isa.cc revision 10338
1/* 2 * Copyright (c) 2010-2014 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions are 16 * met: redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer; 18 * redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution; 21 * neither the name of the copyright holders nor the names of its 22 * contributors may be used to endorse or promote products derived from 23 * this software without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 36 * 37 * Authors: Gabe Black 38 * Ali Saidi 39 */ 40 41#include "arch/arm/isa.hh" 42#include "arch/arm/system.hh" 43#include "cpu/checker/cpu.hh" 44#include "debug/Arm.hh" 45#include "debug/MiscRegs.hh" 46#include "params/ArmISA.hh" 47#include "sim/faults.hh" 48#include "sim/stat_control.hh" 49#include "sim/system.hh" 50 51namespace ArmISA 52{ 53 54 55/** 56 * Some registers aliase with others, and therefore need to be translated. 57 * For each entry: 58 * The first value is the misc register that is to be looked up 59 * the second value is the lower part of the translation 60 * the third the upper part 61 */ 62const struct ISA::MiscRegInitializerEntry 63 ISA::MiscRegSwitch[miscRegTranslateMax] = { 64 {MISCREG_CSSELR_EL1, {MISCREG_CSSELR, 0}}, 65 {MISCREG_SCTLR_EL1, {MISCREG_SCTLR, 0}}, 66 {MISCREG_SCTLR_EL2, {MISCREG_HSCTLR, 0}}, 67 {MISCREG_ACTLR_EL1, {MISCREG_ACTLR, 0}}, 68 {MISCREG_ACTLR_EL2, {MISCREG_HACTLR, 0}}, 69 {MISCREG_CPACR_EL1, {MISCREG_CPACR, 0}}, 70 {MISCREG_CPTR_EL2, {MISCREG_HCPTR, 0}}, 71 {MISCREG_HCR_EL2, {MISCREG_HCR, 0}}, 72 {MISCREG_MDCR_EL2, {MISCREG_HDCR, 0}}, 73 {MISCREG_HSTR_EL2, {MISCREG_HSTR, 0}}, 74 {MISCREG_HACR_EL2, {MISCREG_HACR, 0}}, 75 {MISCREG_TTBR0_EL1, {MISCREG_TTBR0, 0}}, 76 {MISCREG_TTBR1_EL1, {MISCREG_TTBR1, 0}}, 77 {MISCREG_TTBR0_EL2, {MISCREG_HTTBR, 0}}, 78 {MISCREG_VTTBR_EL2, {MISCREG_VTTBR, 0}}, 79 {MISCREG_TCR_EL1, {MISCREG_TTBCR, 0}}, 80 {MISCREG_TCR_EL2, {MISCREG_HTCR, 0}}, 81 {MISCREG_VTCR_EL2, {MISCREG_VTCR, 0}}, 82 {MISCREG_AFSR0_EL1, {MISCREG_ADFSR, 0}}, 83 {MISCREG_AFSR1_EL1, {MISCREG_AIFSR, 0}}, 84 {MISCREG_AFSR0_EL2, {MISCREG_HADFSR, 0}}, 85 {MISCREG_AFSR1_EL2, {MISCREG_HAIFSR, 0}}, 86 {MISCREG_ESR_EL2, {MISCREG_HSR, 0}}, 87 {MISCREG_FAR_EL1, {MISCREG_DFAR, MISCREG_IFAR}}, 88 {MISCREG_FAR_EL2, {MISCREG_HDFAR, MISCREG_HIFAR}}, 89 {MISCREG_HPFAR_EL2, {MISCREG_HPFAR, 0}}, 90 {MISCREG_PAR_EL1, {MISCREG_PAR, 0}}, 91 {MISCREG_MAIR_EL1, {MISCREG_PRRR, MISCREG_NMRR}}, 92 {MISCREG_MAIR_EL2, {MISCREG_HMAIR0, MISCREG_HMAIR1}}, 93 {MISCREG_AMAIR_EL1, {MISCREG_AMAIR0, MISCREG_AMAIR1}}, 94 {MISCREG_VBAR_EL1, {MISCREG_VBAR, 0}}, 95 {MISCREG_VBAR_EL2, {MISCREG_HVBAR, 0}}, 96 {MISCREG_CONTEXTIDR_EL1, {MISCREG_CONTEXTIDR, 0}}, 97 {MISCREG_TPIDR_EL0, {MISCREG_TPIDRURW, 0}}, 98 {MISCREG_TPIDRRO_EL0, {MISCREG_TPIDRURO, 0}}, 99 {MISCREG_TPIDR_EL1, {MISCREG_TPIDRPRW, 0}}, 100 {MISCREG_TPIDR_EL2, {MISCREG_HTPIDR, 0}}, 101 {MISCREG_TEECR32_EL1, {MISCREG_TEECR, 0}}, 102 {MISCREG_CNTFRQ_EL0, {MISCREG_CNTFRQ, 0}}, 103 {MISCREG_CNTPCT_EL0, {MISCREG_CNTPCT, 0}}, 104 {MISCREG_CNTVCT_EL0, {MISCREG_CNTVCT, 0}}, 105 {MISCREG_CNTVOFF_EL2, {MISCREG_CNTVOFF, 0}}, 106 {MISCREG_CNTKCTL_EL1, {MISCREG_CNTKCTL, 0}}, 107 {MISCREG_CNTHCTL_EL2, {MISCREG_CNTHCTL, 0}}, 108 {MISCREG_CNTP_TVAL_EL0, {MISCREG_CNTP_TVAL, 0}}, 109 {MISCREG_CNTP_CTL_EL0, {MISCREG_CNTP_CTL, 0}}, 110 {MISCREG_CNTP_CVAL_EL0, {MISCREG_CNTP_CVAL, 0}}, 111 {MISCREG_CNTV_TVAL_EL0, {MISCREG_CNTV_TVAL, 0}}, 112 {MISCREG_CNTV_CTL_EL0, {MISCREG_CNTV_CTL, 0}}, 113 {MISCREG_CNTV_CVAL_EL0, {MISCREG_CNTV_CVAL, 0}}, 114 {MISCREG_CNTHP_TVAL_EL2, {MISCREG_CNTHP_TVAL, 0}}, 115 {MISCREG_CNTHP_CTL_EL2, {MISCREG_CNTHP_CTL, 0}}, 116 {MISCREG_CNTHP_CVAL_EL2, {MISCREG_CNTHP_CVAL, 0}}, 117 {MISCREG_DACR32_EL2, {MISCREG_DACR, 0}}, 118 {MISCREG_IFSR32_EL2, {MISCREG_IFSR, 0}}, 119 {MISCREG_TEEHBR32_EL1, {MISCREG_TEEHBR, 0}}, 120 {MISCREG_SDER32_EL3, {MISCREG_SDER, 0}} 121}; 122 123 124ISA::ISA(Params *p) 125 : SimObject(p), system(NULL), lookUpMiscReg(NUM_MISCREGS, {0,0}) 126{ 127 SCTLR sctlr; 128 sctlr = 0; 129 miscRegs[MISCREG_SCTLR_RST] = sctlr; 130 131 system = dynamic_cast<ArmSystem *>(p->system); 132 DPRINTFN("ISA system set to: %p %p\n", system, p->system); 133 134 // Cache system-level properties 135 if (FullSystem && system) { 136 haveSecurity = system->haveSecurity(); 137 haveLPAE = system->haveLPAE(); 138 haveVirtualization = system->haveVirtualization(); 139 haveLargeAsid64 = system->haveLargeAsid64(); 140 physAddrRange64 = system->physAddrRange64(); 141 } else { 142 haveSecurity = haveLPAE = haveVirtualization = false; 143 haveLargeAsid64 = false; 144 physAddrRange64 = 32; // dummy value 145 } 146 147 /** Fill in the miscReg translation table */ 148 for (uint32_t i = 0; i < miscRegTranslateMax; i++) { 149 struct MiscRegLUTEntry new_entry; 150 151 uint32_t select = MiscRegSwitch[i].index; 152 new_entry = MiscRegSwitch[i].entry; 153 154 lookUpMiscReg[select] = new_entry; 155 } 156 157 preUnflattenMiscReg(); 158 159 clear(); 160} 161 162const ArmISAParams * 163ISA::params() const 164{ 165 return dynamic_cast<const Params *>(_params); 166} 167 168void 169ISA::clear() 170{ 171 const Params *p(params()); 172 173 SCTLR sctlr_rst = miscRegs[MISCREG_SCTLR_RST]; 174 memset(miscRegs, 0, sizeof(miscRegs)); 175 176 // Initialize configurable default values 177 miscRegs[MISCREG_MIDR] = p->midr; 178 miscRegs[MISCREG_MIDR_EL1] = p->midr; 179 miscRegs[MISCREG_VPIDR] = p->midr; 180 181 if (FullSystem && system->highestELIs64()) { 182 // Initialize AArch64 state 183 clear64(p); 184 return; 185 } 186 187 // Initialize AArch32 state... 188 189 CPSR cpsr = 0; 190 cpsr.mode = MODE_USER; 191 miscRegs[MISCREG_CPSR] = cpsr; 192 updateRegMap(cpsr); 193 194 SCTLR sctlr = 0; 195 sctlr.te = (bool) sctlr_rst.te; 196 sctlr.nmfi = (bool) sctlr_rst.nmfi; 197 sctlr.v = (bool) sctlr_rst.v; 198 sctlr.u = 1; 199 sctlr.xp = 1; 200 sctlr.rao2 = 1; 201 sctlr.rao3 = 1; 202 sctlr.rao4 = 0xf; // SCTLR[6:3] 203 sctlr.uci = 1; 204 sctlr.dze = 1; 205 miscRegs[MISCREG_SCTLR_NS] = sctlr; 206 miscRegs[MISCREG_SCTLR_RST] = sctlr_rst; 207 miscRegs[MISCREG_HCPTR] = 0; 208 209 // Start with an event in the mailbox 210 miscRegs[MISCREG_SEV_MAILBOX] = 1; 211 212 // Separate Instruction and Data TLBs 213 miscRegs[MISCREG_TLBTR] = 1; 214 215 MVFR0 mvfr0 = 0; 216 mvfr0.advSimdRegisters = 2; 217 mvfr0.singlePrecision = 2; 218 mvfr0.doublePrecision = 2; 219 mvfr0.vfpExceptionTrapping = 0; 220 mvfr0.divide = 1; 221 mvfr0.squareRoot = 1; 222 mvfr0.shortVectors = 1; 223 mvfr0.roundingModes = 1; 224 miscRegs[MISCREG_MVFR0] = mvfr0; 225 226 MVFR1 mvfr1 = 0; 227 mvfr1.flushToZero = 1; 228 mvfr1.defaultNaN = 1; 229 mvfr1.advSimdLoadStore = 1; 230 mvfr1.advSimdInteger = 1; 231 mvfr1.advSimdSinglePrecision = 1; 232 mvfr1.advSimdHalfPrecision = 1; 233 mvfr1.vfpHalfPrecision = 1; 234 miscRegs[MISCREG_MVFR1] = mvfr1; 235 236 // Reset values of PRRR and NMRR are implementation dependent 237 238 // @todo: PRRR and NMRR in secure state? 239 miscRegs[MISCREG_PRRR_NS] = 240 (1 << 19) | // 19 241 (0 << 18) | // 18 242 (0 << 17) | // 17 243 (1 << 16) | // 16 244 (2 << 14) | // 15:14 245 (0 << 12) | // 13:12 246 (2 << 10) | // 11:10 247 (2 << 8) | // 9:8 248 (2 << 6) | // 7:6 249 (2 << 4) | // 5:4 250 (1 << 2) | // 3:2 251 0; // 1:0 252 miscRegs[MISCREG_NMRR_NS] = 253 (1 << 30) | // 31:30 254 (0 << 26) | // 27:26 255 (0 << 24) | // 25:24 256 (3 << 22) | // 23:22 257 (2 << 20) | // 21:20 258 (0 << 18) | // 19:18 259 (0 << 16) | // 17:16 260 (1 << 14) | // 15:14 261 (0 << 12) | // 13:12 262 (2 << 10) | // 11:10 263 (0 << 8) | // 9:8 264 (3 << 6) | // 7:6 265 (2 << 4) | // 5:4 266 (0 << 2) | // 3:2 267 0; // 1:0 268 269 miscRegs[MISCREG_CPACR] = 0; 270 271 272 miscRegs[MISCREG_ID_PFR0] = p->id_pfr0; 273 miscRegs[MISCREG_ID_PFR1] = p->id_pfr1; 274 275 miscRegs[MISCREG_ID_MMFR0] = p->id_mmfr0; 276 miscRegs[MISCREG_ID_MMFR1] = p->id_mmfr1; 277 miscRegs[MISCREG_ID_MMFR2] = p->id_mmfr2; 278 miscRegs[MISCREG_ID_MMFR3] = p->id_mmfr3; 279 280 miscRegs[MISCREG_ID_ISAR0] = p->id_isar0; 281 miscRegs[MISCREG_ID_ISAR1] = p->id_isar1; 282 miscRegs[MISCREG_ID_ISAR2] = p->id_isar2; 283 miscRegs[MISCREG_ID_ISAR3] = p->id_isar3; 284 miscRegs[MISCREG_ID_ISAR4] = p->id_isar4; 285 miscRegs[MISCREG_ID_ISAR5] = p->id_isar5; 286 287 miscRegs[MISCREG_FPSID] = p->fpsid; 288 289 if (haveLPAE) { 290 TTBCR ttbcr = miscRegs[MISCREG_TTBCR_NS]; 291 ttbcr.eae = 0; 292 miscRegs[MISCREG_TTBCR_NS] = ttbcr; 293 // Enforce consistency with system-level settings 294 miscRegs[MISCREG_ID_MMFR0] = (miscRegs[MISCREG_ID_MMFR0] & ~0xf) | 0x5; 295 } 296 297 if (haveSecurity) { 298 miscRegs[MISCREG_SCTLR_S] = sctlr; 299 miscRegs[MISCREG_SCR] = 0; 300 miscRegs[MISCREG_VBAR_S] = 0; 301 } else { 302 // we're always non-secure 303 miscRegs[MISCREG_SCR] = 1; 304 } 305 306 //XXX We need to initialize the rest of the state. 307} 308 309void 310ISA::clear64(const ArmISAParams *p) 311{ 312 CPSR cpsr = 0; 313 Addr rvbar = system->resetAddr64(); 314 switch (system->highestEL()) { 315 // Set initial EL to highest implemented EL using associated stack 316 // pointer (SP_ELx); set RVBAR_ELx to implementation defined reset 317 // value 318 case EL3: 319 cpsr.mode = MODE_EL3H; 320 miscRegs[MISCREG_RVBAR_EL3] = rvbar; 321 break; 322 case EL2: 323 cpsr.mode = MODE_EL2H; 324 miscRegs[MISCREG_RVBAR_EL2] = rvbar; 325 break; 326 case EL1: 327 cpsr.mode = MODE_EL1H; 328 miscRegs[MISCREG_RVBAR_EL1] = rvbar; 329 break; 330 default: 331 panic("Invalid highest implemented exception level"); 332 break; 333 } 334 335 // Initialize rest of CPSR 336 cpsr.daif = 0xf; // Mask all interrupts 337 cpsr.ss = 0; 338 cpsr.il = 0; 339 miscRegs[MISCREG_CPSR] = cpsr; 340 updateRegMap(cpsr); 341 342 // Initialize other control registers 343 miscRegs[MISCREG_MPIDR_EL1] = 0x80000000; 344 if (haveSecurity) { 345 miscRegs[MISCREG_SCTLR_EL3] = 0x30c50870; 346 miscRegs[MISCREG_SCR_EL3] = 0x00000030; // RES1 fields 347 // @todo: uncomment this to enable Virtualization 348 // } else if (haveVirtualization) { 349 // miscRegs[MISCREG_SCTLR_EL2] = 0x30c50870; 350 } else { 351 miscRegs[MISCREG_SCTLR_EL1] = 0x30c50870; 352 // Always non-secure 353 miscRegs[MISCREG_SCR_EL3] = 1; 354 } 355 356 // Initialize configurable id registers 357 miscRegs[MISCREG_ID_AA64AFR0_EL1] = p->id_aa64afr0_el1; 358 miscRegs[MISCREG_ID_AA64AFR1_EL1] = p->id_aa64afr1_el1; 359 miscRegs[MISCREG_ID_AA64DFR0_EL1] = p->id_aa64dfr0_el1; 360 miscRegs[MISCREG_ID_AA64DFR1_EL1] = p->id_aa64dfr1_el1; 361 miscRegs[MISCREG_ID_AA64ISAR0_EL1] = p->id_aa64isar0_el1; 362 miscRegs[MISCREG_ID_AA64ISAR1_EL1] = p->id_aa64isar1_el1; 363 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = p->id_aa64mmfr0_el1; 364 miscRegs[MISCREG_ID_AA64MMFR1_EL1] = p->id_aa64mmfr1_el1; 365 miscRegs[MISCREG_ID_AA64PFR0_EL1] = p->id_aa64pfr0_el1; 366 miscRegs[MISCREG_ID_AA64PFR1_EL1] = p->id_aa64pfr1_el1; 367 368 // Enforce consistency with system-level settings... 369 370 // EL3 371 // (no AArch32/64 interprocessing support for now) 372 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 373 miscRegs[MISCREG_ID_AA64PFR0_EL1], 15, 12, 374 haveSecurity ? 0x1 : 0x0); 375 // EL2 376 // (no AArch32/64 interprocessing support for now) 377 miscRegs[MISCREG_ID_AA64PFR0_EL1] = insertBits( 378 miscRegs[MISCREG_ID_AA64PFR0_EL1], 11, 8, 379 haveVirtualization ? 0x1 : 0x0); 380 // Large ASID support 381 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 382 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 7, 4, 383 haveLargeAsid64 ? 0x2 : 0x0); 384 // Physical address size 385 miscRegs[MISCREG_ID_AA64MMFR0_EL1] = insertBits( 386 miscRegs[MISCREG_ID_AA64MMFR0_EL1], 3, 0, 387 encodePhysAddrRange64(physAddrRange64)); 388} 389 390MiscReg 391ISA::readMiscRegNoEffect(int misc_reg) const 392{ 393 assert(misc_reg < NumMiscRegs); 394 395 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64 396 // registers are left unchanged 397 MiscReg val; 398 399 if (lookUpMiscReg[flat_idx].lower == 0 || flat_idx == MISCREG_SPSR 400 || flat_idx == MISCREG_SCTLR_EL1) { 401 if (flat_idx == MISCREG_SPSR) 402 flat_idx = flattenMiscIndex(MISCREG_SPSR); 403 if (flat_idx == MISCREG_SCTLR_EL1) 404 flat_idx = flattenMiscIndex(MISCREG_SCTLR); 405 val = miscRegs[flat_idx]; 406 } else 407 if (lookUpMiscReg[flat_idx].upper > 0) 408 val = ((miscRegs[lookUpMiscReg[flat_idx].lower] & mask(32)) 409 | (miscRegs[lookUpMiscReg[flat_idx].upper] << 32)); 410 else 411 val = miscRegs[lookUpMiscReg[flat_idx].lower]; 412 413 return val; 414} 415 416 417MiscReg 418ISA::readMiscReg(int misc_reg, ThreadContext *tc) 419{ 420 CPSR cpsr = 0; 421 PCState pc = 0; 422 SCR scr = 0; 423 424 if (misc_reg == MISCREG_CPSR) { 425 cpsr = miscRegs[misc_reg]; 426 pc = tc->pcState(); 427 cpsr.j = pc.jazelle() ? 1 : 0; 428 cpsr.t = pc.thumb() ? 1 : 0; 429 return cpsr; 430 } 431 432#ifndef NDEBUG 433 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 434 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 435 warn("Unimplemented system register %s read.\n", 436 miscRegName[misc_reg]); 437 else 438 panic("Unimplemented system register %s read.\n", 439 miscRegName[misc_reg]); 440 } 441#endif 442 443 switch (unflattenMiscReg(misc_reg)) { 444 case MISCREG_HCR: 445 { 446 if (!haveVirtualization) 447 return 0; 448 else 449 return readMiscRegNoEffect(MISCREG_HCR); 450 } 451 case MISCREG_CPACR: 452 { 453 const uint32_t ones = (uint32_t)(-1); 454 CPACR cpacrMask = 0; 455 // Only cp10, cp11, and ase are implemented, nothing else should 456 // be readable? (straight copy from the write code) 457 cpacrMask.cp10 = ones; 458 cpacrMask.cp11 = ones; 459 cpacrMask.asedis = ones; 460 461 // Security Extensions may limit the readability of CPACR 462 if (haveSecurity) { 463 scr = readMiscRegNoEffect(MISCREG_SCR); 464 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 465 if (scr.ns && (cpsr.mode != MODE_MON)) { 466 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 467 // NB: Skipping the full loop, here 468 if (!nsacr.cp10) cpacrMask.cp10 = 0; 469 if (!nsacr.cp11) cpacrMask.cp11 = 0; 470 } 471 } 472 MiscReg val = readMiscRegNoEffect(MISCREG_CPACR); 473 val &= cpacrMask; 474 DPRINTF(MiscRegs, "Reading misc reg %s: %#x\n", 475 miscRegName[misc_reg], val); 476 return val; 477 } 478 case MISCREG_MPIDR: 479 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 480 scr = readMiscRegNoEffect(MISCREG_SCR); 481 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 482 return getMPIDR(system, tc); 483 } else { 484 return readMiscReg(MISCREG_VMPIDR, tc); 485 } 486 break; 487 case MISCREG_MPIDR_EL1: 488 // @todo in the absence of v8 virtualization support just return MPIDR_EL1 489 return getMPIDR(system, tc) & 0xffffffff; 490 case MISCREG_VMPIDR: 491 // top bit defined as RES1 492 return readMiscRegNoEffect(misc_reg) | 0x80000000; 493 case MISCREG_ID_AFR0: // not implemented, so alias MIDR 494 case MISCREG_ID_DFR0: // not implemented, so alias MIDR 495 case MISCREG_REVIDR: // not implemented, so alias MIDR 496 case MISCREG_MIDR: 497 cpsr = readMiscRegNoEffect(MISCREG_CPSR); 498 scr = readMiscRegNoEffect(MISCREG_SCR); 499 if ((cpsr.mode == MODE_HYP) || inSecureState(scr, cpsr)) { 500 return readMiscRegNoEffect(misc_reg); 501 } else { 502 return readMiscRegNoEffect(MISCREG_VPIDR); 503 } 504 break; 505 case MISCREG_JOSCR: // Jazelle trivial implementation, RAZ/WI 506 case MISCREG_JMCR: // Jazelle trivial implementation, RAZ/WI 507 case MISCREG_JIDR: // Jazelle trivial implementation, RAZ/WI 508 case MISCREG_AIDR: // AUX ID set to 0 509 case MISCREG_TCMTR: // No TCM's 510 return 0; 511 512 case MISCREG_CLIDR: 513 warn_once("The clidr register always reports 0 caches.\n"); 514 warn_once("clidr LoUIS field of 0b001 to match current " 515 "ARM implementations.\n"); 516 return 0x00200000; 517 case MISCREG_CCSIDR: 518 warn_once("The ccsidr register isn't implemented and " 519 "always reads as 0.\n"); 520 break; 521 case MISCREG_CTR: 522 { 523 //all caches have the same line size in gem5 524 //4 byte words in ARM 525 unsigned lineSizeWords = 526 tc->getSystemPtr()->cacheLineSize() / 4; 527 unsigned log2LineSizeWords = 0; 528 529 while (lineSizeWords >>= 1) { 530 ++log2LineSizeWords; 531 } 532 533 CTR ctr = 0; 534 //log2 of minimun i-cache line size (words) 535 ctr.iCacheLineSize = log2LineSizeWords; 536 //b11 - gem5 uses pipt 537 ctr.l1IndexPolicy = 0x3; 538 //log2 of minimum d-cache line size (words) 539 ctr.dCacheLineSize = log2LineSizeWords; 540 //log2 of max reservation size (words) 541 ctr.erg = log2LineSizeWords; 542 //log2 of max writeback size (words) 543 ctr.cwg = log2LineSizeWords; 544 //b100 - gem5 format is ARMv7 545 ctr.format = 0x4; 546 547 return ctr; 548 } 549 case MISCREG_ACTLR: 550 warn("Not doing anything for miscreg ACTLR\n"); 551 break; 552 case MISCREG_PMCR: 553 case MISCREG_PMCCNTR: 554 case MISCREG_PMSELR: 555 warn("Not doing anything for read to miscreg %s\n", 556 miscRegName[misc_reg]); 557 break; 558 case MISCREG_CPSR_Q: 559 panic("shouldn't be reading this register seperately\n"); 560 case MISCREG_FPSCR_QC: 561 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrQcMask; 562 case MISCREG_FPSCR_EXC: 563 return readMiscRegNoEffect(MISCREG_FPSCR) & ~FpscrExcMask; 564 case MISCREG_FPSR: 565 { 566 const uint32_t ones = (uint32_t)(-1); 567 FPSCR fpscrMask = 0; 568 fpscrMask.ioc = ones; 569 fpscrMask.dzc = ones; 570 fpscrMask.ofc = ones; 571 fpscrMask.ufc = ones; 572 fpscrMask.ixc = ones; 573 fpscrMask.idc = ones; 574 fpscrMask.qc = ones; 575 fpscrMask.v = ones; 576 fpscrMask.c = ones; 577 fpscrMask.z = ones; 578 fpscrMask.n = ones; 579 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 580 } 581 case MISCREG_FPCR: 582 { 583 const uint32_t ones = (uint32_t)(-1); 584 FPSCR fpscrMask = 0; 585 fpscrMask.ioe = ones; 586 fpscrMask.dze = ones; 587 fpscrMask.ofe = ones; 588 fpscrMask.ufe = ones; 589 fpscrMask.ixe = ones; 590 fpscrMask.ide = ones; 591 fpscrMask.len = ones; 592 fpscrMask.stride = ones; 593 fpscrMask.rMode = ones; 594 fpscrMask.fz = ones; 595 fpscrMask.dn = ones; 596 fpscrMask.ahp = ones; 597 return readMiscRegNoEffect(MISCREG_FPSCR) & (uint32_t)fpscrMask; 598 } 599 case MISCREG_NZCV: 600 { 601 CPSR cpsr = 0; 602 cpsr.nz = tc->readCCReg(CCREG_NZ); 603 cpsr.c = tc->readCCReg(CCREG_C); 604 cpsr.v = tc->readCCReg(CCREG_V); 605 return cpsr; 606 } 607 case MISCREG_DAIF: 608 { 609 CPSR cpsr = 0; 610 cpsr.daif = (uint8_t) ((CPSR) miscRegs[MISCREG_CPSR]).daif; 611 return cpsr; 612 } 613 case MISCREG_SP_EL0: 614 { 615 return tc->readIntReg(INTREG_SP0); 616 } 617 case MISCREG_SP_EL1: 618 { 619 return tc->readIntReg(INTREG_SP1); 620 } 621 case MISCREG_SP_EL2: 622 { 623 return tc->readIntReg(INTREG_SP2); 624 } 625 case MISCREG_SPSEL: 626 { 627 return miscRegs[MISCREG_CPSR] & 0x1; 628 } 629 case MISCREG_CURRENTEL: 630 { 631 return miscRegs[MISCREG_CPSR] & 0xc; 632 } 633 case MISCREG_L2CTLR: 634 { 635 // mostly unimplemented, just set NumCPUs field from sim and return 636 L2CTLR l2ctlr = 0; 637 // b00:1CPU to b11:4CPUs 638 l2ctlr.numCPUs = tc->getSystemPtr()->numContexts() - 1; 639 return l2ctlr; 640 } 641 case MISCREG_DBGDIDR: 642 /* For now just implement the version number. 643 * Return 0 as we don't support debug architecture yet. 644 */ 645 return 0; 646 case MISCREG_DBGDSCRint: 647 return 0; 648 case MISCREG_ISR: 649 return tc->getCpuPtr()->getInterruptController()->getISR( 650 readMiscRegNoEffect(MISCREG_HCR), 651 readMiscRegNoEffect(MISCREG_CPSR), 652 readMiscRegNoEffect(MISCREG_SCR)); 653 case MISCREG_ISR_EL1: 654 return tc->getCpuPtr()->getInterruptController()->getISR( 655 readMiscRegNoEffect(MISCREG_HCR_EL2), 656 readMiscRegNoEffect(MISCREG_CPSR), 657 readMiscRegNoEffect(MISCREG_SCR_EL3)); 658 case MISCREG_DCZID_EL0: 659 return 0x04; // DC ZVA clear 64-byte chunks 660 case MISCREG_HCPTR: 661 { 662 MiscReg val = readMiscRegNoEffect(misc_reg); 663 // The trap bit associated with CP14 is defined as RAZ 664 val &= ~(1 << 14); 665 // If a CP bit in NSACR is 0 then the corresponding bit in 666 // HCPTR is RAO/WI 667 bool secure_lookup = haveSecurity && 668 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 669 readMiscRegNoEffect(MISCREG_CPSR)); 670 if (!secure_lookup) { 671 MiscReg mask = readMiscRegNoEffect(MISCREG_NSACR); 672 val |= (mask ^ 0x7FFF) & 0xBFFF; 673 } 674 // Set the bits for unimplemented coprocessors to RAO/WI 675 val |= 0x33FF; 676 return (val); 677 } 678 case MISCREG_HDFAR: // alias for secure DFAR 679 return readMiscRegNoEffect(MISCREG_DFAR_S); 680 case MISCREG_HIFAR: // alias for secure IFAR 681 return readMiscRegNoEffect(MISCREG_IFAR_S); 682 case MISCREG_HVBAR: // bottom bits reserved 683 return readMiscRegNoEffect(MISCREG_HVBAR) & 0xFFFFFFE0; 684 case MISCREG_SCTLR: // Some bits hardwired 685 // The FI field (bit 21) is common between S/NS versions of the register 686 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 687 (readMiscRegNoEffect(misc_reg) & 0x72DD39FF) | 0x00C00818; // V8 SCTLR 688 case MISCREG_SCTLR_EL1: 689 // The FI field (bit 21) is common between S/NS versions of the register 690 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 691 (readMiscRegNoEffect(misc_reg) & 0x37DDDBFF) | 0x30D00800; // V8 SCTLR_EL1 692 case MISCREG_SCTLR_EL3: 693 // The FI field (bit 21) is common between S/NS versions of the register 694 return (readMiscRegNoEffect(MISCREG_SCTLR_S) & (1 << 21)) | 695 (readMiscRegNoEffect(misc_reg) & 0x32CD183F) | 0x30C50830; // V8 SCTLR_EL3 696 case MISCREG_HSCTLR: // FI comes from SCTLR 697 { 698 uint32_t mask = 1 << 27; 699 return (readMiscRegNoEffect(MISCREG_HSCTLR) & ~mask) | 700 (readMiscRegNoEffect(MISCREG_SCTLR) & mask); 701 } 702 case MISCREG_SCR: 703 { 704 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 705 if (cpsr.width) { 706 return readMiscRegNoEffect(MISCREG_SCR); 707 } else { 708 return readMiscRegNoEffect(MISCREG_SCR_EL3); 709 } 710 } 711 // Generic Timer registers 712 case MISCREG_CNTFRQ: 713 case MISCREG_CNTFRQ_EL0: 714 inform_once("Read CNTFREQ_EL0 frequency\n"); 715 return getSystemCounter(tc)->freq(); 716 case MISCREG_CNTPCT: 717 case MISCREG_CNTPCT_EL0: 718 return getSystemCounter(tc)->value(); 719 case MISCREG_CNTVCT: 720 return getSystemCounter(tc)->value(); 721 case MISCREG_CNTVCT_EL0: 722 return getSystemCounter(tc)->value(); 723 case MISCREG_CNTP_CVAL: 724 case MISCREG_CNTP_CVAL_EL0: 725 return getArchTimer(tc, tc->cpuId())->compareValue(); 726 case MISCREG_CNTP_TVAL: 727 case MISCREG_CNTP_TVAL_EL0: 728 return getArchTimer(tc, tc->cpuId())->timerValue(); 729 case MISCREG_CNTP_CTL: 730 case MISCREG_CNTP_CTL_EL0: 731 return getArchTimer(tc, tc->cpuId())->control(); 732 // PL1 phys. timer, secure 733 // AArch64 734 // case MISCREG_CNTPS_CVAL_EL1: 735 // case MISCREG_CNTPS_TVAL_EL1: 736 // case MISCREG_CNTPS_CTL_EL1: 737 // PL2 phys. timer, non-secure 738 // AArch32 739 // case MISCREG_CNTHCTL: 740 // case MISCREG_CNTHP_CVAL: 741 // case MISCREG_CNTHP_TVAL: 742 // case MISCREG_CNTHP_CTL: 743 // AArch64 744 // case MISCREG_CNTHCTL_EL2: 745 // case MISCREG_CNTHP_CVAL_EL2: 746 // case MISCREG_CNTHP_TVAL_EL2: 747 // case MISCREG_CNTHP_CTL_EL2: 748 // Virtual timer 749 // AArch32 750 // case MISCREG_CNTV_CVAL: 751 // case MISCREG_CNTV_TVAL: 752 // case MISCREG_CNTV_CTL: 753 // AArch64 754 // case MISCREG_CNTV_CVAL_EL2: 755 // case MISCREG_CNTV_TVAL_EL2: 756 // case MISCREG_CNTV_CTL_EL2: 757 default: 758 break; 759 760 } 761 return readMiscRegNoEffect(misc_reg); 762} 763 764void 765ISA::setMiscRegNoEffect(int misc_reg, const MiscReg &val) 766{ 767 assert(misc_reg < NumMiscRegs); 768 769 int flat_idx = flattenMiscIndex(misc_reg); // Note: indexes of AArch64 770 // registers are left unchanged 771 772 int flat_idx2 = lookUpMiscReg[flat_idx].upper; 773 774 if (flat_idx2 > 0) { 775 miscRegs[lookUpMiscReg[flat_idx].lower] = bits(val, 31, 0); 776 miscRegs[flat_idx2] = bits(val, 63, 32); 777 DPRINTF(MiscRegs, "Writing to misc reg %d (%d:%d) : %#x\n", 778 misc_reg, flat_idx, flat_idx2, val); 779 } else { 780 if (flat_idx == MISCREG_SPSR) 781 flat_idx = flattenMiscIndex(MISCREG_SPSR); 782 else if (flat_idx == MISCREG_SCTLR_EL1) 783 flat_idx = flattenMiscIndex(MISCREG_SCTLR); 784 else 785 flat_idx = (lookUpMiscReg[flat_idx].lower > 0) ? 786 lookUpMiscReg[flat_idx].lower : flat_idx; 787 miscRegs[flat_idx] = val; 788 DPRINTF(MiscRegs, "Writing to misc reg %d (%d) : %#x\n", 789 misc_reg, flat_idx, val); 790 } 791} 792 793void 794ISA::setMiscReg(int misc_reg, const MiscReg &val, ThreadContext *tc) 795{ 796 797 MiscReg newVal = val; 798 int x; 799 bool secure_lookup; 800 bool hyp; 801 System *sys; 802 ThreadContext *oc; 803 uint8_t target_el; 804 uint16_t asid; 805 SCR scr; 806 807 if (misc_reg == MISCREG_CPSR) { 808 updateRegMap(val); 809 810 811 CPSR old_cpsr = miscRegs[MISCREG_CPSR]; 812 int old_mode = old_cpsr.mode; 813 CPSR cpsr = val; 814 if (old_mode != cpsr.mode) { 815 tc->getITBPtr()->invalidateMiscReg(); 816 tc->getDTBPtr()->invalidateMiscReg(); 817 } 818 819 DPRINTF(Arm, "Updating CPSR from %#x to %#x f:%d i:%d a:%d mode:%#x\n", 820 miscRegs[misc_reg], cpsr, cpsr.f, cpsr.i, cpsr.a, cpsr.mode); 821 PCState pc = tc->pcState(); 822 pc.nextThumb(cpsr.t); 823 pc.nextJazelle(cpsr.j); 824 825 // Follow slightly different semantics if a CheckerCPU object 826 // is connected 827 CheckerCPU *checker = tc->getCheckerCpuPtr(); 828 if (checker) { 829 tc->pcStateNoRecord(pc); 830 } else { 831 tc->pcState(pc); 832 } 833 } else { 834#ifndef NDEBUG 835 if (!miscRegInfo[misc_reg][MISCREG_IMPLEMENTED]) { 836 if (miscRegInfo[misc_reg][MISCREG_WARN_NOT_FAIL]) 837 warn("Unimplemented system register %s write with %#x.\n", 838 miscRegName[misc_reg], val); 839 else 840 panic("Unimplemented system register %s write with %#x.\n", 841 miscRegName[misc_reg], val); 842 } 843#endif 844 switch (unflattenMiscReg(misc_reg)) { 845 case MISCREG_CPACR: 846 { 847 848 const uint32_t ones = (uint32_t)(-1); 849 CPACR cpacrMask = 0; 850 // Only cp10, cp11, and ase are implemented, nothing else should 851 // be writable 852 cpacrMask.cp10 = ones; 853 cpacrMask.cp11 = ones; 854 cpacrMask.asedis = ones; 855 856 // Security Extensions may limit the writability of CPACR 857 if (haveSecurity) { 858 scr = readMiscRegNoEffect(MISCREG_SCR); 859 CPSR cpsr = readMiscRegNoEffect(MISCREG_CPSR); 860 if (scr.ns && (cpsr.mode != MODE_MON)) { 861 NSACR nsacr = readMiscRegNoEffect(MISCREG_NSACR); 862 // NB: Skipping the full loop, here 863 if (!nsacr.cp10) cpacrMask.cp10 = 0; 864 if (!nsacr.cp11) cpacrMask.cp11 = 0; 865 } 866 } 867 868 MiscReg old_val = readMiscRegNoEffect(MISCREG_CPACR); 869 newVal &= cpacrMask; 870 newVal |= old_val & ~cpacrMask; 871 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 872 miscRegName[misc_reg], newVal); 873 } 874 break; 875 case MISCREG_CPACR_EL1: 876 { 877 const uint32_t ones = (uint32_t)(-1); 878 CPACR cpacrMask = 0; 879 cpacrMask.tta = ones; 880 cpacrMask.fpen = ones; 881 newVal &= cpacrMask; 882 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 883 miscRegName[misc_reg], newVal); 884 } 885 break; 886 case MISCREG_CPTR_EL2: 887 { 888 const uint32_t ones = (uint32_t)(-1); 889 CPTR cptrMask = 0; 890 cptrMask.tcpac = ones; 891 cptrMask.tta = ones; 892 cptrMask.tfp = ones; 893 newVal &= cptrMask; 894 cptrMask = 0; 895 cptrMask.res1_13_12_el2 = ones; 896 cptrMask.res1_9_0_el2 = ones; 897 newVal |= cptrMask; 898 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 899 miscRegName[misc_reg], newVal); 900 } 901 break; 902 case MISCREG_CPTR_EL3: 903 { 904 const uint32_t ones = (uint32_t)(-1); 905 CPTR cptrMask = 0; 906 cptrMask.tcpac = ones; 907 cptrMask.tta = ones; 908 cptrMask.tfp = ones; 909 newVal &= cptrMask; 910 DPRINTF(MiscRegs, "Writing misc reg %s: %#x\n", 911 miscRegName[misc_reg], newVal); 912 } 913 break; 914 case MISCREG_CSSELR: 915 warn_once("The csselr register isn't implemented.\n"); 916 return; 917 918 case MISCREG_DC_ZVA_Xt: 919 warn("Calling DC ZVA! Not Implemeted! Expect WEIRD results\n"); 920 return; 921 922 case MISCREG_FPSCR: 923 { 924 const uint32_t ones = (uint32_t)(-1); 925 FPSCR fpscrMask = 0; 926 fpscrMask.ioc = ones; 927 fpscrMask.dzc = ones; 928 fpscrMask.ofc = ones; 929 fpscrMask.ufc = ones; 930 fpscrMask.ixc = ones; 931 fpscrMask.idc = ones; 932 fpscrMask.ioe = ones; 933 fpscrMask.dze = ones; 934 fpscrMask.ofe = ones; 935 fpscrMask.ufe = ones; 936 fpscrMask.ixe = ones; 937 fpscrMask.ide = ones; 938 fpscrMask.len = ones; 939 fpscrMask.stride = ones; 940 fpscrMask.rMode = ones; 941 fpscrMask.fz = ones; 942 fpscrMask.dn = ones; 943 fpscrMask.ahp = ones; 944 fpscrMask.qc = ones; 945 fpscrMask.v = ones; 946 fpscrMask.c = ones; 947 fpscrMask.z = ones; 948 fpscrMask.n = ones; 949 newVal = (newVal & (uint32_t)fpscrMask) | 950 (readMiscRegNoEffect(MISCREG_FPSCR) & 951 ~(uint32_t)fpscrMask); 952 tc->getDecoderPtr()->setContext(newVal); 953 } 954 break; 955 case MISCREG_FPSR: 956 { 957 const uint32_t ones = (uint32_t)(-1); 958 FPSCR fpscrMask = 0; 959 fpscrMask.ioc = ones; 960 fpscrMask.dzc = ones; 961 fpscrMask.ofc = ones; 962 fpscrMask.ufc = ones; 963 fpscrMask.ixc = ones; 964 fpscrMask.idc = ones; 965 fpscrMask.qc = ones; 966 fpscrMask.v = ones; 967 fpscrMask.c = ones; 968 fpscrMask.z = ones; 969 fpscrMask.n = ones; 970 newVal = (newVal & (uint32_t)fpscrMask) | 971 (readMiscRegNoEffect(MISCREG_FPSCR) & 972 ~(uint32_t)fpscrMask); 973 misc_reg = MISCREG_FPSCR; 974 } 975 break; 976 case MISCREG_FPCR: 977 { 978 const uint32_t ones = (uint32_t)(-1); 979 FPSCR fpscrMask = 0; 980 fpscrMask.ioe = ones; 981 fpscrMask.dze = ones; 982 fpscrMask.ofe = ones; 983 fpscrMask.ufe = ones; 984 fpscrMask.ixe = ones; 985 fpscrMask.ide = ones; 986 fpscrMask.len = ones; 987 fpscrMask.stride = ones; 988 fpscrMask.rMode = ones; 989 fpscrMask.fz = ones; 990 fpscrMask.dn = ones; 991 fpscrMask.ahp = ones; 992 newVal = (newVal & (uint32_t)fpscrMask) | 993 (readMiscRegNoEffect(MISCREG_FPSCR) & 994 ~(uint32_t)fpscrMask); 995 misc_reg = MISCREG_FPSCR; 996 } 997 break; 998 case MISCREG_CPSR_Q: 999 { 1000 assert(!(newVal & ~CpsrMaskQ)); 1001 newVal = readMiscRegNoEffect(MISCREG_CPSR) | newVal; 1002 misc_reg = MISCREG_CPSR; 1003 } 1004 break; 1005 case MISCREG_FPSCR_QC: 1006 { 1007 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 1008 (newVal & FpscrQcMask); 1009 misc_reg = MISCREG_FPSCR; 1010 } 1011 break; 1012 case MISCREG_FPSCR_EXC: 1013 { 1014 newVal = readMiscRegNoEffect(MISCREG_FPSCR) | 1015 (newVal & FpscrExcMask); 1016 misc_reg = MISCREG_FPSCR; 1017 } 1018 break; 1019 case MISCREG_FPEXC: 1020 { 1021 // vfpv3 architecture, section B.6.1 of DDI04068 1022 // bit 29 - valid only if fpexc[31] is 0 1023 const uint32_t fpexcMask = 0x60000000; 1024 newVal = (newVal & fpexcMask) | 1025 (readMiscRegNoEffect(MISCREG_FPEXC) & ~fpexcMask); 1026 } 1027 break; 1028 case MISCREG_HCR: 1029 { 1030 if (!haveVirtualization) 1031 return; 1032 } 1033 break; 1034 case MISCREG_IFSR: 1035 { 1036 // ARM ARM (ARM DDI 0406C.b) B4.1.96 1037 const uint32_t ifsrMask = 1038 mask(31, 13) | mask(11, 11) | mask(8, 6); 1039 newVal = newVal & ~ifsrMask; 1040 } 1041 break; 1042 case MISCREG_DFSR: 1043 { 1044 // ARM ARM (ARM DDI 0406C.b) B4.1.52 1045 const uint32_t dfsrMask = mask(31, 14) | mask(8, 8); 1046 newVal = newVal & ~dfsrMask; 1047 } 1048 break; 1049 case MISCREG_AMAIR0: 1050 case MISCREG_AMAIR1: 1051 { 1052 // ARM ARM (ARM DDI 0406C.b) B4.1.5 1053 // Valid only with LPAE 1054 if (!haveLPAE) 1055 return; 1056 DPRINTF(MiscRegs, "Writing AMAIR: %#x\n", newVal); 1057 } 1058 break; 1059 case MISCREG_SCR: 1060 tc->getITBPtr()->invalidateMiscReg(); 1061 tc->getDTBPtr()->invalidateMiscReg(); 1062 break; 1063 case MISCREG_SCTLR: 1064 { 1065 DPRINTF(MiscRegs, "Writing SCTLR: %#x\n", newVal); 1066 MiscRegIndex sctlr_idx; 1067 scr = readMiscRegNoEffect(MISCREG_SCR); 1068 if (haveSecurity && !scr.ns) { 1069 sctlr_idx = MISCREG_SCTLR_S; 1070 } else { 1071 sctlr_idx = MISCREG_SCTLR_NS; 1072 // The FI field (bit 21) is common between S/NS versions 1073 // of the register, we store this in the secure copy of 1074 // the reg 1075 miscRegs[MISCREG_SCTLR_S] &= ~(1 << 21); 1076 miscRegs[MISCREG_SCTLR_S] |= newVal & (1 << 21); 1077 } 1078 SCTLR sctlr = miscRegs[sctlr_idx]; 1079 SCTLR new_sctlr = newVal; 1080 new_sctlr.nmfi = ((bool)sctlr.nmfi) && !haveVirtualization; 1081 miscRegs[sctlr_idx] = (MiscReg)new_sctlr; 1082 tc->getITBPtr()->invalidateMiscReg(); 1083 tc->getDTBPtr()->invalidateMiscReg(); 1084 1085 // Check if all CPUs are booted with caches enabled 1086 // so we can stop enforcing coherency of some kernel 1087 // structures manually. 1088 sys = tc->getSystemPtr(); 1089 for (x = 0; x < sys->numContexts(); x++) { 1090 oc = sys->getThreadContext(x); 1091 // @todo: double check this for security 1092 SCTLR other_sctlr = oc->readMiscRegNoEffect(MISCREG_SCTLR); 1093 if (!other_sctlr.c && oc->status() != ThreadContext::Halted) 1094 return; 1095 } 1096 1097 for (x = 0; x < sys->numContexts(); x++) { 1098 oc = sys->getThreadContext(x); 1099 oc->getDTBPtr()->allCpusCaching(); 1100 oc->getITBPtr()->allCpusCaching(); 1101 1102 // If CheckerCPU is connected, need to notify it. 1103 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1104 if (checker) { 1105 checker->getDTBPtr()->allCpusCaching(); 1106 checker->getITBPtr()->allCpusCaching(); 1107 } 1108 } 1109 return; 1110 } 1111 1112 case MISCREG_MIDR: 1113 case MISCREG_ID_PFR0: 1114 case MISCREG_ID_PFR1: 1115 case MISCREG_ID_MMFR0: 1116 case MISCREG_ID_MMFR1: 1117 case MISCREG_ID_MMFR2: 1118 case MISCREG_ID_MMFR3: 1119 case MISCREG_ID_ISAR0: 1120 case MISCREG_ID_ISAR1: 1121 case MISCREG_ID_ISAR2: 1122 case MISCREG_ID_ISAR3: 1123 case MISCREG_ID_ISAR4: 1124 case MISCREG_ID_ISAR5: 1125 1126 case MISCREG_MPIDR: 1127 case MISCREG_FPSID: 1128 case MISCREG_TLBTR: 1129 case MISCREG_MVFR0: 1130 case MISCREG_MVFR1: 1131 1132 case MISCREG_ID_AA64AFR0_EL1: 1133 case MISCREG_ID_AA64AFR1_EL1: 1134 case MISCREG_ID_AA64DFR0_EL1: 1135 case MISCREG_ID_AA64DFR1_EL1: 1136 case MISCREG_ID_AA64ISAR0_EL1: 1137 case MISCREG_ID_AA64ISAR1_EL1: 1138 case MISCREG_ID_AA64MMFR0_EL1: 1139 case MISCREG_ID_AA64MMFR1_EL1: 1140 case MISCREG_ID_AA64PFR0_EL1: 1141 case MISCREG_ID_AA64PFR1_EL1: 1142 // ID registers are constants. 1143 return; 1144 1145 // TLBI all entries, EL0&1 inner sharable (ignored) 1146 case MISCREG_TLBIALLIS: 1147 case MISCREG_TLBIALL: // TLBI all entries, EL0&1, 1148 assert32(tc); 1149 target_el = 1; // el 0 and 1 are handled together 1150 scr = readMiscReg(MISCREG_SCR, tc); 1151 secure_lookup = haveSecurity && !scr.ns; 1152 sys = tc->getSystemPtr(); 1153 for (x = 0; x < sys->numContexts(); x++) { 1154 oc = sys->getThreadContext(x); 1155 assert(oc->getITBPtr() && oc->getDTBPtr()); 1156 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1157 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1158 1159 // If CheckerCPU is connected, need to notify it of a flush 1160 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1161 if (checker) { 1162 checker->getITBPtr()->flushAllSecurity(secure_lookup, 1163 target_el); 1164 checker->getDTBPtr()->flushAllSecurity(secure_lookup, 1165 target_el); 1166 } 1167 } 1168 return; 1169 // TLBI all entries, EL0&1, instruction side 1170 case MISCREG_ITLBIALL: 1171 assert32(tc); 1172 target_el = 1; // el 0 and 1 are handled together 1173 scr = readMiscReg(MISCREG_SCR, tc); 1174 secure_lookup = haveSecurity && !scr.ns; 1175 tc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1176 return; 1177 // TLBI all entries, EL0&1, data side 1178 case MISCREG_DTLBIALL: 1179 assert32(tc); 1180 target_el = 1; // el 0 and 1 are handled together 1181 scr = readMiscReg(MISCREG_SCR, tc); 1182 secure_lookup = haveSecurity && !scr.ns; 1183 tc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1184 return; 1185 // TLBI based on VA, EL0&1 inner sharable (ignored) 1186 case MISCREG_TLBIMVAIS: 1187 case MISCREG_TLBIMVA: 1188 assert32(tc); 1189 target_el = 1; // el 0 and 1 are handled together 1190 scr = readMiscReg(MISCREG_SCR, tc); 1191 secure_lookup = haveSecurity && !scr.ns; 1192 sys = tc->getSystemPtr(); 1193 for (x = 0; x < sys->numContexts(); x++) { 1194 oc = sys->getThreadContext(x); 1195 assert(oc->getITBPtr() && oc->getDTBPtr()); 1196 oc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1197 bits(newVal, 7,0), 1198 secure_lookup, target_el); 1199 oc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1200 bits(newVal, 7,0), 1201 secure_lookup, target_el); 1202 1203 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1204 if (checker) { 1205 checker->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1206 bits(newVal, 7,0), secure_lookup, target_el); 1207 checker->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1208 bits(newVal, 7,0), secure_lookup, target_el); 1209 } 1210 } 1211 return; 1212 // TLBI by ASID, EL0&1, inner sharable 1213 case MISCREG_TLBIASIDIS: 1214 case MISCREG_TLBIASID: 1215 assert32(tc); 1216 target_el = 1; // el 0 and 1 are handled together 1217 scr = readMiscReg(MISCREG_SCR, tc); 1218 secure_lookup = haveSecurity && !scr.ns; 1219 sys = tc->getSystemPtr(); 1220 for (x = 0; x < sys->numContexts(); x++) { 1221 oc = sys->getThreadContext(x); 1222 assert(oc->getITBPtr() && oc->getDTBPtr()); 1223 oc->getITBPtr()->flushAsid(bits(newVal, 7,0), 1224 secure_lookup, target_el); 1225 oc->getDTBPtr()->flushAsid(bits(newVal, 7,0), 1226 secure_lookup, target_el); 1227 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1228 if (checker) { 1229 checker->getITBPtr()->flushAsid(bits(newVal, 7,0), 1230 secure_lookup, target_el); 1231 checker->getDTBPtr()->flushAsid(bits(newVal, 7,0), 1232 secure_lookup, target_el); 1233 } 1234 } 1235 return; 1236 // TLBI by address, EL0&1, inner sharable (ignored) 1237 case MISCREG_TLBIMVAAIS: 1238 case MISCREG_TLBIMVAA: 1239 assert32(tc); 1240 target_el = 1; // el 0 and 1 are handled together 1241 scr = readMiscReg(MISCREG_SCR, tc); 1242 secure_lookup = haveSecurity && !scr.ns; 1243 hyp = 0; 1244 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1245 return; 1246 // TLBI by address, EL2, hypervisor mode 1247 case MISCREG_TLBIMVAH: 1248 case MISCREG_TLBIMVAHIS: 1249 assert32(tc); 1250 target_el = 1; // aarch32, use hyp bit 1251 scr = readMiscReg(MISCREG_SCR, tc); 1252 secure_lookup = haveSecurity && !scr.ns; 1253 hyp = 1; 1254 tlbiMVA(tc, newVal, secure_lookup, hyp, target_el); 1255 return; 1256 // TLBI by address and asid, EL0&1, instruction side only 1257 case MISCREG_ITLBIMVA: 1258 assert32(tc); 1259 target_el = 1; // el 0 and 1 are handled together 1260 scr = readMiscReg(MISCREG_SCR, tc); 1261 secure_lookup = haveSecurity && !scr.ns; 1262 tc->getITBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1263 bits(newVal, 7,0), secure_lookup, target_el); 1264 return; 1265 // TLBI by address and asid, EL0&1, data side only 1266 case MISCREG_DTLBIMVA: 1267 assert32(tc); 1268 target_el = 1; // el 0 and 1 are handled together 1269 scr = readMiscReg(MISCREG_SCR, tc); 1270 secure_lookup = haveSecurity && !scr.ns; 1271 tc->getDTBPtr()->flushMvaAsid(mbits(newVal, 31, 12), 1272 bits(newVal, 7,0), secure_lookup, target_el); 1273 return; 1274 // TLBI by ASID, EL0&1, instrution side only 1275 case MISCREG_ITLBIASID: 1276 assert32(tc); 1277 target_el = 1; // el 0 and 1 are handled together 1278 scr = readMiscReg(MISCREG_SCR, tc); 1279 secure_lookup = haveSecurity && !scr.ns; 1280 tc->getITBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup, 1281 target_el); 1282 return; 1283 // TLBI by ASID EL0&1 data size only 1284 case MISCREG_DTLBIASID: 1285 assert32(tc); 1286 target_el = 1; // el 0 and 1 are handled together 1287 scr = readMiscReg(MISCREG_SCR, tc); 1288 secure_lookup = haveSecurity && !scr.ns; 1289 tc->getDTBPtr()->flushAsid(bits(newVal, 7,0), secure_lookup, 1290 target_el); 1291 return; 1292 // Invalidate entire Non-secure Hyp/Non-Hyp Unified TLB 1293 case MISCREG_TLBIALLNSNH: 1294 case MISCREG_TLBIALLNSNHIS: 1295 assert32(tc); 1296 target_el = 1; // el 0 and 1 are handled together 1297 hyp = 0; 1298 tlbiALLN(tc, hyp, target_el); 1299 return; 1300 // TLBI all entries, EL2, hyp, 1301 case MISCREG_TLBIALLH: 1302 case MISCREG_TLBIALLHIS: 1303 assert32(tc); 1304 target_el = 1; // aarch32, use hyp bit 1305 hyp = 1; 1306 tlbiALLN(tc, hyp, target_el); 1307 return; 1308 // AArch64 TLBI: invalidate all entries EL3 1309 case MISCREG_TLBI_ALLE3IS: 1310 case MISCREG_TLBI_ALLE3: 1311 assert64(tc); 1312 target_el = 3; 1313 secure_lookup = true; 1314 tlbiALL(tc, secure_lookup, target_el); 1315 return; 1316 // @todo: uncomment this to enable Virtualization 1317 // case MISCREG_TLBI_ALLE2IS: 1318 // case MISCREG_TLBI_ALLE2: 1319 // TLBI all entries, EL0&1 1320 case MISCREG_TLBI_ALLE1IS: 1321 case MISCREG_TLBI_ALLE1: 1322 // AArch64 TLBI: invalidate all entries, stage 1, current VMID 1323 case MISCREG_TLBI_VMALLE1IS: 1324 case MISCREG_TLBI_VMALLE1: 1325 // AArch64 TLBI: invalidate all entries, stages 1 & 2, current VMID 1326 case MISCREG_TLBI_VMALLS12E1IS: 1327 case MISCREG_TLBI_VMALLS12E1: 1328 // @todo: handle VMID and stage 2 to enable Virtualization 1329 assert64(tc); 1330 target_el = 1; // el 0 and 1 are handled together 1331 scr = readMiscReg(MISCREG_SCR, tc); 1332 secure_lookup = haveSecurity && !scr.ns; 1333 tlbiALL(tc, secure_lookup, target_el); 1334 return; 1335 // AArch64 TLBI: invalidate by VA and ASID, stage 1, current VMID 1336 // VAEx(IS) and VALEx(IS) are the same because TLBs only store entries 1337 // from the last level of translation table walks 1338 // @todo: handle VMID to enable Virtualization 1339 // TLBI all entries, EL0&1 1340 case MISCREG_TLBI_VAE3IS_Xt: 1341 case MISCREG_TLBI_VAE3_Xt: 1342 // TLBI by VA, EL3 regime stage 1, last level walk 1343 case MISCREG_TLBI_VALE3IS_Xt: 1344 case MISCREG_TLBI_VALE3_Xt: 1345 assert64(tc); 1346 target_el = 3; 1347 asid = 0xbeef; // does not matter, tlbi is global 1348 secure_lookup = true; 1349 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1350 return; 1351 // TLBI by VA, EL2 1352 case MISCREG_TLBI_VAE2IS_Xt: 1353 case MISCREG_TLBI_VAE2_Xt: 1354 // TLBI by VA, EL2, stage1 last level walk 1355 case MISCREG_TLBI_VALE2IS_Xt: 1356 case MISCREG_TLBI_VALE2_Xt: 1357 assert64(tc); 1358 target_el = 2; 1359 asid = 0xbeef; // does not matter, tlbi is global 1360 scr = readMiscReg(MISCREG_SCR, tc); 1361 secure_lookup = haveSecurity && !scr.ns; 1362 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1363 return; 1364 // TLBI by VA EL1 & 0, stage1, ASID, current VMID 1365 case MISCREG_TLBI_VAE1IS_Xt: 1366 case MISCREG_TLBI_VAE1_Xt: 1367 case MISCREG_TLBI_VALE1IS_Xt: 1368 case MISCREG_TLBI_VALE1_Xt: 1369 assert64(tc); 1370 asid = bits(newVal, 63, 48); 1371 target_el = 1; // el 0 and 1 are handled together 1372 scr = readMiscReg(MISCREG_SCR, tc); 1373 secure_lookup = haveSecurity && !scr.ns; 1374 tlbiVA(tc, newVal, asid, secure_lookup, target_el); 1375 return; 1376 // AArch64 TLBI: invalidate by ASID, stage 1, current VMID 1377 // @todo: handle VMID to enable Virtualization 1378 case MISCREG_TLBI_ASIDE1IS_Xt: 1379 case MISCREG_TLBI_ASIDE1_Xt: 1380 assert64(tc); 1381 target_el = 1; // el 0 and 1 are handled together 1382 scr = readMiscReg(MISCREG_SCR, tc); 1383 secure_lookup = haveSecurity && !scr.ns; 1384 sys = tc->getSystemPtr(); 1385 for (x = 0; x < sys->numContexts(); x++) { 1386 oc = sys->getThreadContext(x); 1387 assert(oc->getITBPtr() && oc->getDTBPtr()); 1388 asid = bits(newVal, 63, 48); 1389 if (haveLargeAsid64) 1390 asid &= mask(8); 1391 oc->getITBPtr()->flushAsid(asid, secure_lookup, target_el); 1392 oc->getDTBPtr()->flushAsid(asid, secure_lookup, target_el); 1393 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1394 if (checker) { 1395 checker->getITBPtr()->flushAsid(asid, 1396 secure_lookup, target_el); 1397 checker->getDTBPtr()->flushAsid(asid, 1398 secure_lookup, target_el); 1399 } 1400 } 1401 return; 1402 // AArch64 TLBI: invalidate by VA, ASID, stage 1, current VMID 1403 // VAAE1(IS) and VAALE1(IS) are the same because TLBs only store 1404 // entries from the last level of translation table walks 1405 // @todo: handle VMID to enable Virtualization 1406 case MISCREG_TLBI_VAAE1IS_Xt: 1407 case MISCREG_TLBI_VAAE1_Xt: 1408 case MISCREG_TLBI_VAALE1IS_Xt: 1409 case MISCREG_TLBI_VAALE1_Xt: 1410 assert64(tc); 1411 target_el = 1; // el 0 and 1 are handled together 1412 scr = readMiscReg(MISCREG_SCR, tc); 1413 secure_lookup = haveSecurity && !scr.ns; 1414 sys = tc->getSystemPtr(); 1415 for (x = 0; x < sys->numContexts(); x++) { 1416 // @todo: extra controls on TLBI broadcast? 1417 oc = sys->getThreadContext(x); 1418 assert(oc->getITBPtr() && oc->getDTBPtr()); 1419 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1420 oc->getITBPtr()->flushMva(va, 1421 secure_lookup, false, target_el); 1422 oc->getDTBPtr()->flushMva(va, 1423 secure_lookup, false, target_el); 1424 1425 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1426 if (checker) { 1427 checker->getITBPtr()->flushMva(va, 1428 secure_lookup, false, target_el); 1429 checker->getDTBPtr()->flushMva(va, 1430 secure_lookup, false, target_el); 1431 } 1432 } 1433 return; 1434 // AArch64 TLBI: invalidate by IPA, stage 2, current VMID 1435 case MISCREG_TLBI_IPAS2LE1IS_Xt: 1436 case MISCREG_TLBI_IPAS2LE1_Xt: 1437 case MISCREG_TLBI_IPAS2E1IS_Xt: 1438 case MISCREG_TLBI_IPAS2E1_Xt: 1439 assert64(tc); 1440 // @todo: implement these as part of Virtualization 1441 warn("Not doing anything for write of miscreg ITLB_IPAS2\n"); 1442 return; 1443 case MISCREG_ACTLR: 1444 warn("Not doing anything for write of miscreg ACTLR\n"); 1445 break; 1446 case MISCREG_PMCR: 1447 { 1448 // Performance counters not implemented. Instead, interpret 1449 // a reset command to this register to reset the simulator 1450 // statistics. 1451 // PMCR_E | PMCR_P | PMCR_C 1452 const int ResetAndEnableCounters = 0x7; 1453 if (newVal == ResetAndEnableCounters) { 1454 inform("Resetting all simobject stats\n"); 1455 Stats::schedStatEvent(false, true); 1456 break; 1457 } 1458 } 1459 case MISCREG_PMCCNTR: 1460 case MISCREG_PMSELR: 1461 warn("Not doing anything for write to miscreg %s\n", 1462 miscRegName[misc_reg]); 1463 break; 1464 case MISCREG_HSTR: // TJDBX, now redifined to be RES0 1465 { 1466 HSTR hstrMask = 0; 1467 hstrMask.tjdbx = 1; 1468 newVal &= ~((uint32_t) hstrMask); 1469 break; 1470 } 1471 case MISCREG_HCPTR: 1472 { 1473 // If a CP bit in NSACR is 0 then the corresponding bit in 1474 // HCPTR is RAO/WI. Same applies to NSASEDIS 1475 secure_lookup = haveSecurity && 1476 inSecureState(readMiscRegNoEffect(MISCREG_SCR), 1477 readMiscRegNoEffect(MISCREG_CPSR)); 1478 if (!secure_lookup) { 1479 MiscReg oldValue = readMiscRegNoEffect(MISCREG_HCPTR); 1480 MiscReg mask = (readMiscRegNoEffect(MISCREG_NSACR) ^ 0x7FFF) & 0xBFFF; 1481 newVal = (newVal & ~mask) | (oldValue & mask); 1482 } 1483 break; 1484 } 1485 case MISCREG_HDFAR: // alias for secure DFAR 1486 misc_reg = MISCREG_DFAR_S; 1487 break; 1488 case MISCREG_HIFAR: // alias for secure IFAR 1489 misc_reg = MISCREG_IFAR_S; 1490 break; 1491 case MISCREG_ATS1CPR: 1492 case MISCREG_ATS1CPW: 1493 case MISCREG_ATS1CUR: 1494 case MISCREG_ATS1CUW: 1495 case MISCREG_ATS12NSOPR: 1496 case MISCREG_ATS12NSOPW: 1497 case MISCREG_ATS12NSOUR: 1498 case MISCREG_ATS12NSOUW: 1499 case MISCREG_ATS1HR: 1500 case MISCREG_ATS1HW: 1501 { 1502 RequestPtr req = new Request; 1503 unsigned flags = 0; 1504 BaseTLB::Mode mode = BaseTLB::Read; 1505 TLB::ArmTranslationType tranType = TLB::NormalTran; 1506 Fault fault; 1507 switch(misc_reg) { 1508 case MISCREG_ATS1CPR: 1509 flags = TLB::MustBeOne; 1510 tranType = TLB::S1CTran; 1511 mode = BaseTLB::Read; 1512 break; 1513 case MISCREG_ATS1CPW: 1514 flags = TLB::MustBeOne; 1515 tranType = TLB::S1CTran; 1516 mode = BaseTLB::Write; 1517 break; 1518 case MISCREG_ATS1CUR: 1519 flags = TLB::MustBeOne | TLB::UserMode; 1520 tranType = TLB::S1CTran; 1521 mode = BaseTLB::Read; 1522 break; 1523 case MISCREG_ATS1CUW: 1524 flags = TLB::MustBeOne | TLB::UserMode; 1525 tranType = TLB::S1CTran; 1526 mode = BaseTLB::Write; 1527 break; 1528 case MISCREG_ATS12NSOPR: 1529 if (!haveSecurity) 1530 panic("Security Extensions required for ATS12NSOPR"); 1531 flags = TLB::MustBeOne; 1532 tranType = TLB::S1S2NsTran; 1533 mode = BaseTLB::Read; 1534 break; 1535 case MISCREG_ATS12NSOPW: 1536 if (!haveSecurity) 1537 panic("Security Extensions required for ATS12NSOPW"); 1538 flags = TLB::MustBeOne; 1539 tranType = TLB::S1S2NsTran; 1540 mode = BaseTLB::Write; 1541 break; 1542 case MISCREG_ATS12NSOUR: 1543 if (!haveSecurity) 1544 panic("Security Extensions required for ATS12NSOUR"); 1545 flags = TLB::MustBeOne | TLB::UserMode; 1546 tranType = TLB::S1S2NsTran; 1547 mode = BaseTLB::Read; 1548 break; 1549 case MISCREG_ATS12NSOUW: 1550 if (!haveSecurity) 1551 panic("Security Extensions required for ATS12NSOUW"); 1552 flags = TLB::MustBeOne | TLB::UserMode; 1553 tranType = TLB::S1S2NsTran; 1554 mode = BaseTLB::Write; 1555 break; 1556 case MISCREG_ATS1HR: // only really useful from secure mode. 1557 flags = TLB::MustBeOne; 1558 tranType = TLB::HypMode; 1559 mode = BaseTLB::Read; 1560 break; 1561 case MISCREG_ATS1HW: 1562 flags = TLB::MustBeOne; 1563 tranType = TLB::HypMode; 1564 mode = BaseTLB::Write; 1565 break; 1566 } 1567 // If we're in timing mode then doing the translation in 1568 // functional mode then we're slightly distorting performance 1569 // results obtained from simulations. The translation should be 1570 // done in the same mode the core is running in. NOTE: This 1571 // can't be an atomic translation because that causes problems 1572 // with unexpected atomic snoop requests. 1573 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1574 req->setVirt(0, val, 1, flags, Request::funcMasterId, 1575 tc->pcState().pc()); 1576 req->setThreadContext(tc->contextId(), tc->threadId()); 1577 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, tranType); 1578 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1579 HCR hcr = readMiscRegNoEffect(MISCREG_HCR); 1580 1581 MiscReg newVal; 1582 if (fault == NoFault) { 1583 Addr paddr = req->getPaddr(); 1584 if (haveLPAE && (ttbcr.eae || tranType & TLB::HypMode || 1585 ((tranType & TLB::S1S2NsTran) && hcr.vm) )) { 1586 newVal = (paddr & mask(39, 12)) | 1587 (tc->getDTBPtr()->getAttr()); 1588 } else { 1589 newVal = (paddr & 0xfffff000) | 1590 (tc->getDTBPtr()->getAttr()); 1591 } 1592 DPRINTF(MiscRegs, 1593 "MISCREG: Translated addr 0x%08x: PAR: 0x%08x\n", 1594 val, newVal); 1595 } else { 1596 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get()); 1597 // Set fault bit and FSR 1598 FSR fsr = armFault->getFsr(tc); 1599 1600 newVal = ((fsr >> 9) & 1) << 11; 1601 if (newVal) { 1602 // LPAE - rearange fault status 1603 newVal |= ((fsr >> 0) & 0x3f) << 1; 1604 } else { 1605 // VMSA - rearange fault status 1606 newVal |= ((fsr >> 0) & 0xf) << 1; 1607 newVal |= ((fsr >> 10) & 0x1) << 5; 1608 newVal |= ((fsr >> 12) & 0x1) << 6; 1609 } 1610 newVal |= 0x1; // F bit 1611 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1612 newVal |= armFault->isStage2() ? 0x200 : 0; 1613 DPRINTF(MiscRegs, 1614 "MISCREG: Translated addr 0x%08x fault fsr %#x: PAR: 0x%08x\n", 1615 val, fsr, newVal); 1616 } 1617 delete req; 1618 setMiscRegNoEffect(MISCREG_PAR, newVal); 1619 return; 1620 } 1621 case MISCREG_TTBCR: 1622 { 1623 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1624 const uint32_t ones = (uint32_t)(-1); 1625 TTBCR ttbcrMask = 0; 1626 TTBCR ttbcrNew = newVal; 1627 1628 // ARM DDI 0406C.b, ARMv7-32 1629 ttbcrMask.n = ones; // T0SZ 1630 if (haveSecurity) { 1631 ttbcrMask.pd0 = ones; 1632 ttbcrMask.pd1 = ones; 1633 } 1634 ttbcrMask.epd0 = ones; 1635 ttbcrMask.irgn0 = ones; 1636 ttbcrMask.orgn0 = ones; 1637 ttbcrMask.sh0 = ones; 1638 ttbcrMask.ps = ones; // T1SZ 1639 ttbcrMask.a1 = ones; 1640 ttbcrMask.epd1 = ones; 1641 ttbcrMask.irgn1 = ones; 1642 ttbcrMask.orgn1 = ones; 1643 ttbcrMask.sh1 = ones; 1644 if (haveLPAE) 1645 ttbcrMask.eae = ones; 1646 1647 if (haveLPAE && ttbcrNew.eae) { 1648 newVal = newVal & ttbcrMask; 1649 } else { 1650 newVal = (newVal & ttbcrMask) | (ttbcr & (~ttbcrMask)); 1651 } 1652 } 1653 case MISCREG_TTBR0: 1654 case MISCREG_TTBR1: 1655 { 1656 TTBCR ttbcr = readMiscRegNoEffect(MISCREG_TTBCR); 1657 if (haveLPAE) { 1658 if (ttbcr.eae) { 1659 // ARMv7 bit 63-56, 47-40 reserved, UNK/SBZP 1660 // ARMv8 AArch32 bit 63-56 only 1661 uint64_t ttbrMask = mask(63,56) | mask(47,40); 1662 newVal = (newVal & (~ttbrMask)); 1663 } 1664 } 1665 } 1666 case MISCREG_CONTEXTIDR: 1667 case MISCREG_PRRR: 1668 case MISCREG_NMRR: 1669 case MISCREG_MAIR0: 1670 case MISCREG_MAIR1: 1671 case MISCREG_DACR: 1672 case MISCREG_VTTBR: 1673 case MISCREG_SCR_EL3: 1674 case MISCREG_SCTLR_EL1: 1675 case MISCREG_SCTLR_EL2: 1676 case MISCREG_SCTLR_EL3: 1677 case MISCREG_TCR_EL1: 1678 case MISCREG_TCR_EL2: 1679 case MISCREG_TCR_EL3: 1680 case MISCREG_TTBR0_EL1: 1681 case MISCREG_TTBR1_EL1: 1682 case MISCREG_TTBR0_EL2: 1683 case MISCREG_TTBR0_EL3: 1684 tc->getITBPtr()->invalidateMiscReg(); 1685 tc->getDTBPtr()->invalidateMiscReg(); 1686 break; 1687 case MISCREG_NZCV: 1688 { 1689 CPSR cpsr = val; 1690 1691 tc->setCCReg(CCREG_NZ, cpsr.nz); 1692 tc->setCCReg(CCREG_C, cpsr.c); 1693 tc->setCCReg(CCREG_V, cpsr.v); 1694 } 1695 break; 1696 case MISCREG_DAIF: 1697 { 1698 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1699 cpsr.daif = (uint8_t) ((CPSR) newVal).daif; 1700 newVal = cpsr; 1701 misc_reg = MISCREG_CPSR; 1702 } 1703 break; 1704 case MISCREG_SP_EL0: 1705 tc->setIntReg(INTREG_SP0, newVal); 1706 break; 1707 case MISCREG_SP_EL1: 1708 tc->setIntReg(INTREG_SP1, newVal); 1709 break; 1710 case MISCREG_SP_EL2: 1711 tc->setIntReg(INTREG_SP2, newVal); 1712 break; 1713 case MISCREG_SPSEL: 1714 { 1715 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1716 cpsr.sp = (uint8_t) ((CPSR) newVal).sp; 1717 newVal = cpsr; 1718 misc_reg = MISCREG_CPSR; 1719 } 1720 break; 1721 case MISCREG_CURRENTEL: 1722 { 1723 CPSR cpsr = miscRegs[MISCREG_CPSR]; 1724 cpsr.el = (uint8_t) ((CPSR) newVal).el; 1725 newVal = cpsr; 1726 misc_reg = MISCREG_CPSR; 1727 } 1728 break; 1729 case MISCREG_AT_S1E1R_Xt: 1730 case MISCREG_AT_S1E1W_Xt: 1731 case MISCREG_AT_S1E0R_Xt: 1732 case MISCREG_AT_S1E0W_Xt: 1733 case MISCREG_AT_S1E2R_Xt: 1734 case MISCREG_AT_S1E2W_Xt: 1735 case MISCREG_AT_S12E1R_Xt: 1736 case MISCREG_AT_S12E1W_Xt: 1737 case MISCREG_AT_S12E0R_Xt: 1738 case MISCREG_AT_S12E0W_Xt: 1739 case MISCREG_AT_S1E3R_Xt: 1740 case MISCREG_AT_S1E3W_Xt: 1741 { 1742 RequestPtr req = new Request; 1743 unsigned flags = 0; 1744 BaseTLB::Mode mode = BaseTLB::Read; 1745 TLB::ArmTranslationType tranType = TLB::NormalTran; 1746 Fault fault; 1747 switch(misc_reg) { 1748 case MISCREG_AT_S1E1R_Xt: 1749 flags = TLB::MustBeOne; 1750 tranType = TLB::S1CTran; 1751 mode = BaseTLB::Read; 1752 break; 1753 case MISCREG_AT_S1E1W_Xt: 1754 flags = TLB::MustBeOne; 1755 tranType = TLB::S1CTran; 1756 mode = BaseTLB::Write; 1757 break; 1758 case MISCREG_AT_S1E0R_Xt: 1759 flags = TLB::MustBeOne | TLB::UserMode; 1760 tranType = TLB::S1CTran; 1761 mode = BaseTLB::Read; 1762 break; 1763 case MISCREG_AT_S1E0W_Xt: 1764 flags = TLB::MustBeOne | TLB::UserMode; 1765 tranType = TLB::S1CTran; 1766 mode = BaseTLB::Write; 1767 break; 1768 case MISCREG_AT_S1E2R_Xt: 1769 flags = TLB::MustBeOne; 1770 tranType = TLB::HypMode; 1771 mode = BaseTLB::Read; 1772 break; 1773 case MISCREG_AT_S1E2W_Xt: 1774 flags = TLB::MustBeOne; 1775 tranType = TLB::HypMode; 1776 mode = BaseTLB::Write; 1777 break; 1778 case MISCREG_AT_S12E0R_Xt: 1779 flags = TLB::MustBeOne | TLB::UserMode; 1780 tranType = TLB::S1S2NsTran; 1781 mode = BaseTLB::Read; 1782 break; 1783 case MISCREG_AT_S12E0W_Xt: 1784 flags = TLB::MustBeOne | TLB::UserMode; 1785 tranType = TLB::S1S2NsTran; 1786 mode = BaseTLB::Write; 1787 break; 1788 case MISCREG_AT_S12E1R_Xt: 1789 flags = TLB::MustBeOne; 1790 tranType = TLB::S1S2NsTran; 1791 mode = BaseTLB::Read; 1792 break; 1793 case MISCREG_AT_S12E1W_Xt: 1794 flags = TLB::MustBeOne; 1795 tranType = TLB::S1S2NsTran; 1796 mode = BaseTLB::Write; 1797 break; 1798 case MISCREG_AT_S1E3R_Xt: 1799 flags = TLB::MustBeOne; 1800 tranType = TLB::HypMode; // There is no TZ mode defined. 1801 mode = BaseTLB::Read; 1802 break; 1803 case MISCREG_AT_S1E3W_Xt: 1804 flags = TLB::MustBeOne; 1805 tranType = TLB::HypMode; // There is no TZ mode defined. 1806 mode = BaseTLB::Write; 1807 break; 1808 } 1809 // If we're in timing mode then doing the translation in 1810 // functional mode then we're slightly distorting performance 1811 // results obtained from simulations. The translation should be 1812 // done in the same mode the core is running in. NOTE: This 1813 // can't be an atomic translation because that causes problems 1814 // with unexpected atomic snoop requests. 1815 warn("Translating via MISCREG(%d) in functional mode! Fix Me!\n", misc_reg); 1816 req->setVirt(0, val, 1, flags, Request::funcMasterId, 1817 tc->pcState().pc()); 1818 req->setThreadContext(tc->contextId(), tc->threadId()); 1819 fault = tc->getDTBPtr()->translateFunctional(req, tc, mode, 1820 tranType); 1821 1822 MiscReg newVal; 1823 if (fault == NoFault) { 1824 Addr paddr = req->getPaddr(); 1825 uint64_t attr = tc->getDTBPtr()->getAttr(); 1826 uint64_t attr1 = attr >> 56; 1827 if (!attr1 || attr1 ==0x44) { 1828 attr |= 0x100; 1829 attr &= ~ uint64_t(0x80); 1830 } 1831 newVal = (paddr & mask(47, 12)) | attr; 1832 DPRINTF(MiscRegs, 1833 "MISCREG: Translated addr %#x: PAR_EL1: %#xx\n", 1834 val, newVal); 1835 } else { 1836 ArmFault *armFault = reinterpret_cast<ArmFault *>(fault.get()); 1837 // Set fault bit and FSR 1838 FSR fsr = armFault->getFsr(tc); 1839 1840 newVal = ((fsr >> 9) & 1) << 11; 1841 // rearange fault status 1842 newVal |= ((fsr >> 0) & 0x3f) << 1; 1843 newVal |= 0x1; // F bit 1844 newVal |= ((armFault->iss() >> 7) & 0x1) << 8; 1845 newVal |= armFault->isStage2() ? 0x200 : 0; 1846 DPRINTF(MiscRegs, 1847 "MISCREG: Translated addr %#x fault fsr %#x: PAR: %#x\n", 1848 val, fsr, newVal); 1849 } 1850 delete req; 1851 setMiscRegNoEffect(MISCREG_PAR_EL1, newVal); 1852 return; 1853 } 1854 case MISCREG_SPSR_EL3: 1855 case MISCREG_SPSR_EL2: 1856 case MISCREG_SPSR_EL1: 1857 // Force bits 23:21 to 0 1858 newVal = val & ~(0x7 << 21); 1859 break; 1860 case MISCREG_L2CTLR: 1861 warn("miscreg L2CTLR (%s) written with %#x. ignored...\n", 1862 miscRegName[misc_reg], uint32_t(val)); 1863 break; 1864 1865 // Generic Timer registers 1866 case MISCREG_CNTFRQ: 1867 case MISCREG_CNTFRQ_EL0: 1868 getSystemCounter(tc)->setFreq(val); 1869 break; 1870 case MISCREG_CNTP_CVAL: 1871 case MISCREG_CNTP_CVAL_EL0: 1872 getArchTimer(tc, tc->cpuId())->setCompareValue(val); 1873 break; 1874 case MISCREG_CNTP_TVAL: 1875 case MISCREG_CNTP_TVAL_EL0: 1876 getArchTimer(tc, tc->cpuId())->setTimerValue(val); 1877 break; 1878 case MISCREG_CNTP_CTL: 1879 case MISCREG_CNTP_CTL_EL0: 1880 getArchTimer(tc, tc->cpuId())->setControl(val); 1881 break; 1882 // PL1 phys. timer, secure 1883 // AArch64 1884 case MISCREG_CNTPS_CVAL_EL1: 1885 case MISCREG_CNTPS_TVAL_EL1: 1886 case MISCREG_CNTPS_CTL_EL1: 1887 // PL2 phys. timer, non-secure 1888 // AArch32 1889 case MISCREG_CNTHCTL: 1890 case MISCREG_CNTHP_CVAL: 1891 case MISCREG_CNTHP_TVAL: 1892 case MISCREG_CNTHP_CTL: 1893 // AArch64 1894 case MISCREG_CNTHCTL_EL2: 1895 case MISCREG_CNTHP_CVAL_EL2: 1896 case MISCREG_CNTHP_TVAL_EL2: 1897 case MISCREG_CNTHP_CTL_EL2: 1898 // Virtual timer 1899 // AArch32 1900 case MISCREG_CNTV_CVAL: 1901 case MISCREG_CNTV_TVAL: 1902 case MISCREG_CNTV_CTL: 1903 // AArch64 1904 // case MISCREG_CNTV_CVAL_EL2: 1905 // case MISCREG_CNTV_TVAL_EL2: 1906 // case MISCREG_CNTV_CTL_EL2: 1907 break; 1908 } 1909 } 1910 setMiscRegNoEffect(misc_reg, newVal); 1911} 1912 1913void 1914ISA::tlbiVA(ThreadContext *tc, MiscReg newVal, uint8_t asid, bool secure_lookup, 1915 uint8_t target_el) 1916{ 1917 if (haveLargeAsid64) 1918 asid &= mask(8); 1919 Addr va = ((Addr) bits(newVal, 43, 0)) << 12; 1920 System *sys = tc->getSystemPtr(); 1921 for (int x = 0; x < sys->numContexts(); x++) { 1922 ThreadContext *oc = sys->getThreadContext(x); 1923 assert(oc->getITBPtr() && oc->getDTBPtr()); 1924 oc->getITBPtr()->flushMvaAsid(va, asid, 1925 secure_lookup, target_el); 1926 oc->getDTBPtr()->flushMvaAsid(va, asid, 1927 secure_lookup, target_el); 1928 1929 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1930 if (checker) { 1931 checker->getITBPtr()->flushMvaAsid( 1932 va, asid, secure_lookup, target_el); 1933 checker->getDTBPtr()->flushMvaAsid( 1934 va, asid, secure_lookup, target_el); 1935 } 1936 } 1937} 1938 1939void 1940ISA::tlbiALL(ThreadContext *tc, bool secure_lookup, uint8_t target_el) 1941{ 1942 System *sys = tc->getSystemPtr(); 1943 for (int x = 0; x < sys->numContexts(); x++) { 1944 ThreadContext *oc = sys->getThreadContext(x); 1945 assert(oc->getITBPtr() && oc->getDTBPtr()); 1946 oc->getITBPtr()->flushAllSecurity(secure_lookup, target_el); 1947 oc->getDTBPtr()->flushAllSecurity(secure_lookup, target_el); 1948 1949 // If CheckerCPU is connected, need to notify it of a flush 1950 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1951 if (checker) { 1952 checker->getITBPtr()->flushAllSecurity(secure_lookup, 1953 target_el); 1954 checker->getDTBPtr()->flushAllSecurity(secure_lookup, 1955 target_el); 1956 } 1957 } 1958} 1959 1960void 1961ISA::tlbiALLN(ThreadContext *tc, bool hyp, uint8_t target_el) 1962{ 1963 System *sys = tc->getSystemPtr(); 1964 for (int x = 0; x < sys->numContexts(); x++) { 1965 ThreadContext *oc = sys->getThreadContext(x); 1966 assert(oc->getITBPtr() && oc->getDTBPtr()); 1967 oc->getITBPtr()->flushAllNs(hyp, target_el); 1968 oc->getDTBPtr()->flushAllNs(hyp, target_el); 1969 1970 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1971 if (checker) { 1972 checker->getITBPtr()->flushAllNs(hyp, target_el); 1973 checker->getDTBPtr()->flushAllNs(hyp, target_el); 1974 } 1975 } 1976} 1977 1978void 1979ISA::tlbiMVA(ThreadContext *tc, MiscReg newVal, bool secure_lookup, bool hyp, 1980 uint8_t target_el) 1981{ 1982 System *sys = tc->getSystemPtr(); 1983 for (int x = 0; x < sys->numContexts(); x++) { 1984 ThreadContext *oc = sys->getThreadContext(x); 1985 assert(oc->getITBPtr() && oc->getDTBPtr()); 1986 oc->getITBPtr()->flushMva(mbits(newVal, 31,12), 1987 secure_lookup, hyp, target_el); 1988 oc->getDTBPtr()->flushMva(mbits(newVal, 31,12), 1989 secure_lookup, hyp, target_el); 1990 1991 CheckerCPU *checker = oc->getCheckerCpuPtr(); 1992 if (checker) { 1993 checker->getITBPtr()->flushMva(mbits(newVal, 31,12), 1994 secure_lookup, hyp, target_el); 1995 checker->getDTBPtr()->flushMva(mbits(newVal, 31,12), 1996 secure_lookup, hyp, target_el); 1997 } 1998 } 1999} 2000 2001::GenericTimer::SystemCounter * 2002ISA::getSystemCounter(ThreadContext *tc) 2003{ 2004 ::GenericTimer::SystemCounter *cnt = ((ArmSystem *) tc->getSystemPtr())-> 2005 getSystemCounter(); 2006 if (cnt == NULL) { 2007 panic("System counter not available\n"); 2008 } 2009 return cnt; 2010} 2011 2012::GenericTimer::ArchTimer * 2013ISA::getArchTimer(ThreadContext *tc, int cpu_id) 2014{ 2015 ::GenericTimer::ArchTimer *timer = ((ArmSystem *) tc->getSystemPtr())-> 2016 getArchTimer(cpu_id); 2017 if (timer == NULL) { 2018 panic("Architected timer not available\n"); 2019 } 2020 return timer; 2021} 2022 2023} 2024 2025ArmISA::ISA * 2026ArmISAParams::create() 2027{ 2028 return new ArmISA::ISA(this); 2029} 2030