isa.cc revision 12576
1/* 2 * Copyright (c) 2010-2016 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Gabe Black 38 * Ali Saidi 39 */ 40 41#include "arch/arm/isa.hh" 42#include "arch/arm/pmu.hh" 43#include "arch/arm/system.hh" 44#include "arch/arm/tlb.hh" 45#include "cpu/base.hh" 46#include "cpu/checker/cpu.hh" 47#include "debug/Arm.hh" 48#include "debug/MiscRegs.hh" 49#include "dev/arm/generic_timer.hh" 50#include "params/ArmISA.hh" 51#include "sim/faults.hh" 52#include "sim/stat_control.hh" 53#include "sim/system.hh" 54 55namespace ArmISA 56{ 57 58ISA::ISA(Params *p) 59 : SimObject(p), 60 system(NULL), 61 _decoderFlavour(p->decoderFlavour), 62 _vecRegRenameMode(p->vecRegRenameMode), 63 pmu(p->pmu) 64{ 65 miscRegs[MISCREG_SCTLR_RST] = 0; 66 67 // Hook up a dummy device if we haven't been configured with a 68 // real PMU. By using a dummy device, we don't need to check that 69 // the PMU exist every time we try to access a PMU register. 70 if (!pmu) 71 pmu = &dummyDevice; 72 73 // Give all ISA devices a pointer to this ISA 74 pmu->setISA(this); 75 76 system = dynamic_cast<ArmSystem *>(p->system); 77 78 // Cache system-level properties 79 if (FullSystem && system) { 80 highestELIs64 = system->highestELIs64(); 81 haveSecurity = system->haveSecurity(); 82 haveLPAE = system->haveLPAE(); 83 haveVirtualization = system->haveVirtualization(); 84 haveLargeAsid64 = system->haveLargeAsid64(); 85 physAddrRange64 = system->physAddrRange64(); 86 } else { 87 highestELIs64 = true; // ArmSystem::highestELIs64 does the same 88 haveSecurity = haveLPAE = haveVirtualization = false; 89 haveLargeAsid64 = false; 90 physAddrRange64 = 32; // dummy value 91 } 92 93 initializeMiscRegMetadata(); 94 preUnflattenMiscReg(); 95 96 clear(); 97} 98 99std::vector<struct ISA::MiscRegLUTEntry> ISA::lookUpMiscReg(NUM_MISCREGS); 100 101const ArmISAParams * 102ISA::params() const 103{ 104 return dynamic_cast<const Params *>(_params); 105} 106 107void 108ISA::clear() 109{ 110 const Params *p(params()); 111 112 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; 113 memset(miscRegs, 0, sizeof(miscRegs)); 114 115 // Initialize configurable default values 116 miscRegs[MISCREG_MIDR] = p->midr; 117 miscRegs[MISCREG_MIDR_EL1] = p->midr; 118 miscRegs[MISCREG_VPIDR] = p->midr; 119 120 if (FullSystem && system->highestELIs64()) { 121 // Initialize AArch64 state 122 clear64(p); 123 return; 124 } 125 126 // Initialize AArch32 state... 127 128 CPSR cpsr = 0; 129 cpsr.mode = MODE_USER; 130 miscRegs[MISCREG_CPSR] = cpsr; 131 updateRegMap(cpsr); 132 133 SCTLR sctlr = 0; 134 sctlr.te = (bool) sctlr_rst.te; 135 sctlr.nmfi = (bool) sctlr_rst.nmfi; 136 sctlr.v = (bool) sctlr_rst.v; 137 sctlr.u = 1; 138 sctlr.xp = 1; 139 sctlr.rao2 = 1; 140 sctlr.rao3 = 1; 141 sctlr.rao4 = 0xf; // SCTLR[6:3] 142 sctlr.uci = 1; 143 sctlr.dze = 1; 144 miscRegs[MISCREG_SCTLR_NS] = sctlr; 145 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; 146 miscRegs[MISCREG_HCPTR] = 0; 147 148 // Start with an event in the mailbox 149 miscRegs[MISCREG_SEV_MAILBOX] = 1; 150 151 // Separate Instruction and Data TLBs 152 miscRegs[MISCREG_TLBTR] = 1; 153 154 MVFR0 mvfr0 = 0; 155 mvfr0.advSimdRegisters = 2; 156 mvfr0.singlePrecision = 2; 157 mvfr0.doublePrecision = 2; 158 mvfr0.vfpExceptionTrapping = 0; 159 mvfr0.divide = 1; 160 mvfr0.squareRoot = 1; 161 mvfr0.shortVectors = 1; 162 mvfr0.roundingModes = 1; 163 miscRegs[MISCREG_MVFR0] = mvfr0; 164 165 MVFR1 mvfr1 = 0; 166 mvfr1.flushToZero = 1; 167 mvfr1.defaultNaN = 1; 168 mvfr1.advSimdLoadStore = 1; 169 mvfr1.advSimdInteger = 1; 170 mvfr1.advSimdSinglePrecision = 1; 171 mvfr1.advSimdHalfPrecision = 1; 172 mvfr1.vfpHalfPrecision = 1; 173 miscRegs[MISCREG_MVFR1] = mvfr1; 174 175 // Reset values of PRRR and NMRR are implementation dependent 176 177 // @todo: PRRR and NMRR in secure state? 178 miscRegs[MISCREG_PRRR_NS] = 179 (1 << 19) | // 19 180 (0 << 18) | // 18 181 (0 << 17) | // 17 182 (1 << 16) | // 16 183 (2 << 14) | // 15:14 184 (0 << 12) | // 13:12 185 (2 << 10) | // 11:10 186 (2 << 8) | // 9:8 187 (2 << 6) | // 7:6 188 (2 << 4) | // 5:4 189 (1 << 2) | // 3:2 190 0; // 1:0 191 miscRegs[MISCREG_NMRR_NS] = 192 (1 << 30) | // 31:30 193 (0 << 26) | // 27:26 194 (0 << 24) | // 25:24 195 (3 << 22) | // 23:22 196 (2 << 20) | // 21:20 197 (0 << 18) | // 19:18 198 (0 << 16) | // 17:16 199 (1 << 14) | // 15:14 200 (0 << 12) | // 13:12 201 (2 << 10) | // 11:10 202 (0 << 8) | // 9:8 203 (3 << 6) | // 7:6 204 (2 << 4) | // 5:4 205 (0 << 2) | // 3:2 206 0; // 1:0 207 208 miscRegs[MISCREG_CPACR] = 0; 209 210 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; 211 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; 212 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; 213 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; 214 215 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; 216 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; 217 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; 218 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; 219 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; 220 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; 221 222 miscRegs[MISCREG_FPSID] = p->fpsid; 223 224 if (haveLPAE) { 225 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; 226 ttbcr.eae = 0; 227 miscRegs[MISCREG_TTBCR_NS] = ttbcr; 228 // Enforce consistency with system-level settings 229 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; 230 } 231 232 if (haveSecurity) { 233 miscRegs[MISCREG_SCTLR_S] = sctlr; 234 miscRegs[MISCREG_SCR] = 0; 235 miscRegs[MISCREG_VBAR_S] = 0; 236 } else { 237 // we're always non-secure 238 miscRegs[MISCREG_SCR] = 1; 239 } 240 241 //XXX We need to initialize the rest of the state. 242} 243 244void 245ISA::clear64(const ArmISAParams *p) 246{ 247 CPSR cpsr = 0; 248 Addr rvbar = system->resetAddr64(); 249 switch (system->highestEL()) { 250 // Set initial EL to highest implemented EL using associated stack 251 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset 252 // value 253 case EL3: 254 cpsr.mode = MODE_EL3H; 255 miscRegs[MISCREG_RVBAR_EL3] = rvbar; 256 break; 257 case EL2: 258 cpsr.mode = MODE_EL2H; 259 miscRegs[MISCREG_RVBAR_EL2] = rvbar; 260 break; 261 case EL1: 262 cpsr.mode = MODE_EL1H; 263 miscRegs[MISCREG_RVBAR_EL1] = rvbar; 264 break; 265 default: 266 panic("Invalid highest implemented exception level"); 267 break; 268 } 269 270 // Initialize rest of CPSR 271 cpsr.daif = 0xf; // Mask all interrupts 272 cpsr.ss = 0; 273 cpsr.il = 0; 274 miscRegs[MISCREG_CPSR] = cpsr; 275 updateRegMap(cpsr); 276 277 // Initialize other control registers 278 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; 279 if (haveSecurity) { 280 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830; 281 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields 282 } else if (haveVirtualization) { 283 // also MISCREG_SCTLR_EL2 (by mapping) 284 miscRegs[MISCREG_HSCTLR] = 0x30c50830; 285 } else { 286 // also MISCREG_SCTLR_EL1 (by mapping) 287 miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init 288 // Always non-secure 289 miscRegs[MISCREG_SCR_EL3] = 1; 290 } 291 292 // Initialize configurable id registers 293 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; 294 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; 295 miscRegs[MISCREG_ID_AA64DFR0_EL1] = 296 (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) | 297 (p->pmu ? 0x0000000000000100ULL : 0); // Enable PMUv3 298 299 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; 300 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; 301 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; 302 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; 303 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; 304 305 miscRegs[MISCREG_ID_DFR0_EL1] = 306 (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3 307 308 miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1]; 309 310 // Enforce consistency with system-level settings... 311 312 // EL3 313 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 314 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, 315 haveSecurity ? 0x2 : 0x0); 316 // EL2 317 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 318 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, 319 haveVirtualization ? 0x2 : 0x0); 320 // Large ASID support 321 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 322 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, 323 haveLargeAsid64 ? 0x2 : 0x0); 324 // Physical address size 325 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 326 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, 327 encodePhysAddrRange64(physAddrRange64)); 328} 329 330MiscReg 331ISA::readMiscRegNoEffect(int misc_reg) const 332{ 333 assert(misc_reg < NumMiscRegs); 334 335 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 336 const auto &map = getMiscIndices(misc_reg); 337 int lower = map.first, upper = map.second; 338 // NB!: apply architectural masks according to desired register, 339 // despite possibly getting value from different (mapped) register. 340 auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32)) 341 |(miscRegs[upper] << 32)); 342 if (val & reg.res0()) { 343 DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n", 344 miscRegName[misc_reg], val & reg.res0()); 345 } 346 if ((val & reg.res1()) != reg.res1()) { 347 DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n", 348 miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1()); 349 } 350 return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao 351} 352 353 354MiscReg 355ISA::readMiscReg(int misc_reg, ThreadContext *tc) 356{ 357 CPSR cpsr = 0; 358 PCState pc = 0; 359 SCR scr = 0; 360 361 if (misc_reg == MISCREG_CPSR) { 362 cpsr = miscRegs[misc_reg]; 363 pc = tc->pcState(); 364 cpsr.j = pc.jazelle() ? 1 : 0; 365 cpsr.t = pc.thumb() ? 1 : 0; 366 return cpsr; 367 } 368 369#ifndef NDEBUG 370 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 371 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 372 warn("Unimplemented system register %s read.\n", 373 miscRegName[misc_reg]); 374 else 375 panic("Unimplemented system register %s read.\n", 376 miscRegName[misc_reg]); 377 } 378#endif 379 380 switch (unflattenMiscReg(misc_reg)) { 381 case MISCREG_HCR: 382 { 383 if (!haveVirtualization) 384 return 0; 385 else 386 return readMiscRegNoEffect(MISCREG_HCR); 387 } 388 case MISCREG_CPACR: 389 { 390 const uint32_t ones = (uint32_t)(-1); 391 CPACR cpacrMask = 0; 392 // Only cp10, cp11, and ase are implemented, nothing else should 393 // be readable? (straight copy from the write code) 394 cpacrMask.cp10 = ones; 395 cpacrMask.cp11 = ones; 396 cpacrMask.asedis = ones; 397 398 // Security Extensions may limit the readability of CPACR 399 if (haveSecurity) { 400 scr = readMiscRegNoEffect(MISCREG_SCR); 401 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 402 if (scr.ns && (cpsr.mode != MODE_MON)) { 403 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 404 // NB: Skipping the full loop, here 405 if (!nsacr.cp10) cpacrMask.cp10 = 0; 406 if (!nsacr.cp11) cpacrMask.cp11 = 0; 407 } 408 } 409 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR); 410 val &= cpacrMask; 411 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", 412 miscRegName[misc_reg], val); 413 return val; 414 } 415 case MISCREG_MPIDR: 416 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 417 scr = readMiscRegNoEffect(MISCREG_SCR); 418 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 419 return getMPIDR(system, tc); 420 } else { 421 return readMiscReg(MISCREG_VMPIDR, tc); 422 } 423 break; 424 case MISCREG_MPIDR_EL1: 425 // @todo in the absence of v8 virtualization support just return MPIDR_EL1 426 return getMPIDR(system, tc) & 0xffffffff; 427 case MISCREG_VMPIDR: 428 // top bit defined as RES1 429 return readMiscRegNoEffect(misc_reg) | 0x80000000; 430 case MISCREG_ID_AFR0: // not implemented, so alias MIDR 431 case MISCREG_REVIDR: // not implemented, so alias MIDR 432 case MISCREG_MIDR: 433 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 434 scr = readMiscRegNoEffect(MISCREG_SCR); 435 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 436 return readMiscRegNoEffect(misc_reg); 437 } else { 438 return readMiscRegNoEffect(MISCREG_VPIDR); 439 } 440 break; 441 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI 442 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI 443 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI 444 case MISCREG_AIDR: // AUX ID set to 0 445 case MISCREG_TCMTR: // No TCM's 446 return 0; 447 448 case MISCREG_CLIDR: 449 warn_once("The clidr register always reports 0 caches.\n"); 450 warn_once("clidr LoUIS field of 0b001 to match current " 451 "ARM implementations.\n"); 452 return 0x00200000; 453 case MISCREG_CCSIDR: 454 warn_once("The ccsidr register isn't implemented and " 455 "always reads as 0.\n"); 456 break; 457 case MISCREG_CTR: // AArch32, ARMv7, top bit set 458 case MISCREG_CTR_EL0: // AArch64 459 { 460 //all caches have the same line size in gem5 461 //4 byte words in ARM 462 unsigned lineSizeWords = 463 tc->getSystemPtr()->cacheLineSize() / 4; 464 unsigned log2LineSizeWords = 0; 465 466 while (lineSizeWords >>= 1) { 467 ++log2LineSizeWords; 468 } 469 470 CTR ctr = 0; 471 //log2 of minimun i-cache line size (words) 472 ctr.iCacheLineSize = log2LineSizeWords; 473 //b11 - gem5 uses pipt 474 ctr.l1IndexPolicy = 0x3; 475 //log2 of minimum d-cache line size (words) 476 ctr.dCacheLineSize = log2LineSizeWords; 477 //log2 of max reservation size (words) 478 ctr.erg = log2LineSizeWords; 479 //log2 of max writeback size (words) 480 ctr.cwg = log2LineSizeWords; 481 //b100 - gem5 format is ARMv7 482 ctr.format = 0x4; 483 484 return ctr; 485 } 486 case MISCREG_ACTLR: 487 warn("Not doing anything for miscreg ACTLR\n"); 488 break; 489 490 case MISCREG_PMXEVTYPER_PMCCFILTR: 491 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 492 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 493 case MISCREG_PMCR ... MISCREG_PMOVSSET: 494 return pmu->readMiscReg(misc_reg); 495 496 case MISCREG_CPSR_Q: 497 panic("shouldn't be reading this register seperately\n"); 498 case MISCREG_FPSCR_QC: 499 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; 500 case MISCREG_FPSCR_EXC: 501 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; 502 case MISCREG_FPSR: 503 { 504 const uint32_t ones = (uint32_t)(-1); 505 FPSCR fpscrMask = 0; 506 fpscrMask.ioc = ones; 507 fpscrMask.dzc = ones; 508 fpscrMask.ofc = ones; 509 fpscrMask.ufc = ones; 510 fpscrMask.ixc = ones; 511 fpscrMask.idc = ones; 512 fpscrMask.qc = ones; 513 fpscrMask.v = ones; 514 fpscrMask.c = ones; 515 fpscrMask.z = ones; 516 fpscrMask.n = ones; 517 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 518 } 519 case MISCREG_FPCR: 520 { 521 const uint32_t ones = (uint32_t)(-1); 522 FPSCR fpscrMask = 0; 523 fpscrMask.ioe = ones; 524 fpscrMask.dze = ones; 525 fpscrMask.ofe = ones; 526 fpscrMask.ufe = ones; 527 fpscrMask.ixe = ones; 528 fpscrMask.ide = ones; 529 fpscrMask.len = ones; 530 fpscrMask.stride = ones; 531 fpscrMask.rMode = ones; 532 fpscrMask.fz = ones; 533 fpscrMask.dn = ones; 534 fpscrMask.ahp = ones; 535 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 536 } 537 case MISCREG_NZCV: 538 { 539 CPSR cpsr = 0; 540 cpsr.nz = tc->readCCReg(CCREG_NZ); 541 cpsr.c = tc->readCCReg(CCREG_C); 542 cpsr.v = tc->readCCReg(CCREG_V); 543 return cpsr; 544 } 545 case MISCREG_DAIF: 546 { 547 CPSR cpsr = 0; 548 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; 549 return cpsr; 550 } 551 case MISCREG_SP_EL0: 552 { 553 return tc->readIntReg(INTREG_SP0); 554 } 555 case MISCREG_SP_EL1: 556 { 557 return tc->readIntReg(INTREG_SP1); 558 } 559 case MISCREG_SP_EL2: 560 { 561 return tc->readIntReg(INTREG_SP2); 562 } 563 case MISCREG_SPSEL: 564 { 565 return miscRegs[MISCREG_CPSR] & 0x1; 566 } 567 case MISCREG_CURRENTEL: 568 { 569 return miscRegs[MISCREG_CPSR] & 0xc; 570 } 571 case MISCREG_L2CTLR: 572 { 573 // mostly unimplemented, just set NumCPUs field from sim and return 574 L2CTLR l2ctlr = 0; 575 // b00:1CPU to b11:4CPUs 576 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; 577 return l2ctlr; 578 } 579 case MISCREG_DBGDIDR: 580 /* For now just implement the version number. 581 * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5) 582 */ 583 return 0x5 << 16; 584 case MISCREG_DBGDSCRint: 585 return 0; 586 case MISCREG_ISR: 587 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 588 readMiscRegNoEffect(MISCREG_HCR), 589 readMiscRegNoEffect(MISCREG_CPSR), 590 readMiscRegNoEffect(MISCREG_SCR)); 591 case MISCREG_ISR_EL1: 592 return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR( 593 readMiscRegNoEffect(MISCREG_HCR_EL2), 594 readMiscRegNoEffect(MISCREG_CPSR), 595 readMiscRegNoEffect(MISCREG_SCR_EL3)); 596 case MISCREG_DCZID_EL0: 597 return 0x04; // DC ZVA clear 64-byte chunks 598 case MISCREG_HCPTR: 599 { 600 MiscReg val = readMiscRegNoEffect(misc_reg); 601 // The trap bit associated with CP14 is defined as RAZ 602 val &= ~(1 << 14); 603 // If a CP bit in NSACR is 0 then the corresponding bit in 604 // HCPTR is RAO/WI 605 bool secure_lookup = haveSecurity && 606 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 607 readMiscRegNoEffect(MISCREG_CPSR)); 608 if (!secure_lookup) { 609 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR); 610 val |= (mask ^ 0x7FFF) & 0xBFFF; 611 } 612 // Set the bits for unimplemented coprocessors to RAO/WI 613 val |= 0x33FF; 614 return (val); 615 } 616 case MISCREG_HDFAR: // alias for secure DFAR 617 return readMiscRegNoEffect(MISCREG_DFAR_S); 618 case MISCREG_HIFAR: // alias for secure IFAR 619 return readMiscRegNoEffect(MISCREG_IFAR_S); 620 case MISCREG_HVBAR: // bottom bits reserved 621 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0; 622 case MISCREG_SCTLR: 623 return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; 624 case MISCREG_SCTLR_EL1: 625 return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800; 626 case MISCREG_SCTLR_EL2: 627 case MISCREG_SCTLR_EL3: 628 case MISCREG_HSCTLR: 629 return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; 630 631 case MISCREG_ID_PFR0: 632 // !ThumbEE | !Jazelle | Thumb | ARM 633 return 0x00000031; 634 case MISCREG_ID_PFR1: 635 { // Timer | Virti | !M Profile | TrustZone | ARMv4 636 bool haveTimer = (system->getGenericTimer() != NULL); 637 return 0x00000001 638 | (haveSecurity ? 0x00000010 : 0x0) 639 | (haveVirtualization ? 0x00001000 : 0x0) 640 | (haveTimer ? 0x00010000 : 0x0); 641 } 642 case MISCREG_ID_AA64PFR0_EL1: 643 return 0x0000000000000002 // AArch{64,32} supported at EL0 644 | 0x0000000000000020 // EL1 645 | (haveVirtualization ? 0x0000000000000200 : 0) // EL2 646 | (haveSecurity ? 0x0000000000002000 : 0); // EL3 647 case MISCREG_ID_AA64PFR1_EL1: 648 return 0; // bits [63:0] RES0 (reserved for future use) 649 650 // Generic Timer registers 651 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 652 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 653 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 654 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 655 return getGenericTimer(tc).readMiscReg(misc_reg); 656 657 default: 658 break; 659 660 } 661 return readMiscRegNoEffect(misc_reg); 662} 663 664void 665ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val) 666{ 667 assert(misc_reg < NumMiscRegs); 668 669 const auto ® = lookUpMiscReg[misc_reg]; // bit masks 670 const auto &map = getMiscIndices(misc_reg); 671 int lower = map.first, upper = map.second; 672 673 auto v = (val & ~reg.wi()) | reg.rao(); 674 if (upper > 0) { 675 miscRegs[lower] = bits(v, 31, 0); 676 miscRegs[upper] = bits(v, 63, 32); 677 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", 678 misc_reg, lower, upper, v); 679 } else { 680 miscRegs[lower] = v; 681 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", 682 misc_reg, lower, v); 683 } 684} 685 686namespace { 687 688template<typename T> 689TLB * 690getITBPtr(T *tc) 691{ 692 auto tlb = dynamic_cast<TLB *>(tc->getITBPtr()); 693 assert(tlb); 694 return tlb; 695} 696 697template<typename T> 698TLB * 699getDTBPtr(T *tc) 700{ 701 auto tlb = dynamic_cast<TLB *>(tc->getDTBPtr()); 702 assert(tlb); 703 return tlb; 704} 705 706} // anonymous namespace 707 708void 709ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc) 710{ 711 712 MiscReg newVal = val; 713 int x; 714 bool secure_lookup; 715 bool hyp; 716 System *sys; 717 ThreadContext *oc; 718 uint8_t target_el; 719 uint16_t asid; 720 SCR scr; 721 722 if (misc_reg == MISCREG_CPSR) { 723 updateRegMap(val); 724 725 726 CPSR old_cpsr = miscRegs[MISCREG_CPSR]; 727 int old_mode = old_cpsr.mode; 728 CPSR cpsr = val; 729 if (old_mode != cpsr.mode || cpsr.il != old_cpsr.il) { 730 getITBPtr(tc)->invalidateMiscReg(); 731 getDTBPtr(tc)->invalidateMiscReg(); 732 } 733 734 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", 735 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); 736 PCState pc = tc->pcState(); 737 pc.nextThumb(cpsr.t); 738 pc.nextJazelle(cpsr.j); 739 740 // Follow slightly different semantics if a CheckerCPU object 741 // is connected 742 CheckerCPU *checker = tc->getCheckerCpuPtr(); 743 if (checker) { 744 tc->pcStateNoRecord(pc); 745 } else { 746 tc->pcState(pc); 747 } 748 } else { 749#ifndef NDEBUG 750 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 751 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 752 warn("Unimplemented system register %s write with %#x.\n", 753 miscRegName[misc_reg], val); 754 else 755 panic("Unimplemented system register %s write with %#x.\n", 756 miscRegName[misc_reg], val); 757 } 758#endif 759 switch (unflattenMiscReg(misc_reg)) { 760 case MISCREG_CPACR: 761 { 762 763 const uint32_t ones = (uint32_t)(-1); 764 CPACR cpacrMask = 0; 765 // Only cp10, cp11, and ase are implemented, nothing else should 766 // be writable 767 cpacrMask.cp10 = ones; 768 cpacrMask.cp11 = ones; 769 cpacrMask.asedis = ones; 770 771 // Security Extensions may limit the writability of CPACR 772 if (haveSecurity) { 773 scr = readMiscRegNoEffect(MISCREG_SCR); 774 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 775 if (scr.ns && (cpsr.mode != MODE_MON)) { 776 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 777 // NB: Skipping the full loop, here 778 if (!nsacr.cp10) cpacrMask.cp10 = 0; 779 if (!nsacr.cp11) cpacrMask.cp11 = 0; 780 } 781 } 782 783 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR); 784 newVal &= cpacrMask; 785 newVal |= old_val & ~cpacrMask; 786 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 787 miscRegName[misc_reg], newVal); 788 } 789 break; 790 case MISCREG_CPACR_EL1: 791 { 792 const uint32_t ones = (uint32_t)(-1); 793 CPACR cpacrMask = 0; 794 cpacrMask.tta = ones; 795 cpacrMask.fpen = ones; 796 newVal &= cpacrMask; 797 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 798 miscRegName[misc_reg], newVal); 799 } 800 break; 801 case MISCREG_CPTR_EL2: 802 { 803 const uint32_t ones = (uint32_t)(-1); 804 CPTR cptrMask = 0; 805 cptrMask.tcpac = ones; 806 cptrMask.tta = ones; 807 cptrMask.tfp = ones; 808 newVal &= cptrMask; 809 cptrMask = 0; 810 cptrMask.res1_13_12_el2 = ones; 811 cptrMask.res1_9_0_el2 = ones; 812 newVal |= cptrMask; 813 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 814 miscRegName[misc_reg], newVal); 815 } 816 break; 817 case MISCREG_CPTR_EL3: 818 { 819 const uint32_t ones = (uint32_t)(-1); 820 CPTR cptrMask = 0; 821 cptrMask.tcpac = ones; 822 cptrMask.tta = ones; 823 cptrMask.tfp = ones; 824 newVal &= cptrMask; 825 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 826 miscRegName[misc_reg], newVal); 827 } 828 break; 829 case MISCREG_CSSELR: 830 warn_once("The csselr register isn't implemented.\n"); 831 return; 832 833 case MISCREG_DC_ZVA_Xt: 834 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); 835 return; 836 837 case MISCREG_FPSCR: 838 { 839 const uint32_t ones = (uint32_t)(-1); 840 FPSCR fpscrMask = 0; 841 fpscrMask.ioc = ones; 842 fpscrMask.dzc = ones; 843 fpscrMask.ofc = ones; 844 fpscrMask.ufc = ones; 845 fpscrMask.ixc = ones; 846 fpscrMask.idc = ones; 847 fpscrMask.ioe = ones; 848 fpscrMask.dze = ones; 849 fpscrMask.ofe = ones; 850 fpscrMask.ufe = ones; 851 fpscrMask.ixe = ones; 852 fpscrMask.ide = ones; 853 fpscrMask.len = ones; 854 fpscrMask.stride = ones; 855 fpscrMask.rMode = ones; 856 fpscrMask.fz = ones; 857 fpscrMask.dn = ones; 858 fpscrMask.ahp = ones; 859 fpscrMask.qc = ones; 860 fpscrMask.v = ones; 861 fpscrMask.c = ones; 862 fpscrMask.z = ones; 863 fpscrMask.n = ones; 864 newVal = (newVal & (uint32_t)fpscrMask) | 865 (readMiscRegNoEffect(MISCREG_FPSCR) & 866 ~(uint32_t)fpscrMask); 867 tc->getDecoderPtr()->setContext(newVal); 868 } 869 break; 870 case MISCREG_FPSR: 871 { 872 const uint32_t ones = (uint32_t)(-1); 873 FPSCR fpscrMask = 0; 874 fpscrMask.ioc = ones; 875 fpscrMask.dzc = ones; 876 fpscrMask.ofc = ones; 877 fpscrMask.ufc = ones; 878 fpscrMask.ixc = ones; 879 fpscrMask.idc = ones; 880 fpscrMask.qc = ones; 881 fpscrMask.v = ones; 882 fpscrMask.c = ones; 883 fpscrMask.z = ones; 884 fpscrMask.n = ones; 885 newVal = (newVal & (uint32_t)fpscrMask) | 886 (readMiscRegNoEffect(MISCREG_FPSCR) & 887 ~(uint32_t)fpscrMask); 888 misc_reg = MISCREG_FPSCR; 889 } 890 break; 891 case MISCREG_FPCR: 892 { 893 const uint32_t ones = (uint32_t)(-1); 894 FPSCR fpscrMask = 0; 895 fpscrMask.ioe = ones; 896 fpscrMask.dze = ones; 897 fpscrMask.ofe = ones; 898 fpscrMask.ufe = ones; 899 fpscrMask.ixe = ones; 900 fpscrMask.ide = ones; 901 fpscrMask.len = ones; 902 fpscrMask.stride = ones; 903 fpscrMask.rMode = ones; 904 fpscrMask.fz = ones; 905 fpscrMask.dn = ones; 906 fpscrMask.ahp = ones; 907 newVal = (newVal & (uint32_t)fpscrMask) | 908 (readMiscRegNoEffect(MISCREG_FPSCR) & 909 ~(uint32_t)fpscrMask); 910 misc_reg = MISCREG_FPSCR; 911 } 912 break; 913 case MISCREG_CPSR_Q: 914 { 915 assert(!(newVal & ~CpsrMaskQ)); 916 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; 917 misc_reg = MISCREG_CPSR; 918 } 919 break; 920 case MISCREG_FPSCR_QC: 921 { 922 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 923 (newVal & FpscrQcMask); 924 misc_reg = MISCREG_FPSCR; 925 } 926 break; 927 case MISCREG_FPSCR_EXC: 928 { 929 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 930 (newVal & FpscrExcMask); 931 misc_reg = MISCREG_FPSCR; 932 } 933 break; 934 case MISCREG_FPEXC: 935 { 936 // vfpv3 architecture, section B.6.1 of DDI04068 937 // bit 29 - valid only if fpexc[31] is 0 938 const uint32_t fpexcMask = 0x60000000; 939 newVal = (newVal & fpexcMask) | 940 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); 941 } 942 break; 943 case MISCREG_HCR: 944 { 945 if (!haveVirtualization) 946 return; 947 } 948 break; 949 case MISCREG_IFSR: 950 { 951 // ARM ARM (ARM DDI 0406C.b) B4.1.96 952 const uint32_t ifsrMask = 953 mask(31, 13) | mask(11, 11) | mask(8, 6); 954 newVal = newVal & ~ifsrMask; 955 } 956 break; 957 case MISCREG_DFSR: 958 { 959 // ARM ARM (ARM DDI 0406C.b) B4.1.52 960 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); 961 newVal = newVal & ~dfsrMask; 962 } 963 break; 964 case MISCREG_AMAIR0: 965 case MISCREG_AMAIR1: 966 { 967 // ARM ARM (ARM DDI 0406C.b) B4.1.5 968 // Valid only with LPAE 969 if (!haveLPAE) 970 return; 971 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); 972 } 973 break; 974 case MISCREG_SCR: 975 getITBPtr(tc)->invalidateMiscReg(); 976 getDTBPtr(tc)->invalidateMiscReg(); 977 break; 978 case MISCREG_SCTLR: 979 { 980 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); 981 scr = readMiscRegNoEffect(MISCREG_SCR); 982 MiscRegIndex sctlr_idx = (haveSecurity && !scr.ns) 983 ? MISCREG_SCTLR_S : MISCREG_SCTLR_NS; 984 SCTLR sctlr = miscRegs[sctlr_idx]; 985 SCTLR new_sctlr = newVal; 986 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; 987 miscRegs[sctlr_idx] = (MiscReg)new_sctlr; 988 getITBPtr(tc)->invalidateMiscReg(); 989 getDTBPtr(tc)->invalidateMiscReg(); 990 } 991 case MISCREG_MIDR: 992 case MISCREG_ID_PFR0: 993 case MISCREG_ID_PFR1: 994 case MISCREG_ID_DFR0: 995 case MISCREG_ID_MMFR0: 996 case MISCREG_ID_MMFR1: 997 case MISCREG_ID_MMFR2: 998 case MISCREG_ID_MMFR3: 999 case MISCREG_ID_ISAR0: 1000 case MISCREG_ID_ISAR1: 1001 case MISCREG_ID_ISAR2: 1002 case MISCREG_ID_ISAR3: 1003 case MISCREG_ID_ISAR4: 1004 case MISCREG_ID_ISAR5: 1005 1006 case MISCREG_MPIDR: 1007 case MISCREG_FPSID: 1008 case MISCREG_TLBTR: 1009 case MISCREG_MVFR0: 1010 case MISCREG_MVFR1: 1011 1012 case MISCREG_ID_AA64AFR0_EL1: 1013 case MISCREG_ID_AA64AFR1_EL1: 1014 case MISCREG_ID_AA64DFR0_EL1: 1015 case MISCREG_ID_AA64DFR1_EL1: 1016 case MISCREG_ID_AA64ISAR0_EL1: 1017 case MISCREG_ID_AA64ISAR1_EL1: 1018 case MISCREG_ID_AA64MMFR0_EL1: 1019 case MISCREG_ID_AA64MMFR1_EL1: 1020 case MISCREG_ID_AA64PFR0_EL1: 1021 case MISCREG_ID_AA64PFR1_EL1: 1022 // ID registers are constants. 1023 return; 1024 1025 // TLBI all entries, EL0&1 inner sharable (ignored) 1026 case MISCREG_TLBIALLIS: 1027 case MISCREG_TLBIALL: // TLBI all entries, EL0&1, 1028 assert32(tc); 1029 target_el = 1; // el 0 and 1 are handled together 1030 scr = readMiscReg(MISCREG_SCR, tc); 1031 secure_lookup = haveSecurity && !scr.ns; 1032 sys = tc->getSystemPtr(); 1033 for (x = 0; x < sys->numContexts(); x++) { 1034 oc = sys->getThreadContext(x); 1035 getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el); 1036 getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el); 1037 1038 // If CheckerCPU is connected, need to notify it of a flush 1039 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1040 if (checker) { 1041 getITBPtr(checker)->flushAllSecurity(secure_lookup, 1042 target_el); 1043 getDTBPtr(checker)->flushAllSecurity(secure_lookup, 1044 target_el); 1045 } 1046 } 1047 return; 1048 // TLBI all entries, EL0&1, instruction side 1049 case MISCREG_ITLBIALL: 1050 assert32(tc); 1051 target_el = 1; // el 0 and 1 are handled together 1052 scr = readMiscReg(MISCREG_SCR, tc); 1053 secure_lookup = haveSecurity && !scr.ns; 1054 getITBPtr(tc)->flushAllSecurity(secure_lookup, target_el); 1055 return; 1056 // TLBI all entries, EL0&1, data side 1057 case MISCREG_DTLBIALL: 1058 assert32(tc); 1059 target_el = 1; // el 0 and 1 are handled together 1060 scr = readMiscReg(MISCREG_SCR, tc); 1061 secure_lookup = haveSecurity && !scr.ns; 1062 getDTBPtr(tc)->flushAllSecurity(secure_lookup, target_el); 1063 return; 1064 // TLBI based on VA, EL0&1 inner sharable (ignored) 1065 case MISCREG_TLBIMVAL: 1066 case MISCREG_TLBIMVALIS: 1067 // mcr tlbimval(is) is invalidating all matching entries 1068 // regardless of the level of lookup, since in gem5 we cache 1069 // in the tlb the last level of lookup only. 1070 case MISCREG_TLBIMVA: 1071 case MISCREG_TLBIMVAIS: 1072 assert32(tc); 1073 target_el = 1; // el 0 and 1 are handled together 1074 scr = readMiscReg(MISCREG_SCR, tc); 1075 secure_lookup = haveSecurity && !scr.ns; 1076 sys = tc->getSystemPtr(); 1077 for (x = 0; x < sys->numContexts(); x++) { 1078 oc = sys->getThreadContext(x); 1079 getITBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12), 1080 bits(newVal, 7,0), 1081 secure_lookup, target_el); 1082 getDTBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12), 1083 bits(newVal, 7,0), 1084 secure_lookup, target_el); 1085 1086 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1087 if (checker) { 1088 getITBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12), 1089 bits(newVal, 7,0), secure_lookup, target_el); 1090 getDTBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12), 1091 bits(newVal, 7,0), secure_lookup, target_el); 1092 } 1093 } 1094 return; 1095 // TLBI by ASID, EL0&1, inner sharable 1096 case MISCREG_TLBIASIDIS: 1097 case MISCREG_TLBIASID: 1098 assert32(tc); 1099 target_el = 1; // el 0 and 1 are handled together 1100 scr = readMiscReg(MISCREG_SCR, tc); 1101 secure_lookup = haveSecurity && !scr.ns; 1102 sys = tc->getSystemPtr(); 1103 for (x = 0; x < sys->numContexts(); x++) { 1104 oc = sys->getThreadContext(x); 1105 getITBPtr(oc)->flushAsid(bits(newVal, 7,0), 1106 secure_lookup, target_el); 1107 getDTBPtr(oc)->flushAsid(bits(newVal, 7,0), 1108 secure_lookup, target_el); 1109 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1110 if (checker) { 1111 getITBPtr(checker)->flushAsid(bits(newVal, 7,0), 1112 secure_lookup, target_el); 1113 getDTBPtr(checker)->flushAsid(bits(newVal, 7,0), 1114 secure_lookup, target_el); 1115 } 1116 } 1117 return; 1118 // TLBI by address, EL0&1, inner sharable (ignored) 1119 case MISCREG_TLBIMVAAL: 1120 case MISCREG_TLBIMVAALIS: 1121 // mcr tlbimvaal(is) is invalidating all matching entries 1122 // regardless of the level of lookup, since in gem5 we cache 1123 // in the tlb the last level of lookup only. 1124 case MISCREG_TLBIMVAA: 1125 case MISCREG_TLBIMVAAIS: 1126 assert32(tc); 1127 target_el = 1; // el 0 and 1 are handled together 1128 scr = readMiscReg(MISCREG_SCR, tc); 1129 secure_lookup = haveSecurity && !scr.ns; 1130 hyp = 0; 1131 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1132 return; 1133 // TLBI by address, EL2, hypervisor mode 1134 case MISCREG_TLBIMVALH: 1135 case MISCREG_TLBIMVALHIS: 1136 // mcr tlbimvalh(is) is invalidating all matching entries 1137 // regardless of the level of lookup, since in gem5 we cache 1138 // in the tlb the last level of lookup only. 1139 case MISCREG_TLBIMVAH: 1140 case MISCREG_TLBIMVAHIS: 1141 assert32(tc); 1142 target_el = 1; // aarch32, use hyp bit 1143 scr = readMiscReg(MISCREG_SCR, tc); 1144 secure_lookup = haveSecurity && !scr.ns; 1145 hyp = 1; 1146 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1147 return; 1148 // TLBI by address and asid, EL0&1, instruction side only 1149 case MISCREG_ITLBIMVA: 1150 assert32(tc); 1151 target_el = 1; // el 0 and 1 are handled together 1152 scr = readMiscReg(MISCREG_SCR, tc); 1153 secure_lookup = haveSecurity && !scr.ns; 1154 getITBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12), 1155 bits(newVal, 7,0), secure_lookup, target_el); 1156 return; 1157 // TLBI by address and asid, EL0&1, data side only 1158 case MISCREG_DTLBIMVA: 1159 assert32(tc); 1160 target_el = 1; // el 0 and 1 are handled together 1161 scr = readMiscReg(MISCREG_SCR, tc); 1162 secure_lookup = haveSecurity && !scr.ns; 1163 getDTBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12), 1164 bits(newVal, 7,0), secure_lookup, target_el); 1165 return; 1166 // TLBI by ASID, EL0&1, instrution side only 1167 case MISCREG_ITLBIASID: 1168 assert32(tc); 1169 target_el = 1; // el 0 and 1 are handled together 1170 scr = readMiscReg(MISCREG_SCR, tc); 1171 secure_lookup = haveSecurity && !scr.ns; 1172 getITBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup, 1173 target_el); 1174 return; 1175 // TLBI by ASID EL0&1 data size only 1176 case MISCREG_DTLBIASID: 1177 assert32(tc); 1178 target_el = 1; // el 0 and 1 are handled together 1179 scr = readMiscReg(MISCREG_SCR, tc); 1180 secure_lookup = haveSecurity && !scr.ns; 1181 getDTBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup, 1182 target_el); 1183 return; 1184 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB 1185 case MISCREG_TLBIALLNSNH: 1186 case MISCREG_TLBIALLNSNHIS: 1187 assert32(tc); 1188 target_el = 1; // el 0 and 1 are handled together 1189 hyp = 0; 1190 tlbiALLN(tc, hyp, target_el); 1191 return; 1192 // TLBI all entries, EL2, hyp, 1193 case MISCREG_TLBIALLH: 1194 case MISCREG_TLBIALLHIS: 1195 assert32(tc); 1196 target_el = 1; // aarch32, use hyp bit 1197 hyp = 1; 1198 tlbiALLN(tc, hyp, target_el); 1199 return; 1200 // AArch64 TLBI: invalidate all entries EL3 1201 case MISCREG_TLBI_ALLE3IS: 1202 case MISCREG_TLBI_ALLE3: 1203 assert64(tc); 1204 target_el = 3; 1205 secure_lookup = true; 1206 tlbiALL(tc, secure_lookup, target_el); 1207 return; 1208 // @todo: uncomment this to enable Virtualization 1209 // case MISCREG_TLBI_ALLE2IS: 1210 // case MISCREG_TLBI_ALLE2: 1211 // TLBI all entries, EL0&1 1212 case MISCREG_TLBI_ALLE1IS: 1213 case MISCREG_TLBI_ALLE1: 1214 // AArch64 TLBI: invalidate all entries, stage 1, current VMID 1215 case MISCREG_TLBI_VMALLE1IS: 1216 case MISCREG_TLBI_VMALLE1: 1217 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID 1218 case MISCREG_TLBI_VMALLS12E1IS: 1219 case MISCREG_TLBI_VMALLS12E1: 1220 // @todo: handle VMID and stage 2 to enable Virtualization 1221 assert64(tc); 1222 target_el = 1; // el 0 and 1 are handled together 1223 scr = readMiscReg(MISCREG_SCR, tc); 1224 secure_lookup = haveSecurity && !scr.ns; 1225 tlbiALL(tc, secure_lookup, target_el); 1226 return; 1227 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID 1228 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries 1229 // from the last level of translation table walks 1230 // @todo: handle VMID to enable Virtualization 1231 // TLBI all entries, EL0&1 1232 case MISCREG_TLBI_VAE3IS_Xt: 1233 case MISCREG_TLBI_VAE3_Xt: 1234 // TLBI by VA, EL3 regime stage 1, last level walk 1235 case MISCREG_TLBI_VALE3IS_Xt: 1236 case MISCREG_TLBI_VALE3_Xt: 1237 assert64(tc); 1238 target_el = 3; 1239 asid = 0xbeef; // does not matter, tlbi is global 1240 secure_lookup = true; 1241 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1242 return; 1243 // TLBI by VA, EL2 1244 case MISCREG_TLBI_VAE2IS_Xt: 1245 case MISCREG_TLBI_VAE2_Xt: 1246 // TLBI by VA, EL2, stage1 last level walk 1247 case MISCREG_TLBI_VALE2IS_Xt: 1248 case MISCREG_TLBI_VALE2_Xt: 1249 assert64(tc); 1250 target_el = 2; 1251 asid = 0xbeef; // does not matter, tlbi is global 1252 scr = readMiscReg(MISCREG_SCR, tc); 1253 secure_lookup = haveSecurity && !scr.ns; 1254 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1255 return; 1256 // TLBI by VA EL1 & 0, stage1, ASID, current VMID 1257 case MISCREG_TLBI_VAE1IS_Xt: 1258 case MISCREG_TLBI_VAE1_Xt: 1259 case MISCREG_TLBI_VALE1IS_Xt: 1260 case MISCREG_TLBI_VALE1_Xt: 1261 assert64(tc); 1262 asid = bits(newVal, 63, 48); 1263 target_el = 1; // el 0 and 1 are handled together 1264 scr = readMiscReg(MISCREG_SCR, tc); 1265 secure_lookup = haveSecurity && !scr.ns; 1266 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1267 return; 1268 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID 1269 // @todo: handle VMID to enable Virtualization 1270 case MISCREG_TLBI_ASIDE1IS_Xt: 1271 case MISCREG_TLBI_ASIDE1_Xt: 1272 assert64(tc); 1273 target_el = 1; // el 0 and 1 are handled together 1274 scr = readMiscReg(MISCREG_SCR, tc); 1275 secure_lookup = haveSecurity && !scr.ns; 1276 sys = tc->getSystemPtr(); 1277 for (x = 0; x < sys->numContexts(); x++) { 1278 oc = sys->getThreadContext(x); 1279 asid = bits(newVal, 63, 48); 1280 if (!haveLargeAsid64) 1281 asid &= mask(8); 1282 getITBPtr(oc)->flushAsid(asid, secure_lookup, target_el); 1283 getDTBPtr(oc)->flushAsid(asid, secure_lookup, target_el); 1284 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1285 if (checker) { 1286 getITBPtr(checker)->flushAsid(asid, 1287 secure_lookup, target_el); 1288 getDTBPtr(checker)->flushAsid(asid, 1289 secure_lookup, target_el); 1290 } 1291 } 1292 return; 1293 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID 1294 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store 1295 // entries from the last level of translation table walks 1296 // @todo: handle VMID to enable Virtualization 1297 case MISCREG_TLBI_VAAE1IS_Xt: 1298 case MISCREG_TLBI_VAAE1_Xt: 1299 case MISCREG_TLBI_VAALE1IS_Xt: 1300 case MISCREG_TLBI_VAALE1_Xt: 1301 assert64(tc); 1302 target_el = 1; // el 0 and 1 are handled together 1303 scr = readMiscReg(MISCREG_SCR, tc); 1304 secure_lookup = haveSecurity && !scr.ns; 1305 sys = tc->getSystemPtr(); 1306 for (x = 0; x < sys->numContexts(); x++) { 1307 // @todo: extra controls on TLBI broadcast? 1308 oc = sys->getThreadContext(x); 1309 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1310 getITBPtr(oc)->flushMva(va, 1311 secure_lookup, false, target_el); 1312 getDTBPtr(oc)->flushMva(va, 1313 secure_lookup, false, target_el); 1314 1315 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1316 if (checker) { 1317 getITBPtr(checker)->flushMva(va, 1318 secure_lookup, false, target_el); 1319 getDTBPtr(checker)->flushMva(va, 1320 secure_lookup, false, target_el); 1321 } 1322 } 1323 return; 1324 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID 1325 case MISCREG_TLBI_IPAS2LE1IS_Xt: 1326 case MISCREG_TLBI_IPAS2LE1_Xt: 1327 case MISCREG_TLBI_IPAS2E1IS_Xt: 1328 case MISCREG_TLBI_IPAS2E1_Xt: 1329 assert64(tc); 1330 target_el = 1; // EL 0 and 1 are handled together 1331 scr = readMiscReg(MISCREG_SCR, tc); 1332 secure_lookup = haveSecurity && !scr.ns; 1333 sys = tc->getSystemPtr(); 1334 for (x = 0; x < sys->numContexts(); x++) { 1335 oc = sys->getThreadContext(x); 1336 Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12; 1337 getITBPtr(oc)->flushIpaVmid(ipa, 1338 secure_lookup, false, target_el); 1339 getDTBPtr(oc)->flushIpaVmid(ipa, 1340 secure_lookup, false, target_el); 1341 1342 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1343 if (checker) { 1344 getITBPtr(checker)->flushIpaVmid(ipa, 1345 secure_lookup, false, target_el); 1346 getDTBPtr(checker)->flushIpaVmid(ipa, 1347 secure_lookup, false, target_el); 1348 } 1349 } 1350 return; 1351 case MISCREG_ACTLR: 1352 warn("Not doing anything for write of miscreg ACTLR\n"); 1353 break; 1354 1355 case MISCREG_PMXEVTYPER_PMCCFILTR: 1356 case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0: 1357 case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0: 1358 case MISCREG_PMCR ... MISCREG_PMOVSSET: 1359 pmu->setMiscReg(misc_reg, newVal); 1360 break; 1361 1362 1363 case MISCREG_HSTR: // TJDBX, now redifined to be RES0 1364 { 1365 HSTR hstrMask = 0; 1366 hstrMask.tjdbx = 1; 1367 newVal &= ~((uint32_t) hstrMask); 1368 break; 1369 } 1370 case MISCREG_HCPTR: 1371 { 1372 // If a CP bit in NSACR is 0 then the corresponding bit in 1373 // HCPTR is RAO/WI. Same applies to NSASEDIS 1374 secure_lookup = haveSecurity && 1375 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 1376 readMiscRegNoEffect(MISCREG_CPSR)); 1377 if (!secure_lookup) { 1378 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR); 1379 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; 1380 newVal = (newVal & ~mask) | (oldValue & mask); 1381 } 1382 break; 1383 } 1384 case MISCREG_HDFAR: // alias for secure DFAR 1385 misc_reg = MISCREG_DFAR_S; 1386 break; 1387 case MISCREG_HIFAR: // alias for secure IFAR 1388 misc_reg = MISCREG_IFAR_S; 1389 break; 1390 case MISCREG_ATS1CPR: 1391 case MISCREG_ATS1CPW: 1392 case MISCREG_ATS1CUR: 1393 case MISCREG_ATS1CUW: 1394 case MISCREG_ATS12NSOPR: 1395 case MISCREG_ATS12NSOPW: 1396 case MISCREG_ATS12NSOUR: 1397 case MISCREG_ATS12NSOUW: 1398 case MISCREG_ATS1HR: 1399 case MISCREG_ATS1HW: 1400 { 1401 Request::Flags flags = 0; 1402 BaseTLB::Mode mode = BaseTLB::Read; 1403 TLB::ArmTranslationType tranType = TLB::NormalTran; 1404 Fault fault; 1405 switch(misc_reg) { 1406 case MISCREG_ATS1CPR: 1407 flags = TLB::MustBeOne; 1408 tranType = TLB::S1CTran; 1409 mode = BaseTLB::Read; 1410 break; 1411 case MISCREG_ATS1CPW: 1412 flags = TLB::MustBeOne; 1413 tranType = TLB::S1CTran; 1414 mode = BaseTLB::Write; 1415 break; 1416 case MISCREG_ATS1CUR: 1417 flags = TLB::MustBeOne | TLB::UserMode; 1418 tranType = TLB::S1CTran; 1419 mode = BaseTLB::Read; 1420 break; 1421 case MISCREG_ATS1CUW: 1422 flags = TLB::MustBeOne | TLB::UserMode; 1423 tranType = TLB::S1CTran; 1424 mode = BaseTLB::Write; 1425 break; 1426 case MISCREG_ATS12NSOPR: 1427 if (!haveSecurity) 1428 panic("Security Extensions required for ATS12NSOPR"); 1429 flags = TLB::MustBeOne; 1430 tranType = TLB::S1S2NsTran; 1431 mode = BaseTLB::Read; 1432 break; 1433 case MISCREG_ATS12NSOPW: 1434 if (!haveSecurity) 1435 panic("Security Extensions required for ATS12NSOPW"); 1436 flags = TLB::MustBeOne; 1437 tranType = TLB::S1S2NsTran; 1438 mode = BaseTLB::Write; 1439 break; 1440 case MISCREG_ATS12NSOUR: 1441 if (!haveSecurity) 1442 panic("Security Extensions required for ATS12NSOUR"); 1443 flags = TLB::MustBeOne | TLB::UserMode; 1444 tranType = TLB::S1S2NsTran; 1445 mode = BaseTLB::Read; 1446 break; 1447 case MISCREG_ATS12NSOUW: 1448 if (!haveSecurity) 1449 panic("Security Extensions required for ATS12NSOUW"); 1450 flags = TLB::MustBeOne | TLB::UserMode; 1451 tranType = TLB::S1S2NsTran; 1452 mode = BaseTLB::Write; 1453 break; 1454 case MISCREG_ATS1HR: // only really useful from secure mode. 1455 flags = TLB::MustBeOne; 1456 tranType = TLB::HypMode; 1457 mode = BaseTLB::Read; 1458 break; 1459 case MISCREG_ATS1HW: 1460 flags = TLB::MustBeOne; 1461 tranType = TLB::HypMode; 1462 mode = BaseTLB::Write; 1463 break; 1464 } 1465 // If we're in timing mode then doing the translation in 1466 // functional mode then we're slightly distorting performance 1467 // results obtained from simulations. The translation should be 1468 // done in the same mode the core is running in. NOTE: This 1469 // can't be an atomic translation because that causes problems 1470 // with unexpected atomic snoop requests. 1471 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1472 Request req(0, val, 0, flags, Request::funcMasterId, 1473 tc->pcState().pc(), tc->contextId()); 1474 fault = getDTBPtr(tc)->translateFunctional( 1475 &req, tc, mode, tranType); 1476 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1477 HCR hcr = readMiscRegNoEffect(MISCREG_HCR); 1478 1479 MiscReg newVal; 1480 if (fault == NoFault) { 1481 Addr paddr = req.getPaddr(); 1482 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || 1483 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { 1484 newVal = (paddr & mask(39, 12)) | 1485 (getDTBPtr(tc)->getAttr()); 1486 } else { 1487 newVal = (paddr & 0xfffff000) | 1488 (getDTBPtr(tc)->getAttr()); 1489 } 1490 DPRINTF(MiscRegs, 1491 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", 1492 val, newVal); 1493 } else { 1494 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 1495 armFault->update(tc); 1496 // Set fault bit and FSR 1497 FSR fsr = armFault->getFsr(tc); 1498 1499 newVal = ((fsr >> 9) & 1) << 11; 1500 if (newVal) { 1501 // LPAE - rearange fault status 1502 newVal |= ((fsr >> 0) & 0x3f) << 1; 1503 } else { 1504 // VMSA - rearange fault status 1505 newVal |= ((fsr >> 0) & 0xf) << 1; 1506 newVal |= ((fsr >> 10) & 0x1) << 5; 1507 newVal |= ((fsr >> 12) & 0x1) << 6; 1508 } 1509 newVal |= 0x1; // F bit 1510 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1511 newVal |= armFault->isStage2() ? 0x200 : 0; 1512 DPRINTF(MiscRegs, 1513 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", 1514 val, fsr, newVal); 1515 } 1516 setMiscRegNoEffect(MISCREG_PAR, newVal); 1517 return; 1518 } 1519 case MISCREG_TTBCR: 1520 { 1521 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1522 const uint32_t ones = (uint32_t)(-1); 1523 TTBCR ttbcrMask = 0; 1524 TTBCR ttbcrNew = newVal; 1525 1526 // ARM DDI 0406C.b, ARMv7-32 1527 ttbcrMask.n = ones; // T0SZ 1528 if (haveSecurity) { 1529 ttbcrMask.pd0 = ones; 1530 ttbcrMask.pd1 = ones; 1531 } 1532 ttbcrMask.epd0 = ones; 1533 ttbcrMask.irgn0 = ones; 1534 ttbcrMask.orgn0 = ones; 1535 ttbcrMask.sh0 = ones; 1536 ttbcrMask.ps = ones; // T1SZ 1537 ttbcrMask.a1 = ones; 1538 ttbcrMask.epd1 = ones; 1539 ttbcrMask.irgn1 = ones; 1540 ttbcrMask.orgn1 = ones; 1541 ttbcrMask.sh1 = ones; 1542 if (haveLPAE) 1543 ttbcrMask.eae = ones; 1544 1545 if (haveLPAE && ttbcrNew.eae) { 1546 newVal = newVal & ttbcrMask; 1547 } else { 1548 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); 1549 } 1550 } 1551 M5_FALLTHROUGH; 1552 case MISCREG_TTBR0: 1553 case MISCREG_TTBR1: 1554 { 1555 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1556 if (haveLPAE) { 1557 if (ttbcr.eae) { 1558 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP 1559 // ARMv8 AArch32 bit 63-56 only 1560 uint64_t ttbrMask = mask(63,56) | mask(47,40); 1561 newVal = (newVal & (~ttbrMask)); 1562 } 1563 } 1564 } 1565 M5_FALLTHROUGH; 1566 case MISCREG_SCTLR_EL1: 1567 { 1568 getITBPtr(tc)->invalidateMiscReg(); 1569 getDTBPtr(tc)->invalidateMiscReg(); 1570 setMiscRegNoEffect(misc_reg, newVal); 1571 } 1572 M5_FALLTHROUGH; 1573 case MISCREG_CONTEXTIDR: 1574 case MISCREG_PRRR: 1575 case MISCREG_NMRR: 1576 case MISCREG_MAIR0: 1577 case MISCREG_MAIR1: 1578 case MISCREG_DACR: 1579 case MISCREG_VTTBR: 1580 case MISCREG_SCR_EL3: 1581 case MISCREG_HCR_EL2: 1582 case MISCREG_TCR_EL1: 1583 case MISCREG_TCR_EL2: 1584 case MISCREG_TCR_EL3: 1585 case MISCREG_SCTLR_EL2: 1586 case MISCREG_SCTLR_EL3: 1587 case MISCREG_HSCTLR: 1588 case MISCREG_TTBR0_EL1: 1589 case MISCREG_TTBR1_EL1: 1590 case MISCREG_TTBR0_EL2: 1591 case MISCREG_TTBR0_EL3: 1592 getITBPtr(tc)->invalidateMiscReg(); 1593 getDTBPtr(tc)->invalidateMiscReg(); 1594 break; 1595 case MISCREG_NZCV: 1596 { 1597 CPSR cpsr = val; 1598 1599 tc->setCCReg(CCREG_NZ, cpsr.nz); 1600 tc->setCCReg(CCREG_C, cpsr.c); 1601 tc->setCCReg(CCREG_V, cpsr.v); 1602 } 1603 break; 1604 case MISCREG_DAIF: 1605 { 1606 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1607 cpsr.daif = (uint8_t) ((CPSR) newVal).daif; 1608 newVal = cpsr; 1609 misc_reg = MISCREG_CPSR; 1610 } 1611 break; 1612 case MISCREG_SP_EL0: 1613 tc->setIntReg(INTREG_SP0, newVal); 1614 break; 1615 case MISCREG_SP_EL1: 1616 tc->setIntReg(INTREG_SP1, newVal); 1617 break; 1618 case MISCREG_SP_EL2: 1619 tc->setIntReg(INTREG_SP2, newVal); 1620 break; 1621 case MISCREG_SPSEL: 1622 { 1623 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1624 cpsr.sp = (uint8_t) ((CPSR) newVal).sp; 1625 newVal = cpsr; 1626 misc_reg = MISCREG_CPSR; 1627 } 1628 break; 1629 case MISCREG_CURRENTEL: 1630 { 1631 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1632 cpsr.el = (uint8_t) ((CPSR) newVal).el; 1633 newVal = cpsr; 1634 misc_reg = MISCREG_CPSR; 1635 } 1636 break; 1637 case MISCREG_AT_S1E1R_Xt: 1638 case MISCREG_AT_S1E1W_Xt: 1639 case MISCREG_AT_S1E0R_Xt: 1640 case MISCREG_AT_S1E0W_Xt: 1641 case MISCREG_AT_S1E2R_Xt: 1642 case MISCREG_AT_S1E2W_Xt: 1643 case MISCREG_AT_S12E1R_Xt: 1644 case MISCREG_AT_S12E1W_Xt: 1645 case MISCREG_AT_S12E0R_Xt: 1646 case MISCREG_AT_S12E0W_Xt: 1647 case MISCREG_AT_S1E3R_Xt: 1648 case MISCREG_AT_S1E3W_Xt: 1649 { 1650 RequestPtr req = new Request; 1651 Request::Flags flags = 0; 1652 BaseTLB::Mode mode = BaseTLB::Read; 1653 TLB::ArmTranslationType tranType = TLB::NormalTran; 1654 Fault fault; 1655 switch(misc_reg) { 1656 case MISCREG_AT_S1E1R_Xt: 1657 flags = TLB::MustBeOne; 1658 tranType = TLB::S1E1Tran; 1659 mode = BaseTLB::Read; 1660 break; 1661 case MISCREG_AT_S1E1W_Xt: 1662 flags = TLB::MustBeOne; 1663 tranType = TLB::S1E1Tran; 1664 mode = BaseTLB::Write; 1665 break; 1666 case MISCREG_AT_S1E0R_Xt: 1667 flags = TLB::MustBeOne | TLB::UserMode; 1668 tranType = TLB::S1E0Tran; 1669 mode = BaseTLB::Read; 1670 break; 1671 case MISCREG_AT_S1E0W_Xt: 1672 flags = TLB::MustBeOne | TLB::UserMode; 1673 tranType = TLB::S1E0Tran; 1674 mode = BaseTLB::Write; 1675 break; 1676 case MISCREG_AT_S1E2R_Xt: 1677 flags = TLB::MustBeOne; 1678 tranType = TLB::S1E2Tran; 1679 mode = BaseTLB::Read; 1680 break; 1681 case MISCREG_AT_S1E2W_Xt: 1682 flags = TLB::MustBeOne; 1683 tranType = TLB::S1E2Tran; 1684 mode = BaseTLB::Write; 1685 break; 1686 case MISCREG_AT_S12E0R_Xt: 1687 flags = TLB::MustBeOne | TLB::UserMode; 1688 tranType = TLB::S12E0Tran; 1689 mode = BaseTLB::Read; 1690 break; 1691 case MISCREG_AT_S12E0W_Xt: 1692 flags = TLB::MustBeOne | TLB::UserMode; 1693 tranType = TLB::S12E0Tran; 1694 mode = BaseTLB::Write; 1695 break; 1696 case MISCREG_AT_S12E1R_Xt: 1697 flags = TLB::MustBeOne; 1698 tranType = TLB::S12E1Tran; 1699 mode = BaseTLB::Read; 1700 break; 1701 case MISCREG_AT_S12E1W_Xt: 1702 flags = TLB::MustBeOne; 1703 tranType = TLB::S12E1Tran; 1704 mode = BaseTLB::Write; 1705 break; 1706 case MISCREG_AT_S1E3R_Xt: 1707 flags = TLB::MustBeOne; 1708 tranType = TLB::S1E3Tran; 1709 mode = BaseTLB::Read; 1710 break; 1711 case MISCREG_AT_S1E3W_Xt: 1712 flags = TLB::MustBeOne; 1713 tranType = TLB::S1E3Tran; 1714 mode = BaseTLB::Write; 1715 break; 1716 } 1717 // If we're in timing mode then doing the translation in 1718 // functional mode then we're slightly distorting performance 1719 // results obtained from simulations. The translation should be 1720 // done in the same mode the core is running in. NOTE: This 1721 // can't be an atomic translation because that causes problems 1722 // with unexpected atomic snoop requests. 1723 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1724 req->setVirt(0, val, 0, flags, Request::funcMasterId, 1725 tc->pcState().pc()); 1726 req->setContext(tc->contextId()); 1727 fault = getDTBPtr(tc)->translateFunctional(req, tc, mode, 1728 tranType); 1729 1730 MiscReg newVal; 1731 if (fault == NoFault) { 1732 Addr paddr = req->getPaddr(); 1733 uint64_t attr = getDTBPtr(tc)->getAttr(); 1734 uint64_t attr1 = attr >> 56; 1735 if (!attr1 || attr1 ==0x44) { 1736 attr |= 0x100; 1737 attr &= ~ uint64_t(0x80); 1738 } 1739 newVal = (paddr & mask(47, 12)) | attr; 1740 DPRINTF(MiscRegs, 1741 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", 1742 val, newVal); 1743 } else { 1744 ArmFault *armFault = static_cast<ArmFault *>(fault.get()); 1745 armFault->update(tc); 1746 // Set fault bit and FSR 1747 FSR fsr = armFault->getFsr(tc); 1748 1749 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 1750 if (cpsr.width) { // AArch32 1751 newVal = ((fsr >> 9) & 1) << 11; 1752 // rearrange fault status 1753 newVal |= ((fsr >> 0) & 0x3f) << 1; 1754 newVal |= 0x1; // F bit 1755 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1756 newVal |= armFault->isStage2() ? 0x200 : 0; 1757 } else { // AArch64 1758 newVal = 1; // F bit 1759 newVal |= fsr << 1; // FST 1760 // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit. 1761 newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW 1762 newVal |= armFault->isStage2() ? 1 << 9 : 0; // S 1763 newVal |= 1 << 11; // RES1 1764 } 1765 DPRINTF(MiscRegs, 1766 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", 1767 val, fsr, newVal); 1768 } 1769 delete req; 1770 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); 1771 return; 1772 } 1773 case MISCREG_SPSR_EL3: 1774 case MISCREG_SPSR_EL2: 1775 case MISCREG_SPSR_EL1: 1776 // Force bits 23:21 to 0 1777 newVal = val & ~(0x7 << 21); 1778 break; 1779 case MISCREG_L2CTLR: 1780 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", 1781 miscRegName[misc_reg], uint32_t(val)); 1782 break; 1783 1784 // Generic Timer registers 1785 case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL: 1786 case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL: 1787 case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0: 1788 case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1: 1789 getGenericTimer(tc).setMiscReg(misc_reg, newVal); 1790 break; 1791 } 1792 } 1793 setMiscRegNoEffect(misc_reg, newVal); 1794} 1795 1796void 1797ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid, 1798 bool secure_lookup, uint8_t target_el) 1799{ 1800 if (!haveLargeAsid64) 1801 asid &= mask(8); 1802 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1803 System *sys = tc->getSystemPtr(); 1804 for (int x = 0; x < sys->numContexts(); x++) { 1805 ThreadContext *oc = sys->getThreadContext(x); 1806 getITBPtr(oc)->flushMvaAsid(va, asid, 1807 secure_lookup, target_el); 1808 getDTBPtr(oc)->flushMvaAsid(va, asid, 1809 secure_lookup, target_el); 1810 1811 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1812 if (checker) { 1813 getITBPtr(checker)->flushMvaAsid( 1814 va, asid, secure_lookup, target_el); 1815 getDTBPtr(checker)->flushMvaAsid( 1816 va, asid, secure_lookup, target_el); 1817 } 1818 } 1819} 1820 1821void 1822ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el) 1823{ 1824 System *sys = tc->getSystemPtr(); 1825 for (int x = 0; x < sys->numContexts(); x++) { 1826 ThreadContext *oc = sys->getThreadContext(x); 1827 getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el); 1828 getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el); 1829 1830 // If CheckerCPU is connected, need to notify it of a flush 1831 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1832 if (checker) { 1833 getITBPtr(checker)->flushAllSecurity(secure_lookup, 1834 target_el); 1835 getDTBPtr(checker)->flushAllSecurity(secure_lookup, 1836 target_el); 1837 } 1838 } 1839} 1840 1841void 1842ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el) 1843{ 1844 System *sys = tc->getSystemPtr(); 1845 for (int x = 0; x < sys->numContexts(); x++) { 1846 ThreadContext *oc = sys->getThreadContext(x); 1847 getITBPtr(oc)->flushAllNs(hyp, target_el); 1848 getDTBPtr(oc)->flushAllNs(hyp, target_el); 1849 1850 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1851 if (checker) { 1852 getITBPtr(checker)->flushAllNs(hyp, target_el); 1853 getDTBPtr(checker)->flushAllNs(hyp, target_el); 1854 } 1855 } 1856} 1857 1858void 1859ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp, 1860 uint8_t target_el) 1861{ 1862 System *sys = tc->getSystemPtr(); 1863 for (int x = 0; x < sys->numContexts(); x++) { 1864 ThreadContext *oc = sys->getThreadContext(x); 1865 getITBPtr(oc)->flushMva(mbits(newVal, 31,12), 1866 secure_lookup, hyp, target_el); 1867 getDTBPtr(oc)->flushMva(mbits(newVal, 31,12), 1868 secure_lookup, hyp, target_el); 1869 1870 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1871 if (checker) { 1872 getITBPtr(checker)->flushMva(mbits(newVal, 31,12), 1873 secure_lookup, hyp, target_el); 1874 getDTBPtr(checker)->flushMva(mbits(newVal, 31,12), 1875 secure_lookup, hyp, target_el); 1876 } 1877 } 1878} 1879 1880BaseISADevice & 1881ISA::getGenericTimer(ThreadContext *tc) 1882{ 1883 // We only need to create an ISA interface the first time we try 1884 // to access the timer. 1885 if (timer) 1886 return *timer.get(); 1887 1888 assert(system); 1889 GenericTimer *generic_timer(system->getGenericTimer()); 1890 if (!generic_timer) { 1891 panic("Trying to get a generic timer from a system that hasn't " 1892 "been configured to use a generic timer.\n"); 1893 } 1894 1895 timer.reset(new GenericTimerISA(*generic_timer, tc->contextId())); 1896 return *timer.get(); 1897} 1898 1899} 1900 1901ArmISA::ISA * 1902ArmISAParams::create() 1903{ 1904 return new ArmISA::ISA(this); 1905} 1906