NB: Skipping the full loop, here
486                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
487                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
488                }
489            }
490            RegVal val = readMiscRegNoEffect(MISCREG_CPACR);
491            val &= cpacrMask;
492            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
493                    miscRegName[misc_reg], val);
494            return val;
495        }
496      case MISCREG_MPIDR:
497      case MISCREG_MPIDR_EL1:
498        return readMPIDR(system, tc);
499      case MISCREG_VMPIDR:
500      case MISCREG_VMPIDR_EL2:
501        // top bit defined as RES1
502        return readMiscRegNoEffect(misc_reg) | 0x80000000;
503      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
504      case MISCREG_REVIDR:  // not implemented, so alias MIDR
505      case MISCREG_MIDR:
506        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
507        scr  = readMiscRegNoEffect(MISCREG_SCR);
508        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
509            return readMiscRegNoEffect(misc_reg);
510        } else {
511            return readMiscRegNoEffect(MISCREG_VPIDR);
512        }
513        break;
514      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
515      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
516      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
517      case MISCREG_AIDR:  // AUX ID set to 0
518      case MISCREG_TCMTR: // No TCM's
519        return 0;
520
521      case MISCREG_CLIDR:
522        warn_once("The clidr register always reports 0 caches.\n");
523        warn_once("clidr LoUIS field of 0b001 to match current "
524                  "ARM implementations.\n");
525        return 0x00200000;
526      case MISCREG_CCSIDR:
527        warn_once("The ccsidr register isn't implemented and "
528                "always reads as 0.\n");
529        break;
530      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
531      case MISCREG_CTR_EL0:             // AArch64
532        {
533            //all caches have the same line size in gem5
534            //4 byte words in ARM
535            unsigned lineSizeWords =
536                tc->getSystemPtr()->cacheLineSize() / 4;
537            unsigned log2LineSizeWords = 0;
538
539            while (lineSizeWords >>= 1) {
540                ++log2LineSizeWords;
541            }
542
543            CTR ctr = 0;
544            //log2 of minimun i-cache line size (words)
545            ctr.iCacheLineSize = log2LineSizeWords;
546            //b11 - gem5 uses pipt
547            ctr.l1IndexPolicy = 0x3;
548            //log2 of minimum d-cache line size (words)
549            ctr.dCacheLineSize = log2LineSizeWords;
550            //log2 of max reservation size (words)
551            ctr.erg = log2LineSizeWords;
552            //log2 of max writeback size (words)
553            ctr.cwg = log2LineSizeWords;
554            //b100 - gem5 format is ARMv7
555            ctr.format = 0x4;
556
557            return ctr;
558        }
559      case MISCREG_ACTLR:
560        warn("Not doing anything for miscreg ACTLR\n");
561        break;
562
563      case MISCREG_PMXEVTYPER_PMCCFILTR:
564      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
565      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
566      case MISCREG_PMCR ... MISCREG_PMOVSSET:
567        return pmu->readMiscReg(misc_reg);
568
569      case MISCREG_CPSR_Q:
570        panic("shouldn't be reading this register seperately\n");
571      case MISCREG_FPSCR_QC:
572        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
573      case MISCREG_FPSCR_EXC:
574        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
575      case MISCREG_FPSR:
576        {
577            const uint32_t ones = (uint32_t)(-1);
578            FPSCR fpscrMask = 0;
579            fpscrMask.ioc = ones;
580            fpscrMask.dzc = ones;
581            fpscrMask.ofc = ones;
582            fpscrMask.ufc = ones;
583            fpscrMask.ixc = ones;
584            fpscrMask.idc = ones;
585            fpscrMask.qc = ones;
586            fpscrMask.v = ones;
587            fpscrMask.c = ones;
588            fpscrMask.z = ones;
589            fpscrMask.n = ones;
590            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
591        }
592      case MISCREG_FPCR:
593        {
594            const uint32_t ones = (uint32_t)(-1);
595            FPSCR fpscrMask  = 0;
596            fpscrMask.len    = ones;
597            fpscrMask.fz16   = ones;
598            fpscrMask.stride = ones;
599            fpscrMask.rMode  = ones;
600            fpscrMask.fz     = ones;
601            fpscrMask.dn     = ones;
602            fpscrMask.ahp    = ones;
603            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
604        }
605      case MISCREG_NZCV:
606        {
607            CPSR cpsr = 0;
608            cpsr.nz   = tc->readCCReg(CCREG_NZ);
609            cpsr.c    = tc->readCCReg(CCREG_C);
610            cpsr.v    = tc->readCCReg(CCREG_V);
611            return cpsr;
612        }
613      case MISCREG_DAIF:
614        {
615            CPSR cpsr = 0;
616            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
617            return cpsr;
618        }
619      case MISCREG_SP_EL0:
620        {
621            return tc->readIntReg(INTREG_SP0);
622        }
623      case MISCREG_SP_EL1:
624        {
625            return tc->readIntReg(INTREG_SP1);
626        }
627      case MISCREG_SP_EL2:
628        {
629            return tc->readIntReg(INTREG_SP2);
630        }
631      case MISCREG_SPSEL:
632        {
633            return miscRegs[MISCREG_CPSR] & 0x1;
634        }
635      case MISCREG_CURRENTEL:
636        {
637            return miscRegs[MISCREG_CPSR] & 0xc;
638        }
639      case MISCREG_L2CTLR:
640        {
641            // mostly unimplemented, just set NumCPUs field from sim and return
642            L2CTLR l2ctlr = 0;
643            // b00:1CPU to b11:4CPUs
644            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
645            return l2ctlr;
646        }
647      case MISCREG_DBGDIDR:
648        /* For now just implement the version number.
649         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
650         */
651        return 0x5 << 16;
652      case MISCREG_DBGDSCRint:
653        return 0;
654      case MISCREG_ISR:
655        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
656            readMiscRegNoEffect(MISCREG_HCR),
657            readMiscRegNoEffect(MISCREG_CPSR),
658            readMiscRegNoEffect(MISCREG_SCR));
659      case MISCREG_ISR_EL1:
660        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
661            readMiscRegNoEffect(MISCREG_HCR_EL2),
662            readMiscRegNoEffect(MISCREG_CPSR),
663            readMiscRegNoEffect(MISCREG_SCR_EL3));
664      case MISCREG_DCZID_EL0:
665        return 0x04;  // DC ZVA clear 64-byte chunks
666      case MISCREG_HCPTR:
667        {
668            RegVal val = readMiscRegNoEffect(misc_reg);
669            // The trap bit associated with CP14 is defined as RAZ
670            val &= ~(1 << 14);
671            // If a CP bit in NSACR is 0 then the corresponding bit in
672            // HCPTR is RAO/WI
673            bool secure_lookup = haveSecurity &&
674                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
675                              readMiscRegNoEffect(MISCREG_CPSR));
676            if (!secure_lookup) {
677                RegVal mask = readMiscRegNoEffect(MISCREG_NSACR);
678                val |= (mask ^ 0x7FFF) & 0xBFFF;
679            }
680            // Set the bits for unimplemented coprocessors to RAO/WI
681            val |= 0x33FF;
682            return (val);
683        }
684      case MISCREG_HDFAR: // alias for secure DFAR
685        return readMiscRegNoEffect(MISCREG_DFAR_S);
686      case MISCREG_HIFAR: // alias for secure IFAR
687        return readMiscRegNoEffect(MISCREG_IFAR_S);
688
689      case MISCREG_ID_PFR0:
690        // !ThumbEE | !Jazelle | Thumb | ARM
691        return 0x00000031;
692      case MISCREG_ID_PFR1:
693        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
694            bool haveTimer = (system->getGenericTimer() != NULL);
695            return 0x00000001
696                 | (haveSecurity       ? 0x00000010 : 0x0)
697                 | (haveVirtualization ? 0x00001000 : 0x0)
698                 | (haveTimer          ? 0x00010000 : 0x0);
699        }
700      case MISCREG_ID_AA64PFR0_EL1:
701        return 0x0000000000000002 | // AArch{64,32} supported at EL0
702               0x0000000000000020                               | // EL1
703               (haveVirtualization    ? 0x0000000000000200 : 0) | // EL2
704               (haveSecurity          ? 0x0000000000002000 : 0) | // EL3
705               (haveSVE               ? 0x0000000100000000 : 0) | // SVE
706               (haveGICv3CPUInterface ? 0x0000000001000000 : 0);
707      case MISCREG_ID_AA64PFR1_EL1:
708        return 0; // bits [63:0] RES0 (reserved for future use)
709
710      // Generic Timer registers
711      case MISCREG_CNTHV_CTL_EL2:
712      case MISCREG_CNTHV_CVAL_EL2:
713      case MISCREG_CNTHV_TVAL_EL2:
714      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
715      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
716      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
717      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
718        return getGenericTimer(tc).readMiscReg(misc_reg);
719
720      case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
721      case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
722        return getGICv3CPUInterface(tc).readMiscReg(misc_reg);
723
724      default:
725        break;
726
727    }
728    return readMiscRegNoEffect(misc_reg);
729}
730
731void
732ISA::setMiscRegNoEffect(int misc_reg, RegVal val)
733{
734    assert(misc_reg < NumMiscRegs);
735
736    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
737    const auto &map = getMiscIndices(misc_reg);
738    int lower = map.first, upper = map.second;
739
740    auto v = (val & ~reg.wi()) | reg.rao();
741    if (upper > 0) {
742        miscRegs[lower] = bits(v, 31, 0);
743        miscRegs[upper] = bits(v, 63, 32);
744        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
745                misc_reg, lower, upper, v);
746    } else {
747        miscRegs[lower] = v;
748        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
749                misc_reg, lower, v);
750    }
751}
752
753void
754ISA::setMiscReg(int misc_reg, RegVal val, ThreadContext *tc)
755{
756
757    RegVal newVal = val;
758    bool secure_lookup;
759    SCR scr;
760
761    if (misc_reg == MISCREG_CPSR) {
762        updateRegMap(val);
763
764
765        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
766        int old_mode = old_cpsr.mode;
767        CPSR cpsr = val;
768        if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) {
769            getITBPtr(tc)->invalidateMiscReg();
770            getDTBPtr(tc)->invalidateMiscReg();
771        }
772
773        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
774                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
775        PCState pc = tc->pcState();
776        pc.nextThumb(cpsr.t);
777        pc.nextJazelle(cpsr.j);
778        pc.illegalExec(cpsr.il == 1);
779
780        tc->getDecoderPtr()->setSveLen((getCurSveVecLenInBits(tc) >> 7) - 1);
781
782        // Follow slightly different semantics if a CheckerCPU object
783        // is connected
784        CheckerCPU *checker = tc->getCheckerCpuPtr();
785        if (checker) {
786            tc->pcStateNoRecord(pc);
787        } else {
788            tc->pcState(pc);
789        }
790    } else {
791#ifndef NDEBUG
792        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
793            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
794                warn("Unimplemented system register %s write with %#x.\n",
795                    miscRegName[misc_reg], val);
796            else
797                panic("Unimplemented system register %s write with %#x.\n",
798                    miscRegName[misc_reg], val);
799        }
800#endif
801        switch (unflattenMiscReg(misc_reg)) {
802          case MISCREG_CPACR:
803            {
804
805                const uint32_t ones = (uint32_t)(-1);
806                CPACR cpacrMask = 0;
807                // Only cp10, cp11, and ase are implemented, nothing else should
808                // be writable
809                cpacrMask.cp10 = ones;
810                cpacrMask.cp11 = ones;
811                cpacrMask.asedis = ones;
812
813                // Security Extensions may limit the writability of CPACR
814                if (haveSecurity) {
815                    scr = readMiscRegNoEffect(MISCREG_SCR);
816                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
817                    if (scr.ns && (cpsr.mode != MODE_MON) && ELIs32(tc, EL3)) {
818                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
819                        // NB: Skipping the full loop, here
820                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
821                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
822                    }
823                }
824
825                RegVal old_val = readMiscRegNoEffect(MISCREG_CPACR);
826                newVal &= cpacrMask;
827                newVal |= old_val & ~cpacrMask;
828                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
829                        miscRegName[misc_reg], newVal);
830            }
831            break;
832          case MISCREG_CPACR_EL1:
833            {
834                const uint32_t ones = (uint32_t)(-1);
835                CPACR cpacrMask = 0;
836                cpacrMask.tta = ones;
837                cpacrMask.fpen = ones;
838                if (haveSVE) {
839                    cpacrMask.zen = ones;
840                }
841                newVal &= cpacrMask;
842                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
843                        miscRegName[misc_reg], newVal);
844            }
845            break;
846          case MISCREG_CPTR_EL2:
847            {
848                const uint32_t ones = (uint32_t)(-1);
849                CPTR cptrMask = 0;
850                cptrMask.tcpac = ones;
851                cptrMask.tta = ones;
852                cptrMask.tfp = ones;
853                if (haveSVE) {
854                    cptrMask.tz = ones;
855                }
856                newVal &= cptrMask;
857                cptrMask = 0;
858                cptrMask.res1_13_12_el2 = ones;
859                cptrMask.res1_7_0_el2 = ones;
860                if (!haveSVE) {
861                    cptrMask.res1_8_el2 = ones;
862                }
863                cptrMask.res1_9_el2 = ones;
864                newVal |= cptrMask;
865                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
866                        miscRegName[misc_reg], newVal);
867            }
868            break;
869          case MISCREG_CPTR_EL3:
870            {
871                const uint32_t ones = (uint32_t)(-1);
872                CPTR cptrMask = 0;
873                cptrMask.tcpac = ones;
874                cptrMask.tta = ones;
875                cptrMask.tfp = ones;
876                if (haveSVE) {
877                    cptrMask.ez = ones;
878                }
879                newVal &= cptrMask;
880                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
881                        miscRegName[misc_reg], newVal);
882            }
883            break;
884          case MISCREG_CSSELR:
885            warn_once("The csselr register isn't implemented.\n");
886            return;
887
888          case MISCREG_DC_ZVA_Xt:
889            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
890            return;
891
892          case MISCREG_FPSCR:
893            {
894                const uint32_t ones = (uint32_t)(-1);
895                FPSCR fpscrMask = 0;
896                fpscrMask.ioc = ones;
897                fpscrMask.dzc = ones;
898                fpscrMask.ofc = ones;
899                fpscrMask.ufc = ones;
900                fpscrMask.ixc = ones;
901                fpscrMask.idc = ones;
902                fpscrMask.ioe = ones;
903                fpscrMask.dze = ones;
904                fpscrMask.ofe = ones;
905                fpscrMask.ufe = ones;
906                fpscrMask.ixe = ones;
907                fpscrMask.ide = ones;
908                fpscrMask.len = ones;
909                fpscrMask.fz16 = ones;
910                fpscrMask.stride = ones;
911                fpscrMask.rMode = ones;
912                fpscrMask.fz = ones;
913                fpscrMask.dn = ones;
914                fpscrMask.ahp = ones;
915                fpscrMask.qc = ones;
916                fpscrMask.v = ones;
917                fpscrMask.c = ones;
918                fpscrMask.z = ones;
919                fpscrMask.n = ones;
920                newVal = (newVal & (uint32_t)fpscrMask) |
921                         (readMiscRegNoEffect(MISCREG_FPSCR) &
922                          ~(uint32_t)fpscrMask);
923                tc->getDecoderPtr()->setContext(newVal);
924            }
925            break;
926          case MISCREG_FPSR:
927            {
928                const uint32_t ones = (uint32_t)(-1);
929                FPSCR fpscrMask = 0;
930                fpscrMask.ioc = ones;
931                fpscrMask.dzc = ones;
932                fpscrMask.ofc = ones;
933                fpscrMask.ufc = ones;
934                fpscrMask.ixc = ones;
935                fpscrMask.idc = ones;
936                fpscrMask.qc = ones;
937                fpscrMask.v = ones;
938                fpscrMask.c = ones;
939                fpscrMask.z = ones;
940                fpscrMask.n = ones;
941                newVal = (newVal & (uint32_t)fpscrMask) |
942                         (readMiscRegNoEffect(MISCREG_FPSCR) &
943                          ~(uint32_t)fpscrMask);
944                misc_reg = MISCREG_FPSCR;
945            }
946            break;
947          case MISCREG_FPCR:
948            {
949                const uint32_t ones = (uint32_t)(-1);
950                FPSCR fpscrMask  = 0;
951                fpscrMask.len    = ones;
952                fpscrMask.fz16   = ones;
953                fpscrMask.stride = ones;
954                fpscrMask.rMode  = ones;
955                fpscrMask.fz     = ones;
956                fpscrMask.dn     = ones;
957                fpscrMask.ahp    = ones;
958                newVal = (newVal & (uint32_t)fpscrMask) |
959                         (readMiscRegNoEffect(MISCREG_FPSCR) &
960                          ~(uint32_t)fpscrMask);
961                misc_reg = MISCREG_FPSCR;
962            }
963            break;
964          case MISCREG_CPSR_Q:
965            {
966                assert(!(newVal & ~CpsrMaskQ));
967                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
968                misc_reg = MISCREG_CPSR;
969            }
970            break;
971          case MISCREG_FPSCR_QC:
972            {
973                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
974                         (newVal & FpscrQcMask);
975                misc_reg = MISCREG_FPSCR;
976            }
977            break;
978          case MISCREG_FPSCR_EXC:
979            {
980                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
981                         (newVal & FpscrExcMask);
982                misc_reg = MISCREG_FPSCR;
983            }
984            break;
985          case MISCREG_FPEXC:
986            {
987                // vfpv3 architecture, section B.6.1 of DDI04068
988                // bit 29 - valid only if fpexc[31] is 0
989                const uint32_t fpexcMask = 0x60000000;
990                newVal = (newVal & fpexcMask) |
991                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
992            }
993            break;
994          case MISCREG_HCR:
995            {
996                if (!haveVirtualization)
997                    return;
998            }
999            break;
1000          case MISCREG_IFSR:
1001            {
1002                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1003                const uint32_t ifsrMask =
1004                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1005                newVal = newVal & ~ifsrMask;
1006            }
1007            break;
1008          case MISCREG_DFSR:
1009            {
1010                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1011                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1012                newVal = newVal & ~dfsrMask;
1013            }
1014            break;
1015          case MISCREG_AMAIR0:
1016          case MISCREG_AMAIR1:
1017            {
1018                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1019                // Valid only with LPAE
1020                if (!haveLPAE)
1021                    return;
1022                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1023            }
1024            break;
1025          case MISCREG_SCR:
1026            getITBPtr(tc)->invalidateMiscReg();
1027            getDTBPtr(tc)->invalidateMiscReg();
1028            break;
1029          case MISCREG_SCTLR:
1030            {
1031                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1032                scr = readMiscRegNoEffect(MISCREG_SCR);
1033
1034                MiscRegIndex sctlr_idx;
1035                if (haveSecurity && !highestELIs64 && !scr.ns) {
1036                    sctlr_idx = MISCREG_SCTLR_S;
1037                } else {
1038                    sctlr_idx =  MISCREG_SCTLR_NS;
1039                }
1040
1041                SCTLR sctlr = miscRegs[sctlr_idx];
1042                SCTLR new_sctlr = newVal;
1043                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1044                miscRegs[sctlr_idx] = (RegVal)new_sctlr;
1045                getITBPtr(tc)->invalidateMiscReg();
1046                getDTBPtr(tc)->invalidateMiscReg();
1047            }
1048          case MISCREG_MIDR:
1049          case MISCREG_ID_PFR0:
1050          case MISCREG_ID_PFR1:
1051          case MISCREG_ID_DFR0:
1052          case MISCREG_ID_MMFR0:
1053          case MISCREG_ID_MMFR1:
1054          case MISCREG_ID_MMFR2:
1055          case MISCREG_ID_MMFR3:
1056          case MISCREG_ID_ISAR0:
1057          case MISCREG_ID_ISAR1:
1058          case MISCREG_ID_ISAR2:
1059          case MISCREG_ID_ISAR3:
1060          case MISCREG_ID_ISAR4:
1061          case MISCREG_ID_ISAR5:
1062
1063          case MISCREG_MPIDR:
1064          case MISCREG_FPSID:
1065          case MISCREG_TLBTR:
1066          case MISCREG_MVFR0:
1067          case MISCREG_MVFR1:
1068
1069          case MISCREG_ID_AA64AFR0_EL1:
1070          case MISCREG_ID_AA64AFR1_EL1:
1071          case MISCREG_ID_AA64DFR0_EL1:
1072          case MISCREG_ID_AA64DFR1_EL1:
1073          case MISCREG_ID_AA64ISAR0_EL1:
1074          case MISCREG_ID_AA64ISAR1_EL1:
1075          case MISCREG_ID_AA64MMFR0_EL1:
1076          case MISCREG_ID_AA64MMFR1_EL1:
1077          case MISCREG_ID_AA64MMFR2_EL1:
1078          case MISCREG_ID_AA64PFR0_EL1:
1079          case MISCREG_ID_AA64PFR1_EL1:
1080            // ID registers are constants.
1081            return;
1082
1083          // TLB Invalidate All
1084          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1085            {
1086                assert32(tc);
1087                scr = readMiscReg(MISCREG_SCR, tc);
1088
1089                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1090                tlbiOp(tc);
1091                return;
1092            }
1093          // TLB Invalidate All, Inner Shareable
1094          case MISCREG_TLBIALLIS:
1095            {
1096                assert32(tc);
1097                scr = readMiscReg(MISCREG_SCR, tc);
1098
1099                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1100                tlbiOp.broadcast(tc);
1101                return;
1102            }
1103          // Instruction TLB Invalidate All
1104          case MISCREG_ITLBIALL:
1105            {
1106                assert32(tc);
1107                scr = readMiscReg(MISCREG_SCR, tc);
1108
1109                ITLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1110                tlbiOp(tc);
1111                return;
1112            }
1113          // Data TLB Invalidate All
1114          case MISCREG_DTLBIALL:
1115            {
1116                assert32(tc);
1117                scr = readMiscReg(MISCREG_SCR, tc);
1118
1119                DTLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1120                tlbiOp(tc);
1121                return;
1122            }
1123          // TLB Invalidate by VA
1124          // mcr tlbimval(is) is invalidating all matching entries
1125          // regardless of the level of lookup, since in gem5 we cache
1126          // in the tlb the last level of lookup only.
1127          case MISCREG_TLBIMVA:
1128          case MISCREG_TLBIMVAL:
1129            {
1130                assert32(tc);
1131                scr = readMiscReg(MISCREG_SCR, tc);
1132
1133                TLBIMVA tlbiOp(EL1,
1134                               haveSecurity && !scr.ns,
1135                               mbits(newVal, 31, 12),
1136                               bits(newVal, 7,0));
1137
1138                tlbiOp(tc);
1139                return;
1140            }
1141          // TLB Invalidate by VA, Inner Shareable
1142          case MISCREG_TLBIMVAIS:
1143          case MISCREG_TLBIMVALIS:
1144            {
1145                assert32(tc);
1146                scr = readMiscReg(MISCREG_SCR, tc);
1147
1148                TLBIMVA tlbiOp(EL1,
1149                               haveSecurity && !scr.ns,
1150                               mbits(newVal, 31, 12),
1151                               bits(newVal, 7,0));
1152
1153                tlbiOp.broadcast(tc);
1154                return;
1155            }
1156          // TLB Invalidate by ASID match
1157          case MISCREG_TLBIASID:
1158            {
1159                assert32(tc);
1160                scr = readMiscReg(MISCREG_SCR, tc);
1161
1162                TLBIASID tlbiOp(EL1,
1163                                haveSecurity && !scr.ns,
1164                                bits(newVal, 7,0));
1165
1166                tlbiOp(tc);
1167                return;
1168            }
1169          // TLB Invalidate by ASID match, Inner Shareable
1170          case MISCREG_TLBIASIDIS:
1171            {
1172                assert32(tc);
1173                scr = readMiscReg(MISCREG_SCR, tc);
1174
1175                TLBIASID tlbiOp(EL1,
1176                                haveSecurity && !scr.ns,
1177                                bits(newVal, 7,0));
1178
1179                tlbiOp.broadcast(tc);
1180                return;
1181            }
1182          // mcr tlbimvaal(is) is invalidating all matching entries
1183          // regardless of the level of lookup, since in gem5 we cache
1184          // in the tlb the last level of lookup only.
1185          // TLB Invalidate by VA, All ASID
1186          case MISCREG_TLBIMVAA:
1187          case MISCREG_TLBIMVAAL:
1188            {
1189                assert32(tc);
1190                scr = readMiscReg(MISCREG_SCR, tc);
1191
1192                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1193                                mbits(newVal, 31,12), false);
1194
1195                tlbiOp(tc);
1196                return;
1197            }
1198          // TLB Invalidate by VA, All ASID, Inner Shareable
1199          case MISCREG_TLBIMVAAIS:
1200          case MISCREG_TLBIMVAALIS:
1201            {
1202                assert32(tc);
1203                scr = readMiscReg(MISCREG_SCR, tc);
1204
1205                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1206                                mbits(newVal, 31,12), false);
1207
1208                tlbiOp.broadcast(tc);
1209                return;
1210            }
1211          // mcr tlbimvalh(is) is invalidating all matching entries
1212          // regardless of the level of lookup, since in gem5 we cache
1213          // in the tlb the last level of lookup only.
1214          // TLB Invalidate by VA, Hyp mode
1215          case MISCREG_TLBIMVAH:
1216          case MISCREG_TLBIMVALH:
1217            {
1218                assert32(tc);
1219                scr = readMiscReg(MISCREG_SCR, tc);
1220
1221                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1222                                mbits(newVal, 31,12), true);
1223
1224                tlbiOp(tc);
1225                return;
1226            }
1227          // TLB Invalidate by VA, Hyp mode, Inner Shareable
1228          case MISCREG_TLBIMVAHIS:
1229          case MISCREG_TLBIMVALHIS:
1230            {
1231                assert32(tc);
1232                scr = readMiscReg(MISCREG_SCR, tc);
1233
1234                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1235                                mbits(newVal, 31,12), true);
1236
1237                tlbiOp.broadcast(tc);
1238                return;
1239            }
1240          // mcr tlbiipas2l(is) is invalidating all matching entries
1241          // regardless of the level of lookup, since in gem5 we cache
1242          // in the tlb the last level of lookup only.
1243          // TLB Invalidate by Intermediate Physical Address, Stage 2
1244          case MISCREG_TLBIIPAS2:
1245          case MISCREG_TLBIIPAS2L:
1246            {
1247                assert32(tc);
1248                scr = readMiscReg(MISCREG_SCR, tc);
1249
1250                TLBIIPA tlbiOp(EL1,
1251                               haveSecurity && !scr.ns,
1252                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1253
1254                tlbiOp(tc);
1255                return;
1256            }
1257          // TLB Invalidate by Intermediate Physical Address, Stage 2,
1258          // Inner Shareable
1259          case MISCREG_TLBIIPAS2IS:
1260          case MISCREG_TLBIIPAS2LIS:
1261            {
1262                assert32(tc);
1263                scr = readMiscReg(MISCREG_SCR, tc);
1264
1265                TLBIIPA tlbiOp(EL1,
1266                               haveSecurity && !scr.ns,
1267                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1268
1269                tlbiOp.broadcast(tc);
1270                return;
1271            }
1272          // Instruction TLB Invalidate by VA
1273          case MISCREG_ITLBIMVA:
1274            {
1275                assert32(tc);
1276                scr = readMiscReg(MISCREG_SCR, tc);
1277
1278                ITLBIMVA tlbiOp(EL1,
1279                                haveSecurity && !scr.ns,
1280                                mbits(newVal, 31, 12),
1281                                bits(newVal, 7,0));
1282
1283                tlbiOp(tc);
1284                return;
1285            }
1286          // Data TLB Invalidate by VA
1287          case MISCREG_DTLBIMVA:
1288            {
1289                assert32(tc);
1290                scr = readMiscReg(MISCREG_SCR, tc);
1291
1292                DTLBIMVA tlbiOp(EL1,
1293                                haveSecurity && !scr.ns,
1294                                mbits(newVal, 31, 12),
1295                                bits(newVal, 7,0));
1296
1297                tlbiOp(tc);
1298                return;
1299            }
1300          // Instruction TLB Invalidate by ASID match
1301          case MISCREG_ITLBIASID:
1302            {
1303                assert32(tc);
1304                scr = readMiscReg(MISCREG_SCR, tc);
1305
1306                ITLBIASID tlbiOp(EL1,
1307                                 haveSecurity && !scr.ns,
1308                                 bits(newVal, 7,0));
1309
1310                tlbiOp(tc);
1311                return;
1312            }
1313          // Data TLB Invalidate by ASID match
1314          case MISCREG_DTLBIASID:
1315            {
1316                assert32(tc);
1317                scr = readMiscReg(MISCREG_SCR, tc);
1318
1319                DTLBIASID tlbiOp(EL1,
1320                                 haveSecurity && !scr.ns,
1321                                 bits(newVal, 7,0));
1322
1323                tlbiOp(tc);
1324                return;
1325            }
1326          // TLB Invalidate All, Non-Secure Non-Hyp
1327          case MISCREG_TLBIALLNSNH:
1328            {
1329                assert32(tc);
1330
1331                TLBIALLN tlbiOp(EL1, false);
1332                tlbiOp(tc);
1333                return;
1334            }
1335          // TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
1336          case MISCREG_TLBIALLNSNHIS:
1337            {
1338                assert32(tc);
1339
1340                TLBIALLN tlbiOp(EL1, false);
1341                tlbiOp.broadcast(tc);
1342                return;
1343            }
1344          // TLB Invalidate All, Hyp mode
1345          case MISCREG_TLBIALLH:
1346            {
1347                assert32(tc);
1348
1349                TLBIALLN tlbiOp(EL1, true);
1350                tlbiOp(tc);
1351                return;
1352            }
1353          // TLB Invalidate All, Hyp mode, Inner Shareable
1354          case MISCREG_TLBIALLHIS:
1355            {
1356                assert32(tc);
1357
1358                TLBIALLN tlbiOp(EL1, true);
1359                tlbiOp.broadcast(tc);
1360                return;
1361            }
1362          // AArch64 TLB Invalidate All, EL3
1363          case MISCREG_TLBI_ALLE3:
1364            {
1365                assert64(tc);
1366
1367                TLBIALL tlbiOp(EL3, true);
1368                tlbiOp(tc);
1369                return;
1370            }
1371          // AArch64 TLB Invalidate All, EL3, Inner Shareable
1372          case MISCREG_TLBI_ALLE3IS:
1373            {
1374                assert64(tc);
1375
1376                TLBIALL tlbiOp(EL3, true);
1377                tlbiOp.broadcast(tc);
1378                return;
1379            }
1380          // AArch64 TLB Invalidate All, EL2, Inner Shareable
1381          case MISCREG_TLBI_ALLE2:
1382          case MISCREG_TLBI_ALLE2IS:
1383            {
1384                assert64(tc);
1385                scr = readMiscReg(MISCREG_SCR, tc);
1386
1387                TLBIALL tlbiOp(EL2, haveSecurity && !scr.ns);
1388                tlbiOp(tc);
1389                return;
1390            }
1391          // AArch64 TLB Invalidate All, EL1
1392          case MISCREG_TLBI_ALLE1:
1393          case MISCREG_TLBI_VMALLE1:
1394          case MISCREG_TLBI_VMALLS12E1:
1395            // @todo: handle VMID and stage 2 to enable Virtualization
1396            {
1397                assert64(tc);
1398                scr = readMiscReg(MISCREG_SCR, tc);
1399
1400                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1401                tlbiOp(tc);
1402                return;
1403            }
1404          // AArch64 TLB Invalidate All, EL1, Inner Shareable
1405          case MISCREG_TLBI_ALLE1IS:
1406          case MISCREG_TLBI_VMALLE1IS:
1407          case MISCREG_TLBI_VMALLS12E1IS:
1408            // @todo: handle VMID and stage 2 to enable Virtualization
1409            {
1410                assert64(tc);
1411                scr = readMiscReg(MISCREG_SCR, tc);
1412
1413                TLBIALL tlbiOp(EL1, haveSecurity && !scr.ns);
1414                tlbiOp.broadcast(tc);
1415                return;
1416            }
1417          // VAEx(IS) and VALEx(IS) are the same because TLBs
1418          // only store entries
1419          // from the last level of translation table walks
1420          // @todo: handle VMID to enable Virtualization
1421          // AArch64 TLB Invalidate by VA, EL3
1422          case MISCREG_TLBI_VAE3_Xt:
1423          case MISCREG_TLBI_VALE3_Xt:
1424            {
1425                assert64(tc);
1426
1427                TLBIMVA tlbiOp(EL3, true,
1428                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1429                               0xbeef);
1430                tlbiOp(tc);
1431                return;
1432            }
1433          // AArch64 TLB Invalidate by VA, EL3, Inner Shareable
1434          case MISCREG_TLBI_VAE3IS_Xt:
1435          case MISCREG_TLBI_VALE3IS_Xt:
1436            {
1437                assert64(tc);
1438
1439                TLBIMVA tlbiOp(EL3, true,
1440                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1441                               0xbeef);
1442
1443                tlbiOp.broadcast(tc);
1444                return;
1445            }
1446          // AArch64 TLB Invalidate by VA, EL2
1447          case MISCREG_TLBI_VAE2_Xt:
1448          case MISCREG_TLBI_VALE2_Xt:
1449            {
1450                assert64(tc);
1451                scr = readMiscReg(MISCREG_SCR, tc);
1452
1453                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1454                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1455                               0xbeef);
1456                tlbiOp(tc);
1457                return;
1458            }
1459          // AArch64 TLB Invalidate by VA, EL2, Inner Shareable
1460          case MISCREG_TLBI_VAE2IS_Xt:
1461          case MISCREG_TLBI_VALE2IS_Xt:
1462            {
1463                assert64(tc);
1464                scr = readMiscReg(MISCREG_SCR, tc);
1465
1466                TLBIMVA tlbiOp(EL2, haveSecurity && !scr.ns,
1467                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1468                               0xbeef);
1469
1470                tlbiOp.broadcast(tc);
1471                return;
1472            }
1473          // AArch64 TLB Invalidate by VA, EL1
1474          case MISCREG_TLBI_VAE1_Xt:
1475          case MISCREG_TLBI_VALE1_Xt:
1476            {
1477                assert64(tc);
1478                scr = readMiscReg(MISCREG_SCR, tc);
1479                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1480                                              bits(newVal, 55, 48);
1481
1482                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1483                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1484                               asid);
1485
1486                tlbiOp(tc);
1487                return;
1488            }
1489          // AArch64 TLB Invalidate by VA, EL1, Inner Shareable
1490          case MISCREG_TLBI_VAE1IS_Xt:
1491          case MISCREG_TLBI_VALE1IS_Xt:
1492            {
1493                assert64(tc);
1494                scr = readMiscReg(MISCREG_SCR, tc);
1495                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1496                                              bits(newVal, 55, 48);
1497
1498                TLBIMVA tlbiOp(EL1, haveSecurity && !scr.ns,
1499                               static_cast<Addr>(bits(newVal, 43, 0)) << 12,
1500                               asid);
1501
1502                tlbiOp.broadcast(tc);
1503                return;
1504            }
1505          // AArch64 TLB Invalidate by ASID, EL1
1506          // @todo: handle VMID to enable Virtualization
1507          case MISCREG_TLBI_ASIDE1_Xt:
1508            {
1509                assert64(tc);
1510                scr = readMiscReg(MISCREG_SCR, tc);
1511                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1512                                              bits(newVal, 55, 48);
1513
1514                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1515                tlbiOp(tc);
1516                return;
1517            }
1518          // AArch64 TLB Invalidate by ASID, EL1, Inner Shareable
1519          case MISCREG_TLBI_ASIDE1IS_Xt:
1520            {
1521                assert64(tc);
1522                scr = readMiscReg(MISCREG_SCR, tc);
1523                auto asid = haveLargeAsid64 ? bits(newVal, 63, 48) :
1524                                              bits(newVal, 55, 48);
1525
1526                TLBIASID tlbiOp(EL1, haveSecurity && !scr.ns, asid);
1527                tlbiOp.broadcast(tc);
1528                return;
1529            }
1530          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1531          // entries from the last level of translation table walks
1532          // AArch64 TLB Invalidate by VA, All ASID, EL1
1533          case MISCREG_TLBI_VAAE1_Xt:
1534          case MISCREG_TLBI_VAALE1_Xt:
1535            {
1536                assert64(tc);
1537                scr = readMiscReg(MISCREG_SCR, tc);
1538
1539                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1540                    static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1541
1542                tlbiOp(tc);
1543                return;
1544            }
1545          // AArch64 TLB Invalidate by VA, All ASID, EL1, Inner Shareable
1546          case MISCREG_TLBI_VAAE1IS_Xt:
1547          case MISCREG_TLBI_VAALE1IS_Xt:
1548            {
1549                assert64(tc);
1550                scr = readMiscReg(MISCREG_SCR, tc);
1551
1552                TLBIMVAA tlbiOp(EL1, haveSecurity && !scr.ns,
1553                    static_cast<Addr>(bits(newVal, 43, 0)) << 12, false);
1554
1555                tlbiOp.broadcast(tc);
1556                return;
1557            }
1558          // AArch64 TLB Invalidate by Intermediate Physical Address,
1559          // Stage 2, EL1
1560          case MISCREG_TLBI_IPAS2E1_Xt:
1561          case MISCREG_TLBI_IPAS2LE1_Xt:
1562            {
1563                assert64(tc);
1564                scr = readMiscReg(MISCREG_SCR, tc);
1565
1566                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1567                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1568
1569                tlbiOp(tc);
1570                return;
1571            }
1572          // AArch64 TLB Invalidate by Intermediate Physical Address,
1573          // Stage 2, EL1, Inner Shareable
1574          case MISCREG_TLBI_IPAS2E1IS_Xt:
1575          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1576            {
1577                assert64(tc);
1578                scr = readMiscReg(MISCREG_SCR, tc);
1579
1580                TLBIIPA tlbiOp(EL1, haveSecurity && !scr.ns,
1581                               static_cast<Addr>(bits(newVal, 35, 0)) << 12);
1582
1583                tlbiOp.broadcast(tc);
1584                return;
1585            }
1586          case MISCREG_ACTLR:
1587            warn("Not doing anything for write of miscreg ACTLR\n");
1588            break;
1589
1590          case MISCREG_PMXEVTYPER_PMCCFILTR:
1591          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1592          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1593          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1594            pmu->setMiscReg(misc_reg, newVal);
1595            break;
1596
1597
1598          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1599            {
1600                HSTR hstrMask = 0;
1601                hstrMask.tjdbx = 1;
1602                newVal &= ~((uint32_t) hstrMask);
1603                break;
1604            }
1605          case MISCREG_HCPTR:
1606            {
1607                // If a CP bit in NSACR is 0 then the corresponding bit in
1608                // HCPTR is RAO/WI. Same applies to NSASEDIS
1609                secure_lookup = haveSecurity &&
1610                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1611                                  readMiscRegNoEffect(MISCREG_CPSR));
1612                if (!secure_lookup) {
1613                    RegVal oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1614                    RegVal mask =
1615                        (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1616                    newVal = (newVal & ~mask) | (oldValue & mask);
1617                }
1618                break;
1619            }
1620          case MISCREG_HDFAR: // alias for secure DFAR
1621            misc_reg = MISCREG_DFAR_S;
1622            break;
1623          case MISCREG_HIFAR: // alias for secure IFAR
1624            misc_reg = MISCREG_IFAR_S;
1625            break;
1626          case MISCREG_ATS1CPR:
1627          case MISCREG_ATS1CPW:
1628          case MISCREG_ATS1CUR:
1629          case MISCREG_ATS1CUW:
1630          case MISCREG_ATS12NSOPR:
1631          case MISCREG_ATS12NSOPW:
1632          case MISCREG_ATS12NSOUR:
1633          case MISCREG_ATS12NSOUW:
1634          case MISCREG_ATS1HR:
1635          case MISCREG_ATS1HW:
1636            {
1637              Request::Flags flags = 0;
1638              BaseTLB::Mode mode = BaseTLB::Read;
1639              TLB::ArmTranslationType tranType = TLB::NormalTran;
1640              Fault fault;
1641              switch(misc_reg) {
1642                case MISCREG_ATS1CPR:
1643                  flags    = TLB::MustBeOne;
1644                  tranType = TLB::S1CTran;
1645                  mode     = BaseTLB::Read;
1646                  break;
1647                case MISCREG_ATS1CPW:
1648                  flags    = TLB::MustBeOne;
1649                  tranType = TLB::S1CTran;
1650                  mode     = BaseTLB::Write;
1651                  break;
1652                case MISCREG_ATS1CUR:
1653                  flags    = TLB::MustBeOne | TLB::UserMode;
1654                  tranType = TLB::S1CTran;
1655                  mode     = BaseTLB::Read;
1656                  break;
1657                case MISCREG_ATS1CUW:
1658                  flags    = TLB::MustBeOne | TLB::UserMode;
1659                  tranType = TLB::S1CTran;
1660                  mode     = BaseTLB::Write;
1661                  break;
1662                case MISCREG_ATS12NSOPR:
1663                  if (!haveSecurity)
1664                      panic("Security Extensions required for ATS12NSOPR");
1665                  flags    = TLB::MustBeOne;
1666                  tranType = TLB::S1S2NsTran;
1667                  mode     = BaseTLB::Read;
1668                  break;
1669                case MISCREG_ATS12NSOPW:
1670                  if (!haveSecurity)
1671                      panic("Security Extensions required for ATS12NSOPW");
1672                  flags    = TLB::MustBeOne;
1673                  tranType = TLB::S1S2NsTran;
1674                  mode     = BaseTLB::Write;
1675                  break;
1676                case MISCREG_ATS12NSOUR:
1677                  if (!haveSecurity)
1678                      panic("Security Extensions required for ATS12NSOUR");
1679                  flags    = TLB::MustBeOne | TLB::UserMode;
1680                  tranType = TLB::S1S2NsTran;
1681                  mode     = BaseTLB::Read;
1682                  break;
1683                case MISCREG_ATS12NSOUW:
1684                  if (!haveSecurity)
1685                      panic("Security Extensions required for ATS12NSOUW");
1686                  flags    = TLB::MustBeOne | TLB::UserMode;
1687                  tranType = TLB::S1S2NsTran;
1688                  mode     = BaseTLB::Write;
1689                  break;
1690                case MISCREG_ATS1HR: // only really useful from secure mode.
1691                  flags    = TLB::MustBeOne;
1692                  tranType = TLB::HypMode;
1693                  mode     = BaseTLB::Read;
1694                  break;
1695                case MISCREG_ATS1HW:
1696                  flags    = TLB::MustBeOne;
1697                  tranType = TLB::HypMode;
1698                  mode     = BaseTLB::Write;
1699                  break;
1700              }
1701              // If we're in timing mode then doing the translation in
1702              // functional mode then we're slightly distorting performance
1703              // results obtained from simulations. The translation should be
1704              // done in the same mode the core is running in. NOTE: This
1705              // can't be an atomic translation because that causes problems
1706              // with unexpected atomic snoop requests.
1707              warn("Translating via %s in functional mode! Fix Me!\n",
1708                   miscRegName[misc_reg]);
1709
1710              auto req = std::make_shared<Request>(
1711                  0, val, 0, flags,  Request::funcMasterId,
1712                  tc->pcState().pc(), tc->contextId());
1713
1714              fault = getDTBPtr(tc)->translateFunctional(
1715                      req, tc, mode, tranType);
1716
1717              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1718              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1719
1720              RegVal newVal;
1721              if (fault == NoFault) {
1722                  Addr paddr = req->getPaddr();
1723                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1724                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1725                      newVal = (paddr & mask(39, 12)) |
1726                               (getDTBPtr(tc)->getAttr());
1727                  } else {
1728                      newVal = (paddr & 0xfffff000) |
1729                               (getDTBPtr(tc)->getAttr());
1730                  }
1731                  DPRINTF(MiscRegs,
1732                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1733                          val, newVal);
1734              } else {
1735                  ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1736                  armFault->update(tc);
1737                  // Set fault bit and FSR
1738                  FSR fsr = armFault->getFsr(tc);
1739
1740                  newVal = ((fsr >> 9) & 1) << 11;
1741                  if (newVal) {
1742                    // LPAE - rearange fault status
1743                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1744                  } else {
1745                    // VMSA - rearange fault status
1746                    newVal |= ((fsr >>  0) & 0xf) << 1;
1747                    newVal |= ((fsr >> 10) & 0x1) << 5;
1748                    newVal |= ((fsr >> 12) & 0x1) << 6;
1749                  }
1750                  newVal |= 0x1; // F bit
1751                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1752                  newVal |= armFault->isStage2() ? 0x200 : 0;
1753                  DPRINTF(MiscRegs,
1754                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1755                          val, fsr, newVal);
1756              }
1757              setMiscRegNoEffect(MISCREG_PAR, newVal);
1758              return;
1759            }
1760          case MISCREG_TTBCR:
1761            {
1762                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1763                const uint32_t ones = (uint32_t)(-1);
1764                TTBCR ttbcrMask = 0;
1765                TTBCR ttbcrNew = newVal;
1766
1767                // ARM DDI 0406C.b, ARMv7-32
1768                ttbcrMask.n = ones; // T0SZ
1769                if (haveSecurity) {
1770                    ttbcrMask.pd0 = ones;
1771                    ttbcrMask.pd1 = ones;
1772                }
1773                ttbcrMask.epd0 = ones;
1774                ttbcrMask.irgn0 = ones;
1775                ttbcrMask.orgn0 = ones;
1776                ttbcrMask.sh0 = ones;
1777                ttbcrMask.ps = ones; // T1SZ
1778                ttbcrMask.a1 = ones;
1779                ttbcrMask.epd1 = ones;
1780                ttbcrMask.irgn1 = ones;
1781                ttbcrMask.orgn1 = ones;
1782                ttbcrMask.sh1 = ones;
1783                if (haveLPAE)
1784                    ttbcrMask.eae = ones;
1785
1786                if (haveLPAE && ttbcrNew.eae) {
1787                    newVal = newVal & ttbcrMask;
1788                } else {
1789                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1790                }
1791                // Invalidate TLB MiscReg
1792                getITBPtr(tc)->invalidateMiscReg();
1793                getDTBPtr(tc)->invalidateMiscReg();
1794                break;
1795            }
1796          case MISCREG_TTBR0:
1797          case MISCREG_TTBR1:
1798            {
1799                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1800                if (haveLPAE) {
1801                    if (ttbcr.eae) {
1802                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1803                        // ARMv8 AArch32 bit 63-56 only
1804                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1805                        newVal = (newVal & (~ttbrMask));
1806                    }
1807                }
1808                // Invalidate TLB MiscReg
1809                getITBPtr(tc)->invalidateMiscReg();
1810                getDTBPtr(tc)->invalidateMiscReg();
1811                break;
1812            }
1813          case MISCREG_SCTLR_EL1:
1814          case MISCREG_CONTEXTIDR:
1815          case MISCREG_PRRR:
1816          case MISCREG_NMRR:
1817          case MISCREG_MAIR0:
1818          case MISCREG_MAIR1:
1819          case MISCREG_DACR:
1820          case MISCREG_VTTBR:
1821          case MISCREG_SCR_EL3:
1822          case MISCREG_HCR_EL2:
1823          case MISCREG_TCR_EL1:
1824          case MISCREG_TCR_EL2:
1825          case MISCREG_TCR_EL3:
1826          case MISCREG_SCTLR_EL2:
1827          case MISCREG_SCTLR_EL3:
1828          case MISCREG_HSCTLR:
1829          case MISCREG_TTBR0_EL1:
1830          case MISCREG_TTBR1_EL1:
1831          case MISCREG_TTBR0_EL2:
1832          case MISCREG_TTBR1_EL2:
1833          case MISCREG_TTBR0_EL3:
1834            getITBPtr(tc)->invalidateMiscReg();
1835            getDTBPtr(tc)->invalidateMiscReg();
1836            break;
1837          case MISCREG_NZCV:
1838            {
1839                CPSR cpsr = val;
1840
1841                tc->setCCReg(CCREG_NZ, cpsr.nz);
1842                tc->setCCReg(CCREG_C,  cpsr.c);
1843                tc->setCCReg(CCREG_V,  cpsr.v);
1844            }
1845            break;
1846          case MISCREG_DAIF:
1847            {
1848                CPSR cpsr = miscRegs[MISCREG_CPSR];
1849                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1850                newVal = cpsr;
1851                misc_reg = MISCREG_CPSR;
1852            }
1853            break;
1854          case MISCREG_SP_EL0:
1855            tc->setIntReg(INTREG_SP0, newVal);
1856            break;
1857          case MISCREG_SP_EL1:
1858            tc->setIntReg(INTREG_SP1, newVal);
1859            break;
1860          case MISCREG_SP_EL2:
1861            tc->setIntReg(INTREG_SP2, newVal);
1862            break;
1863          case MISCREG_SPSEL:
1864            {
1865                CPSR cpsr = miscRegs[MISCREG_CPSR];
1866                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1867                newVal = cpsr;
1868                misc_reg = MISCREG_CPSR;
1869            }
1870            break;
1871          case MISCREG_CURRENTEL:
1872            {
1873                CPSR cpsr = miscRegs[MISCREG_CPSR];
1874                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1875                newVal = cpsr;
1876                misc_reg = MISCREG_CPSR;
1877            }
1878            break;
1879          case MISCREG_AT_S1E1R_Xt:
1880          case MISCREG_AT_S1E1W_Xt:
1881          case MISCREG_AT_S1E0R_Xt:
1882          case MISCREG_AT_S1E0W_Xt:
1883          case MISCREG_AT_S1E2R_Xt:
1884          case MISCREG_AT_S1E2W_Xt:
1885          case MISCREG_AT_S12E1R_Xt:
1886          case MISCREG_AT_S12E1W_Xt:
1887          case MISCREG_AT_S12E0R_Xt:
1888          case MISCREG_AT_S12E0W_Xt:
1889          case MISCREG_AT_S1E3R_Xt:
1890          case MISCREG_AT_S1E3W_Xt:
1891            {
1892                RequestPtr req = std::make_shared<Request>();
1893                Request::Flags flags = 0;
1894                BaseTLB::Mode mode = BaseTLB::Read;
1895                TLB::ArmTranslationType tranType = TLB::NormalTran;
1896                Fault fault;
1897                switch(misc_reg) {
1898                  case MISCREG_AT_S1E1R_Xt:
1899                    flags    = TLB::MustBeOne;
1900                    tranType = TLB::S1E1Tran;
1901                    mode     = BaseTLB::Read;
1902                    break;
1903                  case MISCREG_AT_S1E1W_Xt:
1904                    flags    = TLB::MustBeOne;
1905                    tranType = TLB::S1E1Tran;
1906                    mode     = BaseTLB::Write;
1907                    break;
1908                  case MISCREG_AT_S1E0R_Xt:
1909                    flags    = TLB::MustBeOne | TLB::UserMode;
1910                    tranType = TLB::S1E0Tran;
1911                    mode     = BaseTLB::Read;
1912                    break;
1913                  case MISCREG_AT_S1E0W_Xt:
1914                    flags    = TLB::MustBeOne | TLB::UserMode;
1915                    tranType = TLB::S1E0Tran;
1916                    mode     = BaseTLB::Write;
1917                    break;
1918                  case MISCREG_AT_S1E2R_Xt:
1919                    flags    = TLB::MustBeOne;
1920                    tranType = TLB::S1E2Tran;
1921                    mode     = BaseTLB::Read;
1922                    break;
1923                  case MISCREG_AT_S1E2W_Xt:
1924                    flags    = TLB::MustBeOne;
1925                    tranType = TLB::S1E2Tran;
1926                    mode     = BaseTLB::Write;
1927                    break;
1928                  case MISCREG_AT_S12E0R_Xt:
1929                    flags    = TLB::MustBeOne | TLB::UserMode;
1930                    tranType = TLB::S12E0Tran;
1931                    mode     = BaseTLB::Read;
1932                    break;
1933                  case MISCREG_AT_S12E0W_Xt:
1934                    flags    = TLB::MustBeOne | TLB::UserMode;
1935                    tranType = TLB::S12E0Tran;
1936                    mode     = BaseTLB::Write;
1937                    break;
1938                  case MISCREG_AT_S12E1R_Xt:
1939                    flags    = TLB::MustBeOne;
1940                    tranType = TLB::S12E1Tran;
1941                    mode     = BaseTLB::Read;
1942                    break;
1943                  case MISCREG_AT_S12E1W_Xt:
1944                    flags    = TLB::MustBeOne;
1945                    tranType = TLB::S12E1Tran;
1946                    mode     = BaseTLB::Write;
1947                    break;
1948                  case MISCREG_AT_S1E3R_Xt:
1949                    flags    = TLB::MustBeOne;
1950                    tranType = TLB::S1E3Tran;
1951                    mode     = BaseTLB::Read;
1952                    break;
1953                  case MISCREG_AT_S1E3W_Xt:
1954                    flags    = TLB::MustBeOne;
1955                    tranType = TLB::S1E3Tran;
1956                    mode     = BaseTLB::Write;
1957                    break;
1958                }
1959                // If we're in timing mode then doing the translation in
1960                // functional mode then we're slightly distorting performance
1961                // results obtained from simulations. The translation should be
1962                // done in the same mode the core is running in. NOTE: This
1963                // can't be an atomic translation because that causes problems
1964                // with unexpected atomic snoop requests.
1965                warn("Translating via %s in functional mode! Fix Me!\n",
1966                     miscRegName[misc_reg]);
1967
1968                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1969                               tc->pcState().pc());
1970                req->setContext(tc->contextId());
1971                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1972                                                           tranType);
1973
1974                RegVal newVal;
1975                if (fault == NoFault) {
1976                    Addr paddr = req->getPaddr();
1977                    uint64_t attr = getDTBPtr(tc)->getAttr();
1978                    uint64_t attr1 = attr >> 56;
1979                    if (!attr1 || attr1 ==0x44) {
1980                        attr |= 0x100;
1981                        attr &= ~ uint64_t(0x80);
1982                    }
1983                    newVal = (paddr & mask(47, 12)) | attr;
1984                    DPRINTF(MiscRegs,
1985                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1986                          val, newVal);
1987                } else {
1988                    ArmFault *armFault = static_cast<ArmFault *>(fault.get());
1989                    armFault->update(tc);
1990                    // Set fault bit and FSR
1991                    FSR fsr = armFault->getFsr(tc);
1992
1993                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1994                    if (cpsr.width) { // AArch32
1995                        newVal = ((fsr >> 9) & 1) << 11;
1996                        // rearrange fault status
1997                        newVal |= ((fsr >>  0) & 0x3f) << 1;
1998                        newVal |= 0x1; // F bit
1999                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
2000                        newVal |= armFault->isStage2() ? 0x200 : 0;
2001                    } else { // AArch64
2002                        newVal = 1; // F bit
2003                        newVal |= fsr << 1; // FST
2004                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
2005                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
2006                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
2007                        newVal |= 1 << 11; // RES1
2008                    }
2009                    DPRINTF(MiscRegs,
2010                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
2011                            val, fsr, newVal);
2012                }
2013                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
2014                return;
2015            }
2016          case MISCREG_SPSR_EL3:
2017          case MISCREG_SPSR_EL2:
2018          case MISCREG_SPSR_EL1:
2019            // Force bits 23:21 to 0
2020            newVal = val & ~(0x7 << 21);
2021            break;
2022          case MISCREG_L2CTLR:
2023            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
2024                 miscRegName[misc_reg], uint32_t(val));
2025            break;
2026
2027          // Generic Timer registers
2028          case MISCREG_CNTHV_CTL_EL2:
2029          case MISCREG_CNTHV_CVAL_EL2:
2030          case MISCREG_CNTHV_TVAL_EL2:
2031          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
2032          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
2033          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
2034          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
2035            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
2036            break;
2037          case MISCREG_ICC_PMR_EL1 ... MISCREG_ICC_IGRPEN1_EL3:
2038          case MISCREG_ICH_AP0R0_EL2 ... MISCREG_ICH_LR15_EL2:
2039            getGICv3CPUInterface(tc).setMiscReg(misc_reg, newVal);
2040            return;
2041          case MISCREG_ZCR_EL3:
2042          case MISCREG_ZCR_EL2:
2043          case MISCREG_ZCR_EL1:
2044            tc->getDecoderPtr()->setSveLen(
2045                (getCurSveVecLenInBits(tc) >> 7) - 1);
2046            break;
2047        }
2048    }
2049    setMiscRegNoEffect(misc_reg, newVal);
2050}
2051
2052BaseISADevice &
2053ISA::getGenericTimer(ThreadContext *tc)
2054{
2055    // We only need to create an ISA interface the first time we try
2056    // to access the timer.
2057    if (timer)
2058        return *timer.get();
2059
2060    assert(system);
2061    GenericTimer *generic_timer(system->getGenericTimer());
2062    if (!generic_timer) {
2063        panic("Trying to get a generic timer from a system that hasn't "
2064              "been configured to use a generic timer.\n");
2065    }
2066
2067    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2068    timer->setThreadContext(tc);
2069
2070    return *timer.get();
2071}
2072
2073BaseISADevice &
2074ISA::getGICv3CPUInterface(ThreadContext *tc)
2075{
2076    panic_if(!gicv3CpuInterface, "GICV3 cpu interface is not registered!");
2077    return *gicv3CpuInterface.get();
2078}
2079
2080unsigned
2081ISA::getCurSveVecLenInBits(ThreadContext *tc) const
2082{
2083    if (!FullSystem) {
2084        return sveVL * 128;
2085    }
2086
2087    panic_if(!tc,
2088             "A ThreadContext is needed to determine the SVE vector length "
2089             "in full-system mode");
2090
2091    CPSR cpsr = miscRegs[MISCREG_CPSR];
2092    ExceptionLevel el = (ExceptionLevel) (uint8_t) cpsr.el;
2093
2094    unsigned len = 0;
2095
2096    if (el == EL1 || (el == EL0 && !ELIsInHost(tc, el))) {
2097        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL1]).len;
2098    }
2099
2100    if (el == EL2 || (el == EL0 && ELIsInHost(tc, el))) {
2101        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len;
2102    } else if (haveVirtualization && !inSecureState(tc) &&
2103               (el == EL0 || el == EL1)) {
2104        len = std::min(
2105            len,
2106            static_cast<unsigned>(
2107                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL2]).len));
2108    }
2109
2110    if (el == EL3) {
2111        len = static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len;
2112    } else if (haveSecurity) {
2113        len = std::min(
2114            len,
2115            static_cast<unsigned>(
2116                static_cast<ZCR>(miscRegs[MISCREG_ZCR_EL3]).len));
2117    }
2118
2119    len = std::min(len, sveVL - 1);
2120
2121    return (len + 1) * 128;
2122}
2123
2124void
2125ISA::zeroSveVecRegUpperPart(VecRegContainer &vc, unsigned eCount)
2126{
2127    auto vv = vc.as<uint64_t>();
2128    for (int i = 2; i < eCount; ++i) {
2129        vv[i] = 0;
2130    }
2131}
2132
2133}  // namespace ArmISA
2134
2135ArmISA::ISA *
2136ArmISAParams::create()
2137{
2138    return new ArmISA::ISA(this);
2139}
2140