isa.cc revision 12478
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Gabe Black
38 *          Ali Saidi
39 */
40
41#include "arch/arm/isa.hh"
42#include "arch/arm/pmu.hh"
43#include "arch/arm/system.hh"
44#include "arch/arm/tlb.hh"
45#include "cpu/base.hh"
46#include "cpu/checker/cpu.hh"
47#include "debug/Arm.hh"
48#include "debug/MiscRegs.hh"
49#include "dev/arm/generic_timer.hh"
50#include "params/ArmISA.hh"
51#include "sim/faults.hh"
52#include "sim/stat_control.hh"
53#include "sim/system.hh"
54
55namespace ArmISA
56{
57
58
59/**
60 * Some registers alias with others, and therefore need to be translated.
61 * When two mapping registers are given, they are the 32b lower and
62 * upper halves, respectively, of the 64b register being mapped.
63 * aligned with reference documentation ARM DDI 0487A.i pp 1540-1543
64 */
65void
66ISA::initializeMiscRegMetadata()
67{
68    InitReg(MISCREG_ACTLR_EL1).mapsTo(MISCREG_ACTLR_NS);
69    InitReg(MISCREG_AFSR0_EL1).mapsTo(MISCREG_ADFSR_NS);
70    InitReg(MISCREG_AFSR1_EL1).mapsTo(MISCREG_AIFSR_NS);
71    InitReg(MISCREG_AMAIR_EL1).mapsTo(MISCREG_AMAIR0_NS,
72                                      MISCREG_AMAIR1_NS);
73    InitReg(MISCREG_CONTEXTIDR_EL1).mapsTo(MISCREG_CONTEXTIDR_NS);
74    InitReg(MISCREG_CPACR_EL1).mapsTo(MISCREG_CPACR);
75    InitReg(MISCREG_CSSELR_EL1).mapsTo(MISCREG_CSSELR_NS);
76    InitReg(MISCREG_DACR32_EL2).mapsTo(MISCREG_DACR_NS);
77    InitReg(MISCREG_FAR_EL1).mapsTo(MISCREG_DFAR_NS,
78                                    MISCREG_IFAR_NS);
79    // ESR_EL1 -> DFSR
80    InitReg(MISCREG_HACR_EL2).mapsTo(MISCREG_HACR);
81    InitReg(MISCREG_ACTLR_EL2).mapsTo(MISCREG_HACTLR);
82    InitReg(MISCREG_AFSR0_EL2).mapsTo(MISCREG_HADFSR);
83    InitReg(MISCREG_AFSR1_EL2).mapsTo(MISCREG_HAIFSR);
84    InitReg(MISCREG_AMAIR_EL2).mapsTo(MISCREG_HAMAIR0,
85                                      MISCREG_HAMAIR1);
86    InitReg(MISCREG_CPTR_EL2).mapsTo(MISCREG_HCPTR);
87    InitReg(MISCREG_HCR_EL2).mapsTo(MISCREG_HCR /*,
88                                    MISCREG_HCR2*/);
89    InitReg(MISCREG_MDCR_EL2).mapsTo(MISCREG_HDCR);
90    InitReg(MISCREG_FAR_EL2).mapsTo(MISCREG_HDFAR,
91                                    MISCREG_HIFAR);
92    InitReg(MISCREG_MAIR_EL2).mapsTo(MISCREG_HMAIR0,
93                                     MISCREG_HMAIR1);
94    InitReg(MISCREG_HPFAR_EL2).mapsTo(MISCREG_HPFAR);
95    InitReg(MISCREG_SCTLR_EL2).mapsTo(MISCREG_HSCTLR);
96    InitReg(MISCREG_ESR_EL2).mapsTo(MISCREG_HSR);
97    InitReg(MISCREG_HSTR_EL2).mapsTo(MISCREG_HSTR);
98    InitReg(MISCREG_TCR_EL2).mapsTo(MISCREG_HTCR);
99    InitReg(MISCREG_TPIDR_EL2).mapsTo(MISCREG_HTPIDR);
100    InitReg(MISCREG_TTBR0_EL2).mapsTo(MISCREG_HTTBR);
101    InitReg(MISCREG_VBAR_EL2).mapsTo(MISCREG_HVBAR);
102    InitReg(MISCREG_IFSR32_EL2).mapsTo(MISCREG_IFSR_NS);
103    InitReg(MISCREG_MAIR_EL1).mapsTo(MISCREG_PRRR_NS,
104                                     MISCREG_NMRR_NS);
105    InitReg(MISCREG_PAR_EL1).mapsTo(MISCREG_PAR_NS);
106    // RMR_EL1 -> RMR
107    // RMR_EL2 -> HRMR
108    InitReg(MISCREG_SCTLR_EL1).mapsTo(MISCREG_SCTLR_NS);
109    InitReg(MISCREG_SDER32_EL3).mapsTo(MISCREG_SDER);
110    InitReg(MISCREG_TPIDR_EL1).mapsTo(MISCREG_TPIDRPRW_NS);
111    InitReg(MISCREG_TPIDRRO_EL0).mapsTo(MISCREG_TPIDRURO_NS);
112    InitReg(MISCREG_TPIDR_EL0).mapsTo(MISCREG_TPIDRURW_NS);
113    InitReg(MISCREG_TCR_EL1).mapsTo(MISCREG_TTBCR_NS);
114    InitReg(MISCREG_TTBR0_EL1).mapsTo(MISCREG_TTBR0_NS);
115    InitReg(MISCREG_TTBR1_EL1).mapsTo(MISCREG_TTBR1_NS);
116    InitReg(MISCREG_VBAR_EL1).mapsTo(MISCREG_VBAR_NS);
117    InitReg(MISCREG_VMPIDR_EL2).mapsTo(MISCREG_VMPIDR);
118    InitReg(MISCREG_VPIDR_EL2).mapsTo(MISCREG_VPIDR);
119    InitReg(MISCREG_VTCR_EL2).mapsTo(MISCREG_VTCR);
120    InitReg(MISCREG_VTTBR_EL2).mapsTo(MISCREG_VTTBR);
121    InitReg(MISCREG_CNTFRQ_EL0).mapsTo(MISCREG_CNTFRQ);
122    InitReg(MISCREG_CNTHCTL_EL2).mapsTo(MISCREG_CNTHCTL);
123    InitReg(MISCREG_CNTHP_CTL_EL2).mapsTo(MISCREG_CNTHP_CTL);
124    InitReg(MISCREG_CNTHP_CVAL_EL2).mapsTo(MISCREG_CNTHP_CVAL); /* 64b */
125    InitReg(MISCREG_CNTHP_TVAL_EL2).mapsTo(MISCREG_CNTHP_TVAL);
126    InitReg(MISCREG_CNTKCTL_EL1).mapsTo(MISCREG_CNTKCTL);
127    InitReg(MISCREG_CNTP_CTL_EL0).mapsTo(MISCREG_CNTP_CTL_NS);
128    InitReg(MISCREG_CNTP_CVAL_EL0).mapsTo(MISCREG_CNTP_CVAL_NS); /* 64b */
129    InitReg(MISCREG_CNTP_TVAL_EL0).mapsTo(MISCREG_CNTP_TVAL_NS);
130    InitReg(MISCREG_CNTPCT_EL0).mapsTo(MISCREG_CNTPCT); /* 64b */
131    InitReg(MISCREG_CNTV_CTL_EL0).mapsTo(MISCREG_CNTV_CTL);
132    InitReg(MISCREG_CNTV_CVAL_EL0).mapsTo(MISCREG_CNTV_CVAL); /* 64b */
133    InitReg(MISCREG_CNTV_TVAL_EL0).mapsTo(MISCREG_CNTV_TVAL);
134    InitReg(MISCREG_CNTVCT_EL0).mapsTo(MISCREG_CNTVCT); /* 64b */
135    InitReg(MISCREG_CNTVOFF_EL2).mapsTo(MISCREG_CNTVOFF); /* 64b */
136    InitReg(MISCREG_DBGAUTHSTATUS_EL1).mapsTo(MISCREG_DBGAUTHSTATUS);
137    InitReg(MISCREG_DBGBCR0_EL1).mapsTo(MISCREG_DBGBCR0);
138    InitReg(MISCREG_DBGBCR1_EL1).mapsTo(MISCREG_DBGBCR1);
139    InitReg(MISCREG_DBGBCR2_EL1).mapsTo(MISCREG_DBGBCR2);
140    InitReg(MISCREG_DBGBCR3_EL1).mapsTo(MISCREG_DBGBCR3);
141    InitReg(MISCREG_DBGBCR4_EL1).mapsTo(MISCREG_DBGBCR4);
142    InitReg(MISCREG_DBGBCR5_EL1).mapsTo(MISCREG_DBGBCR5);
143    InitReg(MISCREG_DBGBVR0_EL1).mapsTo(MISCREG_DBGBVR0 /*,
144                                        MISCREG_DBGBXVR0 */);
145    InitReg(MISCREG_DBGBVR1_EL1).mapsTo(MISCREG_DBGBVR1 /*,
146                                        MISCREG_DBGBXVR1 */);
147    InitReg(MISCREG_DBGBVR2_EL1).mapsTo(MISCREG_DBGBVR2 /*,
148                                        MISCREG_DBGBXVR2 */);
149    InitReg(MISCREG_DBGBVR3_EL1).mapsTo(MISCREG_DBGBVR3 /*,
150                                        MISCREG_DBGBXVR3 */);
151    InitReg(MISCREG_DBGBVR4_EL1).mapsTo(MISCREG_DBGBVR4 /*,
152                                        MISCREG_DBGBXVR4 */);
153    InitReg(MISCREG_DBGBVR5_EL1).mapsTo(MISCREG_DBGBVR5 /*,
154                                        MISCREG_DBGBXVR5 */);
155    InitReg(MISCREG_DBGCLAIMSET_EL1).mapsTo(MISCREG_DBGCLAIMSET);
156    InitReg(MISCREG_DBGCLAIMCLR_EL1).mapsTo(MISCREG_DBGCLAIMCLR);
157    // DBGDTR_EL0 -> DBGDTR{R or T}Xint
158    // DBGDTRRX_EL0 -> DBGDTRRXint
159    // DBGDTRTX_EL0 -> DBGDTRRXint
160    InitReg(MISCREG_DBGPRCR_EL1).mapsTo(MISCREG_DBGPRCR);
161    InitReg(MISCREG_DBGVCR32_EL2).mapsTo(MISCREG_DBGVCR);
162    InitReg(MISCREG_DBGWCR0_EL1).mapsTo(MISCREG_DBGWCR0);
163    InitReg(MISCREG_DBGWCR1_EL1).mapsTo(MISCREG_DBGWCR1);
164    InitReg(MISCREG_DBGWCR2_EL1).mapsTo(MISCREG_DBGWCR2);
165    InitReg(MISCREG_DBGWCR3_EL1).mapsTo(MISCREG_DBGWCR3);
166    InitReg(MISCREG_DBGWVR0_EL1).mapsTo(MISCREG_DBGWVR0);
167    InitReg(MISCREG_DBGWVR1_EL1).mapsTo(MISCREG_DBGWVR1);
168    InitReg(MISCREG_DBGWVR2_EL1).mapsTo(MISCREG_DBGWVR2);
169    InitReg(MISCREG_DBGWVR3_EL1).mapsTo(MISCREG_DBGWVR3);
170    InitReg(MISCREG_ID_DFR0_EL1).mapsTo(MISCREG_ID_DFR0);
171    InitReg(MISCREG_MDCCSR_EL0).mapsTo(MISCREG_DBGDSCRint);
172    InitReg(MISCREG_MDRAR_EL1).mapsTo(MISCREG_DBGDRAR);
173    InitReg(MISCREG_MDSCR_EL1).mapsTo(MISCREG_DBGDSCRext);
174    InitReg(MISCREG_OSDLR_EL1).mapsTo(MISCREG_DBGOSDLR);
175    InitReg(MISCREG_OSDTRRX_EL1).mapsTo(MISCREG_DBGDTRRXext);
176    InitReg(MISCREG_OSDTRTX_EL1).mapsTo(MISCREG_DBGDTRTXext);
177    InitReg(MISCREG_OSECCR_EL1).mapsTo(MISCREG_DBGOSECCR);
178    InitReg(MISCREG_OSLAR_EL1).mapsTo(MISCREG_DBGOSLAR);
179    InitReg(MISCREG_OSLSR_EL1).mapsTo(MISCREG_DBGOSLSR);
180    InitReg(MISCREG_PMCCNTR_EL0).mapsTo(MISCREG_PMCCNTR);
181    InitReg(MISCREG_PMCEID0_EL0).mapsTo(MISCREG_PMCEID0);
182    InitReg(MISCREG_PMCEID1_EL0).mapsTo(MISCREG_PMCEID1);
183    InitReg(MISCREG_PMCNTENSET_EL0).mapsTo(MISCREG_PMCNTENSET);
184    InitReg(MISCREG_PMCNTENCLR_EL0).mapsTo(MISCREG_PMCNTENCLR);
185    InitReg(MISCREG_PMCR_EL0).mapsTo(MISCREG_PMCR);
186/*  InitReg(MISCREG_PMEVCNTR0_EL0).mapsTo(MISCREG_PMEVCNTR0);
187    InitReg(MISCREG_PMEVCNTR1_EL0).mapsTo(MISCREG_PMEVCNTR1);
188    InitReg(MISCREG_PMEVCNTR2_EL0).mapsTo(MISCREG_PMEVCNTR2);
189    InitReg(MISCREG_PMEVCNTR3_EL0).mapsTo(MISCREG_PMEVCNTR3);
190    InitReg(MISCREG_PMEVCNTR4_EL0).mapsTo(MISCREG_PMEVCNTR4);
191    InitReg(MISCREG_PMEVCNTR5_EL0).mapsTo(MISCREG_PMEVCNTR5);
192    InitReg(MISCREG_PMEVTYPER0_EL0).mapsTo(MISCREG_PMEVTYPER0);
193    InitReg(MISCREG_PMEVTYPER1_EL0).mapsTo(MISCREG_PMEVTYPER1);
194    InitReg(MISCREG_PMEVTYPER2_EL0).mapsTo(MISCREG_PMEVTYPER2);
195    InitReg(MISCREG_PMEVTYPER3_EL0).mapsTo(MISCREG_PMEVTYPER3);
196    InitReg(MISCREG_PMEVTYPER4_EL0).mapsTo(MISCREG_PMEVTYPER4);
197    InitReg(MISCREG_PMEVTYPER5_EL0).mapsTo(MISCREG_PMEVTYPER5); */
198    InitReg(MISCREG_PMINTENCLR_EL1).mapsTo(MISCREG_PMINTENCLR);
199    InitReg(MISCREG_PMINTENSET_EL1).mapsTo(MISCREG_PMINTENSET);
200//  InitReg(MISCREG_PMOVSCLR_EL0).mapsTo(MISCREG_PMOVSCLR);
201    InitReg(MISCREG_PMOVSSET_EL0).mapsTo(MISCREG_PMOVSSET);
202    InitReg(MISCREG_PMSELR_EL0).mapsTo(MISCREG_PMSELR);
203    InitReg(MISCREG_PMSWINC_EL0).mapsTo(MISCREG_PMSWINC);
204    InitReg(MISCREG_PMUSERENR_EL0).mapsTo(MISCREG_PMUSERENR);
205    InitReg(MISCREG_PMXEVCNTR_EL0).mapsTo(MISCREG_PMXEVCNTR);
206    InitReg(MISCREG_PMXEVTYPER_EL0).mapsTo(MISCREG_PMXEVTYPER);
207
208    InitReg(MISCREG_SCR).res0(0xff40)  // [31:16], [6]
209                        .res1(0x0030); // [5:4]
210
211    // from ARM DDI 0487A.i, template text
212    // "AArch64 System register ___ can be mapped to
213    //  AArch32 System register ___, but this is not
214    //  architecturally mandated."
215    InitReg(MISCREG_SCR_EL3).mapsTo(MISCREG_SCR); // D7-2005
216    // MDCR_EL3 -> SDCR, D7-2108 (the latter is unimpl. in gem5)
217    InitReg(MISCREG_SPSR_EL1).mapsTo(MISCREG_SPSR_SVC); // C5.2.17 SPSR_EL1
218    InitReg(MISCREG_SPSR_EL2).mapsTo(MISCREG_SPSR_HYP); // C5.2.18 SPSR_EL2
219    InitReg(MISCREG_SPSR_EL3).mapsTo(MISCREG_SPSR_MON); // C5.2.19 SPSR_EL3
220}
221
222ISA::ISA(Params *p)
223    : SimObject(p),
224      system(NULL),
225      _decoderFlavour(p->decoderFlavour),
226      _vecRegRenameMode(p->vecRegRenameMode),
227      pmu(p->pmu),
228      lookUpMiscReg(NUM_MISCREGS)
229{
230    miscRegs[MISCREG_SCTLR_RST] = 0;
231
232    // Hook up a dummy device if we haven't been configured with a
233    // real PMU. By using a dummy device, we don't need to check that
234    // the PMU exist every time we try to access a PMU register.
235    if (!pmu)
236        pmu = &dummyDevice;
237
238    // Give all ISA devices a pointer to this ISA
239    pmu->setISA(this);
240
241    system = dynamic_cast<ArmSystem *>(p->system);
242
243    // Cache system-level properties
244    if (FullSystem && system) {
245        highestELIs64 = system->highestELIs64();
246        haveSecurity = system->haveSecurity();
247        haveLPAE = system->haveLPAE();
248        haveVirtualization = system->haveVirtualization();
249        haveLargeAsid64 = system->haveLargeAsid64();
250        physAddrRange64 = system->physAddrRange64();
251    } else {
252        highestELIs64 = true; // ArmSystem::highestELIs64 does the same
253        haveSecurity = haveLPAE = haveVirtualization = false;
254        haveLargeAsid64 = false;
255        physAddrRange64 = 32;  // dummy value
256    }
257
258    initializeMiscRegMetadata();
259    preUnflattenMiscReg();
260
261    clear();
262}
263
264const ArmISAParams *
265ISA::params() const
266{
267    return dynamic_cast<const Params *>(_params);
268}
269
270void
271ISA::clear()
272{
273    const Params *p(params());
274
275    SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST];
276    memset(miscRegs, 0, sizeof(miscRegs));
277
278    // Initialize configurable default values
279    miscRegs[MISCREG_MIDR] = p->midr;
280    miscRegs[MISCREG_MIDR_EL1] = p->midr;
281    miscRegs[MISCREG_VPIDR] = p->midr;
282
283    if (FullSystem && system->highestELIs64()) {
284        // Initialize AArch64 state
285        clear64(p);
286        return;
287    }
288
289    // Initialize AArch32 state...
290
291    CPSR cpsr = 0;
292    cpsr.mode = MODE_USER;
293    miscRegs[MISCREG_CPSR] = cpsr;
294    updateRegMap(cpsr);
295
296    SCTLR sctlr = 0;
297    sctlr.te = (bool) sctlr_rst.te;
298    sctlr.nmfi = (bool) sctlr_rst.nmfi;
299    sctlr.v = (bool) sctlr_rst.v;
300    sctlr.u = 1;
301    sctlr.xp = 1;
302    sctlr.rao2 = 1;
303    sctlr.rao3 = 1;
304    sctlr.rao4 = 0xf;  // SCTLR[6:3]
305    sctlr.uci = 1;
306    sctlr.dze = 1;
307    miscRegs[MISCREG_SCTLR_NS] = sctlr;
308    miscRegs[MISCREG_SCTLR_RST] = sctlr_rst;
309    miscRegs[MISCREG_HCPTR] = 0;
310
311    // Start with an event in the mailbox
312    miscRegs[MISCREG_SEV_MAILBOX] = 1;
313
314    // Separate Instruction and Data TLBs
315    miscRegs[MISCREG_TLBTR] = 1;
316
317    MVFR0 mvfr0 = 0;
318    mvfr0.advSimdRegisters = 2;
319    mvfr0.singlePrecision = 2;
320    mvfr0.doublePrecision = 2;
321    mvfr0.vfpExceptionTrapping = 0;
322    mvfr0.divide = 1;
323    mvfr0.squareRoot = 1;
324    mvfr0.shortVectors = 1;
325    mvfr0.roundingModes = 1;
326    miscRegs[MISCREG_MVFR0] = mvfr0;
327
328    MVFR1 mvfr1 = 0;
329    mvfr1.flushToZero = 1;
330    mvfr1.defaultNaN = 1;
331    mvfr1.advSimdLoadStore = 1;
332    mvfr1.advSimdInteger = 1;
333    mvfr1.advSimdSinglePrecision = 1;
334    mvfr1.advSimdHalfPrecision = 1;
335    mvfr1.vfpHalfPrecision = 1;
336    miscRegs[MISCREG_MVFR1] = mvfr1;
337
338    // Reset values of PRRR and NMRR are implementation dependent
339
340    // @todo: PRRR and NMRR in secure state?
341    miscRegs[MISCREG_PRRR_NS] =
342        (1 << 19) | // 19
343        (0 << 18) | // 18
344        (0 << 17) | // 17
345        (1 << 16) | // 16
346        (2 << 14) | // 15:14
347        (0 << 12) | // 13:12
348        (2 << 10) | // 11:10
349        (2 << 8)  | // 9:8
350        (2 << 6)  | // 7:6
351        (2 << 4)  | // 5:4
352        (1 << 2)  | // 3:2
353        0;          // 1:0
354    miscRegs[MISCREG_NMRR_NS] =
355        (1 << 30) | // 31:30
356        (0 << 26) | // 27:26
357        (0 << 24) | // 25:24
358        (3 << 22) | // 23:22
359        (2 << 20) | // 21:20
360        (0 << 18) | // 19:18
361        (0 << 16) | // 17:16
362        (1 << 14) | // 15:14
363        (0 << 12) | // 13:12
364        (2 << 10) | // 11:10
365        (0 << 8)  | // 9:8
366        (3 << 6)  | // 7:6
367        (2 << 4)  | // 5:4
368        (0 << 2)  | // 3:2
369        0;          // 1:0
370
371    miscRegs[MISCREG_CPACR] = 0;
372
373    miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0;
374    miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1;
375    miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2;
376    miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3;
377
378    miscRegs[MISCREG_ID_ISAR0] = p->id_isar0;
379    miscRegs[MISCREG_ID_ISAR1] = p->id_isar1;
380    miscRegs[MISCREG_ID_ISAR2] = p->id_isar2;
381    miscRegs[MISCREG_ID_ISAR3] = p->id_isar3;
382    miscRegs[MISCREG_ID_ISAR4] = p->id_isar4;
383    miscRegs[MISCREG_ID_ISAR5] = p->id_isar5;
384
385    miscRegs[MISCREG_FPSID] = p->fpsid;
386
387    if (haveLPAE) {
388        TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS];
389        ttbcr.eae = 0;
390        miscRegs[MISCREG_TTBCR_NS] = ttbcr;
391        // Enforce consistency with system-level settings
392        miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5;
393    }
394
395    if (haveSecurity) {
396        miscRegs[MISCREG_SCTLR_S] = sctlr;
397        miscRegs[MISCREG_SCR] = 0;
398        miscRegs[MISCREG_VBAR_S] = 0;
399    } else {
400        // we're always non-secure
401        miscRegs[MISCREG_SCR] = 1;
402    }
403
404    //XXX We need to initialize the rest of the state.
405}
406
407void
408ISA::clear64(const ArmISAParams *p)
409{
410    CPSR cpsr = 0;
411    Addr rvbar = system->resetAddr64();
412    switch (system->highestEL()) {
413        // Set initial EL to highest implemented EL using associated stack
414        // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset
415        // value
416      case EL3:
417        cpsr.mode = MODE_EL3H;
418        miscRegs[MISCREG_RVBAR_EL3] = rvbar;
419        break;
420      case EL2:
421        cpsr.mode = MODE_EL2H;
422        miscRegs[MISCREG_RVBAR_EL2] = rvbar;
423        break;
424      case EL1:
425        cpsr.mode = MODE_EL1H;
426        miscRegs[MISCREG_RVBAR_EL1] = rvbar;
427        break;
428      default:
429        panic("Invalid highest implemented exception level");
430        break;
431    }
432
433    // Initialize rest of CPSR
434    cpsr.daif = 0xf;  // Mask all interrupts
435    cpsr.ss = 0;
436    cpsr.il = 0;
437    miscRegs[MISCREG_CPSR] = cpsr;
438    updateRegMap(cpsr);
439
440    // Initialize other control registers
441    miscRegs[MISCREG_MPIDR_EL1] = 0x80000000;
442    if (haveSecurity) {
443        miscRegs[MISCREG_SCTLR_EL3] = 0x30c50830;
444        miscRegs[MISCREG_SCR_EL3]   = 0x00000030;  // RES1 fields
445    } else if (haveVirtualization) {
446        // also  MISCREG_SCTLR_EL2 (by mapping)
447        miscRegs[MISCREG_HSCTLR] = 0x30c50830;
448    } else {
449        // also  MISCREG_SCTLR_EL1 (by mapping)
450        miscRegs[MISCREG_SCTLR_NS] = 0x30d00800 | 0x00050030; // RES1 | init
451        // Always non-secure
452        miscRegs[MISCREG_SCR_EL3] = 1;
453    }
454
455    // Initialize configurable id registers
456    miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1;
457    miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1;
458    miscRegs[MISCREG_ID_AA64DFR0_EL1] =
459        (p->id_aa64dfr0_el1 & 0xfffffffffffff0ffULL) |
460        (p->pmu ?             0x0000000000000100ULL : 0); // Enable PMUv3
461
462    miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1;
463    miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1;
464    miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1;
465    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1;
466    miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1;
467
468    miscRegs[MISCREG_ID_DFR0_EL1] =
469        (p->pmu ? 0x03000000ULL : 0); // Enable PMUv3
470
471    miscRegs[MISCREG_ID_DFR0] = miscRegs[MISCREG_ID_DFR0_EL1];
472
473    // Enforce consistency with system-level settings...
474
475    // EL3
476    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
477        miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12,
478        haveSecurity ? 0x2 : 0x0);
479    // EL2
480    miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits(
481        miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8,
482        haveVirtualization ? 0x2 : 0x0);
483    // Large ASID support
484    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
485        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4,
486        haveLargeAsid64 ? 0x2 : 0x0);
487    // Physical address size
488    miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits(
489        miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0,
490        encodePhysAddrRange64(physAddrRange64));
491}
492
493MiscReg
494ISA::readMiscRegNoEffect(int misc_reg) const
495{
496    assert(misc_reg < NumMiscRegs);
497
498    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
499    const auto &map = getMiscIndices(misc_reg);
500    int lower = map.first, upper = map.second;
501    // NB!: apply architectural masks according to desired register,
502    // despite possibly getting value from different (mapped) register.
503    auto val = !upper ? miscRegs[lower] : ((miscRegs[lower] & mask(32))
504                                          |(miscRegs[upper] << 32));
505    if (val & reg.res0()) {
506        DPRINTF(MiscRegs, "Reading MiscReg %s with set res0 bits: %#x\n",
507                miscRegName[misc_reg], val & reg.res0());
508    }
509    if ((val & reg.res1()) != reg.res1()) {
510        DPRINTF(MiscRegs, "Reading MiscReg %s with clear res1 bits: %#x\n",
511                miscRegName[misc_reg], (val & reg.res1()) ^ reg.res1());
512    }
513    return (val & ~reg.raz()) | reg.rao(); // enforce raz/rao
514}
515
516
517MiscReg
518ISA::readMiscReg(int misc_reg, ThreadContext *tc)
519{
520    CPSR cpsr = 0;
521    PCState pc = 0;
522    SCR scr = 0;
523
524    if (misc_reg == MISCREG_CPSR) {
525        cpsr = miscRegs[misc_reg];
526        pc = tc->pcState();
527        cpsr.j = pc.jazelle() ? 1 : 0;
528        cpsr.t = pc.thumb() ? 1 : 0;
529        return cpsr;
530    }
531
532#ifndef NDEBUG
533    if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
534        if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
535            warn("Unimplemented system register %s read.\n",
536                 miscRegName[misc_reg]);
537        else
538            panic("Unimplemented system register %s read.\n",
539                  miscRegName[misc_reg]);
540    }
541#endif
542
543    switch (unflattenMiscReg(misc_reg)) {
544      case MISCREG_HCR:
545        {
546            if (!haveVirtualization)
547                return 0;
548            else
549                return readMiscRegNoEffect(MISCREG_HCR);
550        }
551      case MISCREG_CPACR:
552        {
553            const uint32_t ones = (uint32_t)(-1);
554            CPACR cpacrMask = 0;
555            // Only cp10, cp11, and ase are implemented, nothing else should
556            // be readable? (straight copy from the write code)
557            cpacrMask.cp10 = ones;
558            cpacrMask.cp11 = ones;
559            cpacrMask.asedis = ones;
560
561            // Security Extensions may limit the readability of CPACR
562            if (haveSecurity) {
563                scr = readMiscRegNoEffect(MISCREG_SCR);
564                cpsr = readMiscRegNoEffect(MISCREG_CPSR);
565                if (scr.ns && (cpsr.mode != MODE_MON)) {
566                    NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
567                    // NB: Skipping the full loop, here
568                    if (!nsacr.cp10) cpacrMask.cp10 = 0;
569                    if (!nsacr.cp11) cpacrMask.cp11 = 0;
570                }
571            }
572            MiscReg val = readMiscRegNoEffect(MISCREG_CPACR);
573            val &= cpacrMask;
574            DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n",
575                    miscRegName[misc_reg], val);
576            return val;
577        }
578      case MISCREG_MPIDR:
579        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
580        scr  = readMiscRegNoEffect(MISCREG_SCR);
581        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
582            return getMPIDR(system, tc);
583        } else {
584            return readMiscReg(MISCREG_VMPIDR, tc);
585        }
586            break;
587      case MISCREG_MPIDR_EL1:
588        // @todo in the absence of v8 virtualization support just return MPIDR_EL1
589        return getMPIDR(system, tc) & 0xffffffff;
590      case MISCREG_VMPIDR:
591        // top bit defined as RES1
592        return readMiscRegNoEffect(misc_reg) | 0x80000000;
593      case MISCREG_ID_AFR0: // not implemented, so alias MIDR
594      case MISCREG_REVIDR:  // not implemented, so alias MIDR
595      case MISCREG_MIDR:
596        cpsr = readMiscRegNoEffect(MISCREG_CPSR);
597        scr  = readMiscRegNoEffect(MISCREG_SCR);
598        if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) {
599            return readMiscRegNoEffect(misc_reg);
600        } else {
601            return readMiscRegNoEffect(MISCREG_VPIDR);
602        }
603        break;
604      case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI
605      case MISCREG_JMCR:  // Jazelle trivial implementation, RAZ/WI
606      case MISCREG_JIDR:  // Jazelle trivial implementation, RAZ/WI
607      case MISCREG_AIDR:  // AUX ID set to 0
608      case MISCREG_TCMTR: // No TCM's
609        return 0;
610
611      case MISCREG_CLIDR:
612        warn_once("The clidr register always reports 0 caches.\n");
613        warn_once("clidr LoUIS field of 0b001 to match current "
614                  "ARM implementations.\n");
615        return 0x00200000;
616      case MISCREG_CCSIDR:
617        warn_once("The ccsidr register isn't implemented and "
618                "always reads as 0.\n");
619        break;
620      case MISCREG_CTR:                 // AArch32, ARMv7, top bit set
621      case MISCREG_CTR_EL0:             // AArch64
622        {
623            //all caches have the same line size in gem5
624            //4 byte words in ARM
625            unsigned lineSizeWords =
626                tc->getSystemPtr()->cacheLineSize() / 4;
627            unsigned log2LineSizeWords = 0;
628
629            while (lineSizeWords >>= 1) {
630                ++log2LineSizeWords;
631            }
632
633            CTR ctr = 0;
634            //log2 of minimun i-cache line size (words)
635            ctr.iCacheLineSize = log2LineSizeWords;
636            //b11 - gem5 uses pipt
637            ctr.l1IndexPolicy = 0x3;
638            //log2 of minimum d-cache line size (words)
639            ctr.dCacheLineSize = log2LineSizeWords;
640            //log2 of max reservation size (words)
641            ctr.erg = log2LineSizeWords;
642            //log2 of max writeback size (words)
643            ctr.cwg = log2LineSizeWords;
644            //b100 - gem5 format is ARMv7
645            ctr.format = 0x4;
646
647            return ctr;
648        }
649      case MISCREG_ACTLR:
650        warn("Not doing anything for miscreg ACTLR\n");
651        break;
652
653      case MISCREG_PMXEVTYPER_PMCCFILTR:
654      case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
655      case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
656      case MISCREG_PMCR ... MISCREG_PMOVSSET:
657        return pmu->readMiscReg(misc_reg);
658
659      case MISCREG_CPSR_Q:
660        panic("shouldn't be reading this register seperately\n");
661      case MISCREG_FPSCR_QC:
662        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask;
663      case MISCREG_FPSCR_EXC:
664        return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask;
665      case MISCREG_FPSR:
666        {
667            const uint32_t ones = (uint32_t)(-1);
668            FPSCR fpscrMask = 0;
669            fpscrMask.ioc = ones;
670            fpscrMask.dzc = ones;
671            fpscrMask.ofc = ones;
672            fpscrMask.ufc = ones;
673            fpscrMask.ixc = ones;
674            fpscrMask.idc = ones;
675            fpscrMask.qc = ones;
676            fpscrMask.v = ones;
677            fpscrMask.c = ones;
678            fpscrMask.z = ones;
679            fpscrMask.n = ones;
680            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
681        }
682      case MISCREG_FPCR:
683        {
684            const uint32_t ones = (uint32_t)(-1);
685            FPSCR fpscrMask  = 0;
686            fpscrMask.ioe = ones;
687            fpscrMask.dze = ones;
688            fpscrMask.ofe = ones;
689            fpscrMask.ufe = ones;
690            fpscrMask.ixe = ones;
691            fpscrMask.ide = ones;
692            fpscrMask.len    = ones;
693            fpscrMask.stride = ones;
694            fpscrMask.rMode  = ones;
695            fpscrMask.fz     = ones;
696            fpscrMask.dn     = ones;
697            fpscrMask.ahp    = ones;
698            return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask;
699        }
700      case MISCREG_NZCV:
701        {
702            CPSR cpsr = 0;
703            cpsr.nz   = tc->readCCReg(CCREG_NZ);
704            cpsr.c    = tc->readCCReg(CCREG_C);
705            cpsr.v    = tc->readCCReg(CCREG_V);
706            return cpsr;
707        }
708      case MISCREG_DAIF:
709        {
710            CPSR cpsr = 0;
711            cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif;
712            return cpsr;
713        }
714      case MISCREG_SP_EL0:
715        {
716            return tc->readIntReg(INTREG_SP0);
717        }
718      case MISCREG_SP_EL1:
719        {
720            return tc->readIntReg(INTREG_SP1);
721        }
722      case MISCREG_SP_EL2:
723        {
724            return tc->readIntReg(INTREG_SP2);
725        }
726      case MISCREG_SPSEL:
727        {
728            return miscRegs[MISCREG_CPSR] & 0x1;
729        }
730      case MISCREG_CURRENTEL:
731        {
732            return miscRegs[MISCREG_CPSR] & 0xc;
733        }
734      case MISCREG_L2CTLR:
735        {
736            // mostly unimplemented, just set NumCPUs field from sim and return
737            L2CTLR l2ctlr = 0;
738            // b00:1CPU to b11:4CPUs
739            l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1;
740            return l2ctlr;
741        }
742      case MISCREG_DBGDIDR:
743        /* For now just implement the version number.
744         * ARMv7, v7.1 Debug architecture (0b0101 --> 0x5)
745         */
746        return 0x5 << 16;
747      case MISCREG_DBGDSCRint:
748        return 0;
749      case MISCREG_ISR:
750        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
751            readMiscRegNoEffect(MISCREG_HCR),
752            readMiscRegNoEffect(MISCREG_CPSR),
753            readMiscRegNoEffect(MISCREG_SCR));
754      case MISCREG_ISR_EL1:
755        return tc->getCpuPtr()->getInterruptController(tc->threadId())->getISR(
756            readMiscRegNoEffect(MISCREG_HCR_EL2),
757            readMiscRegNoEffect(MISCREG_CPSR),
758            readMiscRegNoEffect(MISCREG_SCR_EL3));
759      case MISCREG_DCZID_EL0:
760        return 0x04;  // DC ZVA clear 64-byte chunks
761      case MISCREG_HCPTR:
762        {
763            MiscReg val = readMiscRegNoEffect(misc_reg);
764            // The trap bit associated with CP14 is defined as RAZ
765            val &= ~(1 << 14);
766            // If a CP bit in NSACR is 0 then the corresponding bit in
767            // HCPTR is RAO/WI
768            bool secure_lookup = haveSecurity &&
769                inSecureState(readMiscRegNoEffect(MISCREG_SCR),
770                              readMiscRegNoEffect(MISCREG_CPSR));
771            if (!secure_lookup) {
772                MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR);
773                val |= (mask ^ 0x7FFF) & 0xBFFF;
774            }
775            // Set the bits for unimplemented coprocessors to RAO/WI
776            val |= 0x33FF;
777            return (val);
778        }
779      case MISCREG_HDFAR: // alias for secure DFAR
780        return readMiscRegNoEffect(MISCREG_DFAR_S);
781      case MISCREG_HIFAR: // alias for secure IFAR
782        return readMiscRegNoEffect(MISCREG_IFAR_S);
783      case MISCREG_HVBAR: // bottom bits reserved
784        return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0;
785      case MISCREG_SCTLR:
786        return (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818;
787      case MISCREG_SCTLR_EL1:
788        return (readMiscRegNoEffect(misc_reg) & 0x37DDDBBF) | 0x30D00800;
789      case MISCREG_SCTLR_EL2:
790      case MISCREG_SCTLR_EL3:
791      case MISCREG_HSCTLR:
792        return (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830;
793
794      case MISCREG_ID_PFR0:
795        // !ThumbEE | !Jazelle | Thumb | ARM
796        return 0x00000031;
797      case MISCREG_ID_PFR1:
798        {   // Timer | Virti | !M Profile | TrustZone | ARMv4
799            bool haveTimer = (system->getGenericTimer() != NULL);
800            return 0x00000001
801                 | (haveSecurity       ? 0x00000010 : 0x0)
802                 | (haveVirtualization ? 0x00001000 : 0x0)
803                 | (haveTimer          ? 0x00010000 : 0x0);
804        }
805      case MISCREG_ID_AA64PFR0_EL1:
806        return 0x0000000000000002   // AArch{64,32} supported at EL0
807             | 0x0000000000000020                             // EL1
808             | (haveVirtualization ? 0x0000000000000200 : 0)  // EL2
809             | (haveSecurity       ? 0x0000000000002000 : 0); // EL3
810      case MISCREG_ID_AA64PFR1_EL1:
811        return 0; // bits [63:0] RES0 (reserved for future use)
812
813      // Generic Timer registers
814      case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
815      case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
816      case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
817      case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
818        return getGenericTimer(tc).readMiscReg(misc_reg);
819
820      default:
821        break;
822
823    }
824    return readMiscRegNoEffect(misc_reg);
825}
826
827void
828ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
829{
830    assert(misc_reg < NumMiscRegs);
831
832    const auto &reg = lookUpMiscReg[misc_reg]; // bit masks
833    const auto &map = getMiscIndices(misc_reg);
834    int lower = map.first, upper = map.second;
835
836    auto v = (val & ~reg.wi()) | reg.rao();
837    if (upper > 0) {
838        miscRegs[lower] = bits(v, 31, 0);
839        miscRegs[upper] = bits(v, 63, 32);
840        DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n",
841                misc_reg, lower, upper, v);
842    } else {
843        miscRegs[lower] = v;
844        DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n",
845                misc_reg, lower, v);
846    }
847}
848
849namespace {
850
851template<typename T>
852TLB *
853getITBPtr(T *tc)
854{
855    auto tlb = dynamic_cast<TLB *>(tc->getITBPtr());
856    assert(tlb);
857    return tlb;
858}
859
860template<typename T>
861TLB *
862getDTBPtr(T *tc)
863{
864    auto tlb = dynamic_cast<TLB *>(tc->getDTBPtr());
865    assert(tlb);
866    return tlb;
867}
868
869} // anonymous namespace
870
871void
872ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc)
873{
874
875    MiscReg newVal = val;
876    int x;
877    bool secure_lookup;
878    bool hyp;
879    System *sys;
880    ThreadContext *oc;
881    uint8_t target_el;
882    uint16_t asid;
883    SCR scr;
884
885    if (misc_reg == MISCREG_CPSR) {
886        updateRegMap(val);
887
888
889        CPSR old_cpsr = miscRegs[MISCREG_CPSR];
890        int old_mode = old_cpsr.mode;
891        CPSR cpsr = val;
892        if (old_mode != cpsr.mode) {
893            getITBPtr(tc)->invalidateMiscReg();
894            getDTBPtr(tc)->invalidateMiscReg();
895        }
896
897        DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n",
898                miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode);
899        PCState pc = tc->pcState();
900        pc.nextThumb(cpsr.t);
901        pc.nextJazelle(cpsr.j);
902
903        // Follow slightly different semantics if a CheckerCPU object
904        // is connected
905        CheckerCPU *checker = tc->getCheckerCpuPtr();
906        if (checker) {
907            tc->pcStateNoRecord(pc);
908        } else {
909            tc->pcState(pc);
910        }
911    } else {
912#ifndef NDEBUG
913        if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) {
914            if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL])
915                warn("Unimplemented system register %s write with %#x.\n",
916                    miscRegName[misc_reg], val);
917            else
918                panic("Unimplemented system register %s write with %#x.\n",
919                    miscRegName[misc_reg], val);
920        }
921#endif
922        switch (unflattenMiscReg(misc_reg)) {
923          case MISCREG_CPACR:
924            {
925
926                const uint32_t ones = (uint32_t)(-1);
927                CPACR cpacrMask = 0;
928                // Only cp10, cp11, and ase are implemented, nothing else should
929                // be writable
930                cpacrMask.cp10 = ones;
931                cpacrMask.cp11 = ones;
932                cpacrMask.asedis = ones;
933
934                // Security Extensions may limit the writability of CPACR
935                if (haveSecurity) {
936                    scr = readMiscRegNoEffect(MISCREG_SCR);
937                    CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR);
938                    if (scr.ns && (cpsr.mode != MODE_MON)) {
939                        NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR);
940                        // NB: Skipping the full loop, here
941                        if (!nsacr.cp10) cpacrMask.cp10 = 0;
942                        if (!nsacr.cp11) cpacrMask.cp11 = 0;
943                    }
944                }
945
946                MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR);
947                newVal &= cpacrMask;
948                newVal |= old_val & ~cpacrMask;
949                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
950                        miscRegName[misc_reg], newVal);
951            }
952            break;
953          case MISCREG_CPACR_EL1:
954            {
955                const uint32_t ones = (uint32_t)(-1);
956                CPACR cpacrMask = 0;
957                cpacrMask.tta = ones;
958                cpacrMask.fpen = ones;
959                newVal &= cpacrMask;
960                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
961                        miscRegName[misc_reg], newVal);
962            }
963            break;
964          case MISCREG_CPTR_EL2:
965            {
966                const uint32_t ones = (uint32_t)(-1);
967                CPTR cptrMask = 0;
968                cptrMask.tcpac = ones;
969                cptrMask.tta = ones;
970                cptrMask.tfp = ones;
971                newVal &= cptrMask;
972                cptrMask = 0;
973                cptrMask.res1_13_12_el2 = ones;
974                cptrMask.res1_9_0_el2 = ones;
975                newVal |= cptrMask;
976                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
977                        miscRegName[misc_reg], newVal);
978            }
979            break;
980          case MISCREG_CPTR_EL3:
981            {
982                const uint32_t ones = (uint32_t)(-1);
983                CPTR cptrMask = 0;
984                cptrMask.tcpac = ones;
985                cptrMask.tta = ones;
986                cptrMask.tfp = ones;
987                newVal &= cptrMask;
988                DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n",
989                        miscRegName[misc_reg], newVal);
990            }
991            break;
992          case MISCREG_CSSELR:
993            warn_once("The csselr register isn't implemented.\n");
994            return;
995
996          case MISCREG_DC_ZVA_Xt:
997            warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n");
998            return;
999
1000          case MISCREG_FPSCR:
1001            {
1002                const uint32_t ones = (uint32_t)(-1);
1003                FPSCR fpscrMask = 0;
1004                fpscrMask.ioc = ones;
1005                fpscrMask.dzc = ones;
1006                fpscrMask.ofc = ones;
1007                fpscrMask.ufc = ones;
1008                fpscrMask.ixc = ones;
1009                fpscrMask.idc = ones;
1010                fpscrMask.ioe = ones;
1011                fpscrMask.dze = ones;
1012                fpscrMask.ofe = ones;
1013                fpscrMask.ufe = ones;
1014                fpscrMask.ixe = ones;
1015                fpscrMask.ide = ones;
1016                fpscrMask.len = ones;
1017                fpscrMask.stride = ones;
1018                fpscrMask.rMode = ones;
1019                fpscrMask.fz = ones;
1020                fpscrMask.dn = ones;
1021                fpscrMask.ahp = ones;
1022                fpscrMask.qc = ones;
1023                fpscrMask.v = ones;
1024                fpscrMask.c = ones;
1025                fpscrMask.z = ones;
1026                fpscrMask.n = ones;
1027                newVal = (newVal & (uint32_t)fpscrMask) |
1028                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1029                          ~(uint32_t)fpscrMask);
1030                tc->getDecoderPtr()->setContext(newVal);
1031            }
1032            break;
1033          case MISCREG_FPSR:
1034            {
1035                const uint32_t ones = (uint32_t)(-1);
1036                FPSCR fpscrMask = 0;
1037                fpscrMask.ioc = ones;
1038                fpscrMask.dzc = ones;
1039                fpscrMask.ofc = ones;
1040                fpscrMask.ufc = ones;
1041                fpscrMask.ixc = ones;
1042                fpscrMask.idc = ones;
1043                fpscrMask.qc = ones;
1044                fpscrMask.v = ones;
1045                fpscrMask.c = ones;
1046                fpscrMask.z = ones;
1047                fpscrMask.n = ones;
1048                newVal = (newVal & (uint32_t)fpscrMask) |
1049                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1050                          ~(uint32_t)fpscrMask);
1051                misc_reg = MISCREG_FPSCR;
1052            }
1053            break;
1054          case MISCREG_FPCR:
1055            {
1056                const uint32_t ones = (uint32_t)(-1);
1057                FPSCR fpscrMask  = 0;
1058                fpscrMask.ioe = ones;
1059                fpscrMask.dze = ones;
1060                fpscrMask.ofe = ones;
1061                fpscrMask.ufe = ones;
1062                fpscrMask.ixe = ones;
1063                fpscrMask.ide = ones;
1064                fpscrMask.len    = ones;
1065                fpscrMask.stride = ones;
1066                fpscrMask.rMode  = ones;
1067                fpscrMask.fz     = ones;
1068                fpscrMask.dn     = ones;
1069                fpscrMask.ahp    = ones;
1070                newVal = (newVal & (uint32_t)fpscrMask) |
1071                         (readMiscRegNoEffect(MISCREG_FPSCR) &
1072                          ~(uint32_t)fpscrMask);
1073                misc_reg = MISCREG_FPSCR;
1074            }
1075            break;
1076          case MISCREG_CPSR_Q:
1077            {
1078                assert(!(newVal & ~CpsrMaskQ));
1079                newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal;
1080                misc_reg = MISCREG_CPSR;
1081            }
1082            break;
1083          case MISCREG_FPSCR_QC:
1084            {
1085                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1086                         (newVal & FpscrQcMask);
1087                misc_reg = MISCREG_FPSCR;
1088            }
1089            break;
1090          case MISCREG_FPSCR_EXC:
1091            {
1092                newVal = readMiscRegNoEffect(MISCREG_FPSCR) |
1093                         (newVal & FpscrExcMask);
1094                misc_reg = MISCREG_FPSCR;
1095            }
1096            break;
1097          case MISCREG_FPEXC:
1098            {
1099                // vfpv3 architecture, section B.6.1 of DDI04068
1100                // bit 29 - valid only if fpexc[31] is 0
1101                const uint32_t fpexcMask = 0x60000000;
1102                newVal = (newVal & fpexcMask) |
1103                         (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask);
1104            }
1105            break;
1106          case MISCREG_HCR:
1107            {
1108                if (!haveVirtualization)
1109                    return;
1110            }
1111            break;
1112          case MISCREG_IFSR:
1113            {
1114                // ARM ARM (ARM DDI 0406C.b) B4.1.96
1115                const uint32_t ifsrMask =
1116                    mask(31, 13) | mask(11, 11) | mask(8, 6);
1117                newVal = newVal & ~ifsrMask;
1118            }
1119            break;
1120          case MISCREG_DFSR:
1121            {
1122                // ARM ARM (ARM DDI 0406C.b) B4.1.52
1123                const uint32_t dfsrMask = mask(31, 14) | mask(8, 8);
1124                newVal = newVal & ~dfsrMask;
1125            }
1126            break;
1127          case MISCREG_AMAIR0:
1128          case MISCREG_AMAIR1:
1129            {
1130                // ARM ARM (ARM DDI 0406C.b) B4.1.5
1131                // Valid only with LPAE
1132                if (!haveLPAE)
1133                    return;
1134                DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal);
1135            }
1136            break;
1137          case MISCREG_SCR:
1138            getITBPtr(tc)->invalidateMiscReg();
1139            getDTBPtr(tc)->invalidateMiscReg();
1140            break;
1141          case MISCREG_SCTLR:
1142            {
1143                DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal);
1144                scr = readMiscRegNoEffect(MISCREG_SCR);
1145                MiscRegIndex sctlr_idx = (haveSecurity && !scr.ns)
1146                                         ? MISCREG_SCTLR_S : MISCREG_SCTLR_NS;
1147                SCTLR sctlr = miscRegs[sctlr_idx];
1148                SCTLR new_sctlr = newVal;
1149                new_sctlr.nmfi =  ((bool)sctlr.nmfi) && !haveVirtualization;
1150                miscRegs[sctlr_idx] = (MiscReg)new_sctlr;
1151                getITBPtr(tc)->invalidateMiscReg();
1152                getDTBPtr(tc)->invalidateMiscReg();
1153            }
1154          case MISCREG_MIDR:
1155          case MISCREG_ID_PFR0:
1156          case MISCREG_ID_PFR1:
1157          case MISCREG_ID_DFR0:
1158          case MISCREG_ID_MMFR0:
1159          case MISCREG_ID_MMFR1:
1160          case MISCREG_ID_MMFR2:
1161          case MISCREG_ID_MMFR3:
1162          case MISCREG_ID_ISAR0:
1163          case MISCREG_ID_ISAR1:
1164          case MISCREG_ID_ISAR2:
1165          case MISCREG_ID_ISAR3:
1166          case MISCREG_ID_ISAR4:
1167          case MISCREG_ID_ISAR5:
1168
1169          case MISCREG_MPIDR:
1170          case MISCREG_FPSID:
1171          case MISCREG_TLBTR:
1172          case MISCREG_MVFR0:
1173          case MISCREG_MVFR1:
1174
1175          case MISCREG_ID_AA64AFR0_EL1:
1176          case MISCREG_ID_AA64AFR1_EL1:
1177          case MISCREG_ID_AA64DFR0_EL1:
1178          case MISCREG_ID_AA64DFR1_EL1:
1179          case MISCREG_ID_AA64ISAR0_EL1:
1180          case MISCREG_ID_AA64ISAR1_EL1:
1181          case MISCREG_ID_AA64MMFR0_EL1:
1182          case MISCREG_ID_AA64MMFR1_EL1:
1183          case MISCREG_ID_AA64PFR0_EL1:
1184          case MISCREG_ID_AA64PFR1_EL1:
1185            // ID registers are constants.
1186            return;
1187
1188          // TLBI all entries, EL0&1 inner sharable (ignored)
1189          case MISCREG_TLBIALLIS:
1190          case MISCREG_TLBIALL: // TLBI all entries, EL0&1,
1191            assert32(tc);
1192            target_el = 1; // el 0 and 1 are handled together
1193            scr = readMiscReg(MISCREG_SCR, tc);
1194            secure_lookup = haveSecurity && !scr.ns;
1195            sys = tc->getSystemPtr();
1196            for (x = 0; x < sys->numContexts(); x++) {
1197                oc = sys->getThreadContext(x);
1198                getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1199                getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1200
1201                // If CheckerCPU is connected, need to notify it of a flush
1202                CheckerCPU *checker = oc->getCheckerCpuPtr();
1203                if (checker) {
1204                    getITBPtr(checker)->flushAllSecurity(secure_lookup,
1205                                                         target_el);
1206                    getDTBPtr(checker)->flushAllSecurity(secure_lookup,
1207                                                         target_el);
1208                }
1209            }
1210            return;
1211          // TLBI all entries, EL0&1, instruction side
1212          case MISCREG_ITLBIALL:
1213            assert32(tc);
1214            target_el = 1; // el 0 and 1 are handled together
1215            scr = readMiscReg(MISCREG_SCR, tc);
1216            secure_lookup = haveSecurity && !scr.ns;
1217            getITBPtr(tc)->flushAllSecurity(secure_lookup, target_el);
1218            return;
1219          // TLBI all entries, EL0&1, data side
1220          case MISCREG_DTLBIALL:
1221            assert32(tc);
1222            target_el = 1; // el 0 and 1 are handled together
1223            scr = readMiscReg(MISCREG_SCR, tc);
1224            secure_lookup = haveSecurity && !scr.ns;
1225            getDTBPtr(tc)->flushAllSecurity(secure_lookup, target_el);
1226            return;
1227          // TLBI based on VA, EL0&1 inner sharable (ignored)
1228          case MISCREG_TLBIMVAIS:
1229          case MISCREG_TLBIMVA:
1230            assert32(tc);
1231            target_el = 1; // el 0 and 1 are handled together
1232            scr = readMiscReg(MISCREG_SCR, tc);
1233            secure_lookup = haveSecurity && !scr.ns;
1234            sys = tc->getSystemPtr();
1235            for (x = 0; x < sys->numContexts(); x++) {
1236                oc = sys->getThreadContext(x);
1237                getITBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12),
1238                                              bits(newVal, 7,0),
1239                                              secure_lookup, target_el);
1240                getDTBPtr(oc)->flushMvaAsid(mbits(newVal, 31, 12),
1241                                              bits(newVal, 7,0),
1242                                              secure_lookup, target_el);
1243
1244                CheckerCPU *checker = oc->getCheckerCpuPtr();
1245                if (checker) {
1246                    getITBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12),
1247                        bits(newVal, 7,0), secure_lookup, target_el);
1248                    getDTBPtr(checker)->flushMvaAsid(mbits(newVal, 31, 12),
1249                        bits(newVal, 7,0), secure_lookup, target_el);
1250                }
1251            }
1252            return;
1253          // TLBI by ASID, EL0&1, inner sharable
1254          case MISCREG_TLBIASIDIS:
1255          case MISCREG_TLBIASID:
1256            assert32(tc);
1257            target_el = 1; // el 0 and 1 are handled together
1258            scr = readMiscReg(MISCREG_SCR, tc);
1259            secure_lookup = haveSecurity && !scr.ns;
1260            sys = tc->getSystemPtr();
1261            for (x = 0; x < sys->numContexts(); x++) {
1262                oc = sys->getThreadContext(x);
1263                getITBPtr(oc)->flushAsid(bits(newVal, 7,0),
1264                    secure_lookup, target_el);
1265                getDTBPtr(oc)->flushAsid(bits(newVal, 7,0),
1266                    secure_lookup, target_el);
1267                CheckerCPU *checker = oc->getCheckerCpuPtr();
1268                if (checker) {
1269                    getITBPtr(checker)->flushAsid(bits(newVal, 7,0),
1270                        secure_lookup, target_el);
1271                    getDTBPtr(checker)->flushAsid(bits(newVal, 7,0),
1272                        secure_lookup, target_el);
1273                }
1274            }
1275            return;
1276          // TLBI by address, EL0&1, inner sharable (ignored)
1277          case MISCREG_TLBIMVAAIS:
1278          case MISCREG_TLBIMVAA:
1279            assert32(tc);
1280            target_el = 1; // el 0 and 1 are handled together
1281            scr = readMiscReg(MISCREG_SCR, tc);
1282            secure_lookup = haveSecurity && !scr.ns;
1283            hyp = 0;
1284            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1285            return;
1286          // TLBI by address, EL2, hypervisor mode
1287          case MISCREG_TLBIMVAH:
1288          case MISCREG_TLBIMVAHIS:
1289            assert32(tc);
1290            target_el = 1; // aarch32, use hyp bit
1291            scr = readMiscReg(MISCREG_SCR, tc);
1292            secure_lookup = haveSecurity && !scr.ns;
1293            hyp = 1;
1294            tlbiMVA(tc, newVal, secure_lookup, hyp, target_el);
1295            return;
1296          // TLBI by address and asid, EL0&1, instruction side only
1297          case MISCREG_ITLBIMVA:
1298            assert32(tc);
1299            target_el = 1; // el 0 and 1 are handled together
1300            scr = readMiscReg(MISCREG_SCR, tc);
1301            secure_lookup = haveSecurity && !scr.ns;
1302            getITBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12),
1303                bits(newVal, 7,0), secure_lookup, target_el);
1304            return;
1305          // TLBI by address and asid, EL0&1, data side only
1306          case MISCREG_DTLBIMVA:
1307            assert32(tc);
1308            target_el = 1; // el 0 and 1 are handled together
1309            scr = readMiscReg(MISCREG_SCR, tc);
1310            secure_lookup = haveSecurity && !scr.ns;
1311            getDTBPtr(tc)->flushMvaAsid(mbits(newVal, 31, 12),
1312                bits(newVal, 7,0), secure_lookup, target_el);
1313            return;
1314          // TLBI by ASID, EL0&1, instrution side only
1315          case MISCREG_ITLBIASID:
1316            assert32(tc);
1317            target_el = 1; // el 0 and 1 are handled together
1318            scr = readMiscReg(MISCREG_SCR, tc);
1319            secure_lookup = haveSecurity && !scr.ns;
1320            getITBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup,
1321                                       target_el);
1322            return;
1323          // TLBI by ASID EL0&1 data size only
1324          case MISCREG_DTLBIASID:
1325            assert32(tc);
1326            target_el = 1; // el 0 and 1 are handled together
1327            scr = readMiscReg(MISCREG_SCR, tc);
1328            secure_lookup = haveSecurity && !scr.ns;
1329            getDTBPtr(tc)->flushAsid(bits(newVal, 7,0), secure_lookup,
1330                                       target_el);
1331            return;
1332          // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB
1333          case MISCREG_TLBIALLNSNH:
1334          case MISCREG_TLBIALLNSNHIS:
1335            assert32(tc);
1336            target_el = 1; // el 0 and 1 are handled together
1337            hyp = 0;
1338            tlbiALLN(tc, hyp, target_el);
1339            return;
1340          // TLBI all entries, EL2, hyp,
1341          case MISCREG_TLBIALLH:
1342          case MISCREG_TLBIALLHIS:
1343            assert32(tc);
1344            target_el = 1; // aarch32, use hyp bit
1345            hyp = 1;
1346            tlbiALLN(tc, hyp, target_el);
1347            return;
1348          // AArch64 TLBI: invalidate all entries EL3
1349          case MISCREG_TLBI_ALLE3IS:
1350          case MISCREG_TLBI_ALLE3:
1351            assert64(tc);
1352            target_el = 3;
1353            secure_lookup = true;
1354            tlbiALL(tc, secure_lookup, target_el);
1355            return;
1356          // @todo: uncomment this to enable Virtualization
1357          // case MISCREG_TLBI_ALLE2IS:
1358          // case MISCREG_TLBI_ALLE2:
1359          // TLBI all entries, EL0&1
1360          case MISCREG_TLBI_ALLE1IS:
1361          case MISCREG_TLBI_ALLE1:
1362          // AArch64 TLBI: invalidate all entries, stage 1, current VMID
1363          case MISCREG_TLBI_VMALLE1IS:
1364          case MISCREG_TLBI_VMALLE1:
1365          // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID
1366          case MISCREG_TLBI_VMALLS12E1IS:
1367          case MISCREG_TLBI_VMALLS12E1:
1368            // @todo: handle VMID and stage 2 to enable Virtualization
1369            assert64(tc);
1370            target_el = 1; // el 0 and 1 are handled together
1371            scr = readMiscReg(MISCREG_SCR, tc);
1372            secure_lookup = haveSecurity && !scr.ns;
1373            tlbiALL(tc, secure_lookup, target_el);
1374            return;
1375          // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID
1376          // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries
1377          // from the last level of translation table walks
1378          // @todo: handle VMID to enable Virtualization
1379          // TLBI all entries, EL0&1
1380          case MISCREG_TLBI_VAE3IS_Xt:
1381          case MISCREG_TLBI_VAE3_Xt:
1382          // TLBI by VA, EL3  regime stage 1, last level walk
1383          case MISCREG_TLBI_VALE3IS_Xt:
1384          case MISCREG_TLBI_VALE3_Xt:
1385            assert64(tc);
1386            target_el = 3;
1387            asid = 0xbeef; // does not matter, tlbi is global
1388            secure_lookup = true;
1389            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1390            return;
1391          // TLBI by VA, EL2
1392          case MISCREG_TLBI_VAE2IS_Xt:
1393          case MISCREG_TLBI_VAE2_Xt:
1394          // TLBI by VA, EL2, stage1 last level walk
1395          case MISCREG_TLBI_VALE2IS_Xt:
1396          case MISCREG_TLBI_VALE2_Xt:
1397            assert64(tc);
1398            target_el = 2;
1399            asid = 0xbeef; // does not matter, tlbi is global
1400            scr = readMiscReg(MISCREG_SCR, tc);
1401            secure_lookup = haveSecurity && !scr.ns;
1402            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1403            return;
1404          // TLBI by VA EL1 & 0, stage1, ASID, current VMID
1405          case MISCREG_TLBI_VAE1IS_Xt:
1406          case MISCREG_TLBI_VAE1_Xt:
1407          case MISCREG_TLBI_VALE1IS_Xt:
1408          case MISCREG_TLBI_VALE1_Xt:
1409            assert64(tc);
1410            asid = bits(newVal, 63, 48);
1411            target_el = 1; // el 0 and 1 are handled together
1412            scr = readMiscReg(MISCREG_SCR, tc);
1413            secure_lookup = haveSecurity && !scr.ns;
1414            tlbiVA(tc, newVal, asid, secure_lookup, target_el);
1415            return;
1416          // AArch64 TLBI: invalidate by ASID, stage 1, current VMID
1417          // @todo: handle VMID to enable Virtualization
1418          case MISCREG_TLBI_ASIDE1IS_Xt:
1419          case MISCREG_TLBI_ASIDE1_Xt:
1420            assert64(tc);
1421            target_el = 1; // el 0 and 1 are handled together
1422            scr = readMiscReg(MISCREG_SCR, tc);
1423            secure_lookup = haveSecurity && !scr.ns;
1424            sys = tc->getSystemPtr();
1425            for (x = 0; x < sys->numContexts(); x++) {
1426                oc = sys->getThreadContext(x);
1427                asid = bits(newVal, 63, 48);
1428                if (!haveLargeAsid64)
1429                    asid &= mask(8);
1430                getITBPtr(oc)->flushAsid(asid, secure_lookup, target_el);
1431                getDTBPtr(oc)->flushAsid(asid, secure_lookup, target_el);
1432                CheckerCPU *checker = oc->getCheckerCpuPtr();
1433                if (checker) {
1434                    getITBPtr(checker)->flushAsid(asid,
1435                        secure_lookup, target_el);
1436                    getDTBPtr(checker)->flushAsid(asid,
1437                        secure_lookup, target_el);
1438                }
1439            }
1440            return;
1441          // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID
1442          // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store
1443          // entries from the last level of translation table walks
1444          // @todo: handle VMID to enable Virtualization
1445          case MISCREG_TLBI_VAAE1IS_Xt:
1446          case MISCREG_TLBI_VAAE1_Xt:
1447          case MISCREG_TLBI_VAALE1IS_Xt:
1448          case MISCREG_TLBI_VAALE1_Xt:
1449            assert64(tc);
1450            target_el = 1; // el 0 and 1 are handled together
1451            scr = readMiscReg(MISCREG_SCR, tc);
1452            secure_lookup = haveSecurity && !scr.ns;
1453            sys = tc->getSystemPtr();
1454            for (x = 0; x < sys->numContexts(); x++) {
1455                // @todo: extra controls on TLBI broadcast?
1456                oc = sys->getThreadContext(x);
1457                Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1458                getITBPtr(oc)->flushMva(va,
1459                    secure_lookup, false, target_el);
1460                getDTBPtr(oc)->flushMva(va,
1461                    secure_lookup, false, target_el);
1462
1463                CheckerCPU *checker = oc->getCheckerCpuPtr();
1464                if (checker) {
1465                    getITBPtr(checker)->flushMva(va,
1466                        secure_lookup, false, target_el);
1467                    getDTBPtr(checker)->flushMva(va,
1468                        secure_lookup, false, target_el);
1469                }
1470            }
1471            return;
1472          // AArch64 TLBI: invalidate by IPA, stage 2, current VMID
1473          case MISCREG_TLBI_IPAS2LE1IS_Xt:
1474          case MISCREG_TLBI_IPAS2LE1_Xt:
1475          case MISCREG_TLBI_IPAS2E1IS_Xt:
1476          case MISCREG_TLBI_IPAS2E1_Xt:
1477            assert64(tc);
1478            target_el = 1; // EL 0 and 1 are handled together
1479            scr = readMiscReg(MISCREG_SCR, tc);
1480            secure_lookup = haveSecurity && !scr.ns;
1481            sys = tc->getSystemPtr();
1482            for (x = 0; x < sys->numContexts(); x++) {
1483                oc = sys->getThreadContext(x);
1484                Addr ipa = ((Addr) bits(newVal, 35, 0)) << 12;
1485                getITBPtr(oc)->flushIpaVmid(ipa,
1486                    secure_lookup, false, target_el);
1487                getDTBPtr(oc)->flushIpaVmid(ipa,
1488                    secure_lookup, false, target_el);
1489
1490                CheckerCPU *checker = oc->getCheckerCpuPtr();
1491                if (checker) {
1492                    getITBPtr(checker)->flushIpaVmid(ipa,
1493                        secure_lookup, false, target_el);
1494                    getDTBPtr(checker)->flushIpaVmid(ipa,
1495                        secure_lookup, false, target_el);
1496                }
1497            }
1498            return;
1499          case MISCREG_ACTLR:
1500            warn("Not doing anything for write of miscreg ACTLR\n");
1501            break;
1502
1503          case MISCREG_PMXEVTYPER_PMCCFILTR:
1504          case MISCREG_PMINTENSET_EL1 ... MISCREG_PMOVSSET_EL0:
1505          case MISCREG_PMEVCNTR0_EL0 ... MISCREG_PMEVTYPER5_EL0:
1506          case MISCREG_PMCR ... MISCREG_PMOVSSET:
1507            pmu->setMiscReg(misc_reg, newVal);
1508            break;
1509
1510
1511          case MISCREG_HSTR: // TJDBX, now redifined to be RES0
1512            {
1513                HSTR hstrMask = 0;
1514                hstrMask.tjdbx = 1;
1515                newVal &= ~((uint32_t) hstrMask);
1516                break;
1517            }
1518          case MISCREG_HCPTR:
1519            {
1520                // If a CP bit in NSACR is 0 then the corresponding bit in
1521                // HCPTR is RAO/WI. Same applies to NSASEDIS
1522                secure_lookup = haveSecurity &&
1523                    inSecureState(readMiscRegNoEffect(MISCREG_SCR),
1524                                  readMiscRegNoEffect(MISCREG_CPSR));
1525                if (!secure_lookup) {
1526                    MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR);
1527                    MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF;
1528                    newVal = (newVal & ~mask) | (oldValue & mask);
1529                }
1530                break;
1531            }
1532          case MISCREG_HDFAR: // alias for secure DFAR
1533            misc_reg = MISCREG_DFAR_S;
1534            break;
1535          case MISCREG_HIFAR: // alias for secure IFAR
1536            misc_reg = MISCREG_IFAR_S;
1537            break;
1538          case MISCREG_ATS1CPR:
1539          case MISCREG_ATS1CPW:
1540          case MISCREG_ATS1CUR:
1541          case MISCREG_ATS1CUW:
1542          case MISCREG_ATS12NSOPR:
1543          case MISCREG_ATS12NSOPW:
1544          case MISCREG_ATS12NSOUR:
1545          case MISCREG_ATS12NSOUW:
1546          case MISCREG_ATS1HR:
1547          case MISCREG_ATS1HW:
1548            {
1549              Request::Flags flags = 0;
1550              BaseTLB::Mode mode = BaseTLB::Read;
1551              TLB::ArmTranslationType tranType = TLB::NormalTran;
1552              Fault fault;
1553              switch(misc_reg) {
1554                case MISCREG_ATS1CPR:
1555                  flags    = TLB::MustBeOne;
1556                  tranType = TLB::S1CTran;
1557                  mode     = BaseTLB::Read;
1558                  break;
1559                case MISCREG_ATS1CPW:
1560                  flags    = TLB::MustBeOne;
1561                  tranType = TLB::S1CTran;
1562                  mode     = BaseTLB::Write;
1563                  break;
1564                case MISCREG_ATS1CUR:
1565                  flags    = TLB::MustBeOne | TLB::UserMode;
1566                  tranType = TLB::S1CTran;
1567                  mode     = BaseTLB::Read;
1568                  break;
1569                case MISCREG_ATS1CUW:
1570                  flags    = TLB::MustBeOne | TLB::UserMode;
1571                  tranType = TLB::S1CTran;
1572                  mode     = BaseTLB::Write;
1573                  break;
1574                case MISCREG_ATS12NSOPR:
1575                  if (!haveSecurity)
1576                      panic("Security Extensions required for ATS12NSOPR");
1577                  flags    = TLB::MustBeOne;
1578                  tranType = TLB::S1S2NsTran;
1579                  mode     = BaseTLB::Read;
1580                  break;
1581                case MISCREG_ATS12NSOPW:
1582                  if (!haveSecurity)
1583                      panic("Security Extensions required for ATS12NSOPW");
1584                  flags    = TLB::MustBeOne;
1585                  tranType = TLB::S1S2NsTran;
1586                  mode     = BaseTLB::Write;
1587                  break;
1588                case MISCREG_ATS12NSOUR:
1589                  if (!haveSecurity)
1590                      panic("Security Extensions required for ATS12NSOUR");
1591                  flags    = TLB::MustBeOne | TLB::UserMode;
1592                  tranType = TLB::S1S2NsTran;
1593                  mode     = BaseTLB::Read;
1594                  break;
1595                case MISCREG_ATS12NSOUW:
1596                  if (!haveSecurity)
1597                      panic("Security Extensions required for ATS12NSOUW");
1598                  flags    = TLB::MustBeOne | TLB::UserMode;
1599                  tranType = TLB::S1S2NsTran;
1600                  mode     = BaseTLB::Write;
1601                  break;
1602                case MISCREG_ATS1HR: // only really useful from secure mode.
1603                  flags    = TLB::MustBeOne;
1604                  tranType = TLB::HypMode;
1605                  mode     = BaseTLB::Read;
1606                  break;
1607                case MISCREG_ATS1HW:
1608                  flags    = TLB::MustBeOne;
1609                  tranType = TLB::HypMode;
1610                  mode     = BaseTLB::Write;
1611                  break;
1612              }
1613              // If we're in timing mode then doing the translation in
1614              // functional mode then we're slightly distorting performance
1615              // results obtained from simulations. The translation should be
1616              // done in the same mode the core is running in. NOTE: This
1617              // can't be an atomic translation because that causes problems
1618              // with unexpected atomic snoop requests.
1619              warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1620              Request req(0, val, 0, flags,  Request::funcMasterId,
1621                          tc->pcState().pc(), tc->contextId());
1622              fault = getDTBPtr(tc)->translateFunctional(
1623                      &req, tc, mode, tranType);
1624              TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1625              HCR   hcr   = readMiscRegNoEffect(MISCREG_HCR);
1626
1627              MiscReg newVal;
1628              if (fault == NoFault) {
1629                  Addr paddr = req.getPaddr();
1630                  if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode ||
1631                     ((tranType & TLB::S1S2NsTran) && hcr.vm) )) {
1632                      newVal = (paddr & mask(39, 12)) |
1633                               (getDTBPtr(tc)->getAttr());
1634                  } else {
1635                      newVal = (paddr & 0xfffff000) |
1636                               (getDTBPtr(tc)->getAttr());
1637                  }
1638                  DPRINTF(MiscRegs,
1639                          "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n",
1640                          val, newVal);
1641              } else {
1642                  ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1643                  // Set fault bit and FSR
1644                  FSR fsr = armFault->getFsr(tc);
1645
1646                  newVal = ((fsr >> 9) & 1) << 11;
1647                  if (newVal) {
1648                    // LPAE - rearange fault status
1649                    newVal |= ((fsr >>  0) & 0x3f) << 1;
1650                  } else {
1651                    // VMSA - rearange fault status
1652                    newVal |= ((fsr >>  0) & 0xf) << 1;
1653                    newVal |= ((fsr >> 10) & 0x1) << 5;
1654                    newVal |= ((fsr >> 12) & 0x1) << 6;
1655                  }
1656                  newVal |= 0x1; // F bit
1657                  newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1658                  newVal |= armFault->isStage2() ? 0x200 : 0;
1659                  DPRINTF(MiscRegs,
1660                          "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n",
1661                          val, fsr, newVal);
1662              }
1663              setMiscRegNoEffect(MISCREG_PAR, newVal);
1664              return;
1665            }
1666          case MISCREG_TTBCR:
1667            {
1668                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1669                const uint32_t ones = (uint32_t)(-1);
1670                TTBCR ttbcrMask = 0;
1671                TTBCR ttbcrNew = newVal;
1672
1673                // ARM DDI 0406C.b, ARMv7-32
1674                ttbcrMask.n = ones; // T0SZ
1675                if (haveSecurity) {
1676                    ttbcrMask.pd0 = ones;
1677                    ttbcrMask.pd1 = ones;
1678                }
1679                ttbcrMask.epd0 = ones;
1680                ttbcrMask.irgn0 = ones;
1681                ttbcrMask.orgn0 = ones;
1682                ttbcrMask.sh0 = ones;
1683                ttbcrMask.ps = ones; // T1SZ
1684                ttbcrMask.a1 = ones;
1685                ttbcrMask.epd1 = ones;
1686                ttbcrMask.irgn1 = ones;
1687                ttbcrMask.orgn1 = ones;
1688                ttbcrMask.sh1 = ones;
1689                if (haveLPAE)
1690                    ttbcrMask.eae = ones;
1691
1692                if (haveLPAE && ttbcrNew.eae) {
1693                    newVal = newVal & ttbcrMask;
1694                } else {
1695                    newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask));
1696                }
1697            }
1698            M5_FALLTHROUGH;
1699          case MISCREG_TTBR0:
1700          case MISCREG_TTBR1:
1701            {
1702                TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR);
1703                if (haveLPAE) {
1704                    if (ttbcr.eae) {
1705                        // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP
1706                        // ARMv8 AArch32 bit 63-56 only
1707                        uint64_t ttbrMask = mask(63,56) | mask(47,40);
1708                        newVal = (newVal & (~ttbrMask));
1709                    }
1710                }
1711            }
1712            M5_FALLTHROUGH;
1713          case MISCREG_SCTLR_EL1:
1714            {
1715                getITBPtr(tc)->invalidateMiscReg();
1716                getDTBPtr(tc)->invalidateMiscReg();
1717                setMiscRegNoEffect(misc_reg, newVal);
1718            }
1719            M5_FALLTHROUGH;
1720          case MISCREG_CONTEXTIDR:
1721          case MISCREG_PRRR:
1722          case MISCREG_NMRR:
1723          case MISCREG_MAIR0:
1724          case MISCREG_MAIR1:
1725          case MISCREG_DACR:
1726          case MISCREG_VTTBR:
1727          case MISCREG_SCR_EL3:
1728          case MISCREG_HCR_EL2:
1729          case MISCREG_TCR_EL1:
1730          case MISCREG_TCR_EL2:
1731          case MISCREG_TCR_EL3:
1732          case MISCREG_SCTLR_EL2:
1733          case MISCREG_SCTLR_EL3:
1734          case MISCREG_HSCTLR:
1735          case MISCREG_TTBR0_EL1:
1736          case MISCREG_TTBR1_EL1:
1737          case MISCREG_TTBR0_EL2:
1738          case MISCREG_TTBR0_EL3:
1739            getITBPtr(tc)->invalidateMiscReg();
1740            getDTBPtr(tc)->invalidateMiscReg();
1741            break;
1742          case MISCREG_NZCV:
1743            {
1744                CPSR cpsr = val;
1745
1746                tc->setCCReg(CCREG_NZ, cpsr.nz);
1747                tc->setCCReg(CCREG_C,  cpsr.c);
1748                tc->setCCReg(CCREG_V,  cpsr.v);
1749            }
1750            break;
1751          case MISCREG_DAIF:
1752            {
1753                CPSR cpsr = miscRegs[MISCREG_CPSR];
1754                cpsr.daif = (uint8_t) ((CPSR) newVal).daif;
1755                newVal = cpsr;
1756                misc_reg = MISCREG_CPSR;
1757            }
1758            break;
1759          case MISCREG_SP_EL0:
1760            tc->setIntReg(INTREG_SP0, newVal);
1761            break;
1762          case MISCREG_SP_EL1:
1763            tc->setIntReg(INTREG_SP1, newVal);
1764            break;
1765          case MISCREG_SP_EL2:
1766            tc->setIntReg(INTREG_SP2, newVal);
1767            break;
1768          case MISCREG_SPSEL:
1769            {
1770                CPSR cpsr = miscRegs[MISCREG_CPSR];
1771                cpsr.sp = (uint8_t) ((CPSR) newVal).sp;
1772                newVal = cpsr;
1773                misc_reg = MISCREG_CPSR;
1774            }
1775            break;
1776          case MISCREG_CURRENTEL:
1777            {
1778                CPSR cpsr = miscRegs[MISCREG_CPSR];
1779                cpsr.el = (uint8_t) ((CPSR) newVal).el;
1780                newVal = cpsr;
1781                misc_reg = MISCREG_CPSR;
1782            }
1783            break;
1784          case MISCREG_AT_S1E1R_Xt:
1785          case MISCREG_AT_S1E1W_Xt:
1786          case MISCREG_AT_S1E0R_Xt:
1787          case MISCREG_AT_S1E0W_Xt:
1788          case MISCREG_AT_S1E2R_Xt:
1789          case MISCREG_AT_S1E2W_Xt:
1790          case MISCREG_AT_S12E1R_Xt:
1791          case MISCREG_AT_S12E1W_Xt:
1792          case MISCREG_AT_S12E0R_Xt:
1793          case MISCREG_AT_S12E0W_Xt:
1794          case MISCREG_AT_S1E3R_Xt:
1795          case MISCREG_AT_S1E3W_Xt:
1796            {
1797                RequestPtr req = new Request;
1798                Request::Flags flags = 0;
1799                BaseTLB::Mode mode = BaseTLB::Read;
1800                TLB::ArmTranslationType tranType = TLB::NormalTran;
1801                Fault fault;
1802                switch(misc_reg) {
1803                  case MISCREG_AT_S1E1R_Xt:
1804                    flags    = TLB::MustBeOne;
1805                    tranType = TLB::S1E1Tran;
1806                    mode     = BaseTLB::Read;
1807                    break;
1808                  case MISCREG_AT_S1E1W_Xt:
1809                    flags    = TLB::MustBeOne;
1810                    tranType = TLB::S1E1Tran;
1811                    mode     = BaseTLB::Write;
1812                    break;
1813                  case MISCREG_AT_S1E0R_Xt:
1814                    flags    = TLB::MustBeOne | TLB::UserMode;
1815                    tranType = TLB::S1E0Tran;
1816                    mode     = BaseTLB::Read;
1817                    break;
1818                  case MISCREG_AT_S1E0W_Xt:
1819                    flags    = TLB::MustBeOne | TLB::UserMode;
1820                    tranType = TLB::S1E0Tran;
1821                    mode     = BaseTLB::Write;
1822                    break;
1823                  case MISCREG_AT_S1E2R_Xt:
1824                    flags    = TLB::MustBeOne;
1825                    tranType = TLB::S1E2Tran;
1826                    mode     = BaseTLB::Read;
1827                    break;
1828                  case MISCREG_AT_S1E2W_Xt:
1829                    flags    = TLB::MustBeOne;
1830                    tranType = TLB::S1E2Tran;
1831                    mode     = BaseTLB::Write;
1832                    break;
1833                  case MISCREG_AT_S12E0R_Xt:
1834                    flags    = TLB::MustBeOne | TLB::UserMode;
1835                    tranType = TLB::S12E0Tran;
1836                    mode     = BaseTLB::Read;
1837                    break;
1838                  case MISCREG_AT_S12E0W_Xt:
1839                    flags    = TLB::MustBeOne | TLB::UserMode;
1840                    tranType = TLB::S12E0Tran;
1841                    mode     = BaseTLB::Write;
1842                    break;
1843                  case MISCREG_AT_S12E1R_Xt:
1844                    flags    = TLB::MustBeOne;
1845                    tranType = TLB::S12E1Tran;
1846                    mode     = BaseTLB::Read;
1847                    break;
1848                  case MISCREG_AT_S12E1W_Xt:
1849                    flags    = TLB::MustBeOne;
1850                    tranType = TLB::S12E1Tran;
1851                    mode     = BaseTLB::Write;
1852                    break;
1853                  case MISCREG_AT_S1E3R_Xt:
1854                    flags    = TLB::MustBeOne;
1855                    tranType = TLB::S1E3Tran;
1856                    mode     = BaseTLB::Read;
1857                    break;
1858                  case MISCREG_AT_S1E3W_Xt:
1859                    flags    = TLB::MustBeOne;
1860                    tranType = TLB::S1E3Tran;
1861                    mode     = BaseTLB::Write;
1862                    break;
1863                }
1864                // If we're in timing mode then doing the translation in
1865                // functional mode then we're slightly distorting performance
1866                // results obtained from simulations. The translation should be
1867                // done in the same mode the core is running in. NOTE: This
1868                // can't be an atomic translation because that causes problems
1869                // with unexpected atomic snoop requests.
1870                warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg);
1871                req->setVirt(0, val, 0, flags,  Request::funcMasterId,
1872                               tc->pcState().pc());
1873                req->setContext(tc->contextId());
1874                fault = getDTBPtr(tc)->translateFunctional(req, tc, mode,
1875                                                           tranType);
1876
1877                MiscReg newVal;
1878                if (fault == NoFault) {
1879                    Addr paddr = req->getPaddr();
1880                    uint64_t attr = getDTBPtr(tc)->getAttr();
1881                    uint64_t attr1 = attr >> 56;
1882                    if (!attr1 || attr1 ==0x44) {
1883                        attr |= 0x100;
1884                        attr &= ~ uint64_t(0x80);
1885                    }
1886                    newVal = (paddr & mask(47, 12)) | attr;
1887                    DPRINTF(MiscRegs,
1888                          "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n",
1889                          val, newVal);
1890                } else {
1891                    ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get());
1892                    // Set fault bit and FSR
1893                    FSR fsr = armFault->getFsr(tc);
1894
1895                    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
1896                    if (cpsr.width) { // AArch32
1897                        newVal = ((fsr >> 9) & 1) << 11;
1898                        // rearrange fault status
1899                        newVal |= ((fsr >>  0) & 0x3f) << 1;
1900                        newVal |= 0x1; // F bit
1901                        newVal |= ((armFault->iss() >> 7) & 0x1) << 8;
1902                        newVal |= armFault->isStage2() ? 0x200 : 0;
1903                    } else { // AArch64
1904                        newVal = 1; // F bit
1905                        newVal |= fsr << 1; // FST
1906                        // TODO: DDI 0487A.f D7-2083, AbortFault's s1ptw bit.
1907                        newVal |= armFault->isStage2() ? 1 << 8 : 0; // PTW
1908                        newVal |= armFault->isStage2() ? 1 << 9 : 0; // S
1909                        newVal |= 1 << 11; // RES1
1910                    }
1911                    DPRINTF(MiscRegs,
1912                            "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n",
1913                            val, fsr, newVal);
1914                }
1915                delete req;
1916                setMiscRegNoEffect(MISCREG_PAR_EL1, newVal);
1917                return;
1918            }
1919          case MISCREG_SPSR_EL3:
1920          case MISCREG_SPSR_EL2:
1921          case MISCREG_SPSR_EL1:
1922            // Force bits 23:21 to 0
1923            newVal = val & ~(0x7 << 21);
1924            break;
1925          case MISCREG_L2CTLR:
1926            warn("miscreg L2CTLR (%s) written with %#x. ignored...\n",
1927                 miscRegName[misc_reg], uint32_t(val));
1928            break;
1929
1930          // Generic Timer registers
1931          case MISCREG_CNTFRQ ... MISCREG_CNTHP_CTL:
1932          case MISCREG_CNTPCT ... MISCREG_CNTHP_CVAL:
1933          case MISCREG_CNTKCTL_EL1 ... MISCREG_CNTV_CVAL_EL0:
1934          case MISCREG_CNTVOFF_EL2 ... MISCREG_CNTPS_CVAL_EL1:
1935            getGenericTimer(tc).setMiscReg(misc_reg, newVal);
1936            break;
1937        }
1938    }
1939    setMiscRegNoEffect(misc_reg, newVal);
1940}
1941
1942void
1943ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint16_t asid,
1944            bool secure_lookup, uint8_t target_el)
1945{
1946    if (!haveLargeAsid64)
1947        asid &= mask(8);
1948    Addr va = ((Addr) bits(newVal, 43, 0)) << 12;
1949    System *sys = tc->getSystemPtr();
1950    for (int x = 0; x < sys->numContexts(); x++) {
1951        ThreadContext *oc = sys->getThreadContext(x);
1952        getITBPtr(oc)->flushMvaAsid(va, asid,
1953                                      secure_lookup, target_el);
1954        getDTBPtr(oc)->flushMvaAsid(va, asid,
1955                                      secure_lookup, target_el);
1956
1957        CheckerCPU *checker = oc->getCheckerCpuPtr();
1958        if (checker) {
1959            getITBPtr(checker)->flushMvaAsid(
1960                va, asid, secure_lookup, target_el);
1961            getDTBPtr(checker)->flushMvaAsid(
1962                va, asid, secure_lookup, target_el);
1963        }
1964    }
1965}
1966
1967void
1968ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el)
1969{
1970    System *sys = tc->getSystemPtr();
1971    for (int x = 0; x < sys->numContexts(); x++) {
1972        ThreadContext *oc = sys->getThreadContext(x);
1973        getITBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1974        getDTBPtr(oc)->flushAllSecurity(secure_lookup, target_el);
1975
1976        // If CheckerCPU is connected, need to notify it of a flush
1977        CheckerCPU *checker = oc->getCheckerCpuPtr();
1978        if (checker) {
1979            getITBPtr(checker)->flushAllSecurity(secure_lookup,
1980                                                   target_el);
1981            getDTBPtr(checker)->flushAllSecurity(secure_lookup,
1982                                                   target_el);
1983        }
1984    }
1985}
1986
1987void
1988ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el)
1989{
1990    System *sys = tc->getSystemPtr();
1991    for (int x = 0; x < sys->numContexts(); x++) {
1992      ThreadContext *oc = sys->getThreadContext(x);
1993      getITBPtr(oc)->flushAllNs(hyp, target_el);
1994      getDTBPtr(oc)->flushAllNs(hyp, target_el);
1995
1996      CheckerCPU *checker = oc->getCheckerCpuPtr();
1997      if (checker) {
1998          getITBPtr(checker)->flushAllNs(hyp, target_el);
1999          getDTBPtr(checker)->flushAllNs(hyp, target_el);
2000      }
2001    }
2002}
2003
2004void
2005ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp,
2006             uint8_t target_el)
2007{
2008    System *sys = tc->getSystemPtr();
2009    for (int x = 0; x < sys->numContexts(); x++) {
2010        ThreadContext *oc = sys->getThreadContext(x);
2011        getITBPtr(oc)->flushMva(mbits(newVal, 31,12),
2012            secure_lookup, hyp, target_el);
2013        getDTBPtr(oc)->flushMva(mbits(newVal, 31,12),
2014            secure_lookup, hyp, target_el);
2015
2016        CheckerCPU *checker = oc->getCheckerCpuPtr();
2017        if (checker) {
2018            getITBPtr(checker)->flushMva(mbits(newVal, 31,12),
2019                secure_lookup, hyp, target_el);
2020            getDTBPtr(checker)->flushMva(mbits(newVal, 31,12),
2021                secure_lookup, hyp, target_el);
2022        }
2023    }
2024}
2025
2026BaseISADevice &
2027ISA::getGenericTimer(ThreadContext *tc)
2028{
2029    // We only need to create an ISA interface the first time we try
2030    // to access the timer.
2031    if (timer)
2032        return *timer.get();
2033
2034    assert(system);
2035    GenericTimer *generic_timer(system->getGenericTimer());
2036    if (!generic_timer) {
2037        panic("Trying to get a generic timer from a system that hasn't "
2038              "been configured to use a generic timer.\n");
2039    }
2040
2041    timer.reset(new GenericTimerISA(*generic_timer, tc->contextId()));
2042    return *timer.get();
2043}
2044
2045}
2046
2047ArmISA::ISA *
2048ArmISAParams::create()
2049{
2050    return new ArmISA::ISA(this);
2051}
2052