faults.cc revision 12136
1/*
2 * Copyright (c) 2010, 2012-2014, 2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2003-2005 The Regents of The University of Michigan
15 * Copyright (c) 2007-2008 The Florida State University
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Ali Saidi
42 *          Gabe Black
43 *          Giacomo Gabrielli
44 *          Thomas Grocutt
45 */
46
47#include "arch/arm/faults.hh"
48
49#include "arch/arm/insts/static_inst.hh"
50#include "arch/arm/system.hh"
51#include "arch/arm/utility.hh"
52#include "base/compiler.hh"
53#include "base/trace.hh"
54#include "cpu/base.hh"
55#include "cpu/thread_context.hh"
56#include "debug/Faults.hh"
57#include "sim/full_system.hh"
58
59namespace ArmISA
60{
61
62uint8_t ArmFault::shortDescFaultSources[] = {
63    0x01,  // AlignmentFault
64    0x04,  // InstructionCacheMaintenance
65    0xff,  // SynchExtAbtOnTranslTableWalkL0 (INVALID)
66    0x0c,  // SynchExtAbtOnTranslTableWalkL1
67    0x0e,  // SynchExtAbtOnTranslTableWalkL2
68    0xff,  // SynchExtAbtOnTranslTableWalkL3 (INVALID)
69    0xff,  // SynchPtyErrOnTranslTableWalkL0 (INVALID)
70    0x1c,  // SynchPtyErrOnTranslTableWalkL1
71    0x1e,  // SynchPtyErrOnTranslTableWalkL2
72    0xff,  // SynchPtyErrOnTranslTableWalkL3 (INVALID)
73    0xff,  // TranslationL0 (INVALID)
74    0x05,  // TranslationL1
75    0x07,  // TranslationL2
76    0xff,  // TranslationL3 (INVALID)
77    0xff,  // AccessFlagL0 (INVALID)
78    0x03,  // AccessFlagL1
79    0x06,  // AccessFlagL2
80    0xff,  // AccessFlagL3 (INVALID)
81    0xff,  // DomainL0 (INVALID)
82    0x09,  // DomainL1
83    0x0b,  // DomainL2
84    0xff,  // DomainL3 (INVALID)
85    0xff,  // PermissionL0 (INVALID)
86    0x0d,  // PermissionL1
87    0x0f,  // PermissionL2
88    0xff,  // PermissionL3 (INVALID)
89    0x02,  // DebugEvent
90    0x08,  // SynchronousExternalAbort
91    0x10,  // TLBConflictAbort
92    0x19,  // SynchPtyErrOnMemoryAccess
93    0x16,  // AsynchronousExternalAbort
94    0x18,  // AsynchPtyErrOnMemoryAccess
95    0xff,  // AddressSizeL0 (INVALID)
96    0xff,  // AddressSizeL1 (INVALID)
97    0xff,  // AddressSizeL2 (INVALID)
98    0xff,  // AddressSizeL3 (INVALID)
99    0x40,  // PrefetchTLBMiss
100    0x80   // PrefetchUncacheable
101};
102
103static_assert(sizeof(ArmFault::shortDescFaultSources) ==
104              ArmFault::NumFaultSources,
105              "Invalid size of ArmFault::shortDescFaultSources[]");
106
107uint8_t ArmFault::longDescFaultSources[] = {
108    0x21,  // AlignmentFault
109    0xff,  // InstructionCacheMaintenance (INVALID)
110    0xff,  // SynchExtAbtOnTranslTableWalkL0 (INVALID)
111    0x15,  // SynchExtAbtOnTranslTableWalkL1
112    0x16,  // SynchExtAbtOnTranslTableWalkL2
113    0x17,  // SynchExtAbtOnTranslTableWalkL3
114    0xff,  // SynchPtyErrOnTranslTableWalkL0 (INVALID)
115    0x1d,  // SynchPtyErrOnTranslTableWalkL1
116    0x1e,  // SynchPtyErrOnTranslTableWalkL2
117    0x1f,  // SynchPtyErrOnTranslTableWalkL3
118    0xff,  // TranslationL0 (INVALID)
119    0x05,  // TranslationL1
120    0x06,  // TranslationL2
121    0x07,  // TranslationL3
122    0xff,  // AccessFlagL0 (INVALID)
123    0x09,  // AccessFlagL1
124    0x0a,  // AccessFlagL2
125    0x0b,  // AccessFlagL3
126    0xff,  // DomainL0 (INVALID)
127    0x3d,  // DomainL1
128    0x3e,  // DomainL2
129    0xff,  // DomainL3 (RESERVED)
130    0xff,  // PermissionL0 (INVALID)
131    0x0d,  // PermissionL1
132    0x0e,  // PermissionL2
133    0x0f,  // PermissionL3
134    0x22,  // DebugEvent
135    0x10,  // SynchronousExternalAbort
136    0x30,  // TLBConflictAbort
137    0x18,  // SynchPtyErrOnMemoryAccess
138    0x11,  // AsynchronousExternalAbort
139    0x19,  // AsynchPtyErrOnMemoryAccess
140    0xff,  // AddressSizeL0 (INVALID)
141    0xff,  // AddressSizeL1 (INVALID)
142    0xff,  // AddressSizeL2 (INVALID)
143    0xff,  // AddressSizeL3 (INVALID)
144    0x40,  // PrefetchTLBMiss
145    0x80   // PrefetchUncacheable
146};
147
148static_assert(sizeof(ArmFault::longDescFaultSources) ==
149              ArmFault::NumFaultSources,
150              "Invalid size of ArmFault::longDescFaultSources[]");
151
152uint8_t ArmFault::aarch64FaultSources[] = {
153    0x21,  // AlignmentFault
154    0xff,  // InstructionCacheMaintenance (INVALID)
155    0x14,  // SynchExtAbtOnTranslTableWalkL0
156    0x15,  // SynchExtAbtOnTranslTableWalkL1
157    0x16,  // SynchExtAbtOnTranslTableWalkL2
158    0x17,  // SynchExtAbtOnTranslTableWalkL3
159    0x1c,  // SynchPtyErrOnTranslTableWalkL0
160    0x1d,  // SynchPtyErrOnTranslTableWalkL1
161    0x1e,  // SynchPtyErrOnTranslTableWalkL2
162    0x1f,  // SynchPtyErrOnTranslTableWalkL3
163    0x04,  // TranslationL0
164    0x05,  // TranslationL1
165    0x06,  // TranslationL2
166    0x07,  // TranslationL3
167    0x08,  // AccessFlagL0
168    0x09,  // AccessFlagL1
169    0x0a,  // AccessFlagL2
170    0x0b,  // AccessFlagL3
171    // @todo: Section & Page Domain Fault in AArch64?
172    0xff,  // DomainL0 (INVALID)
173    0xff,  // DomainL1 (INVALID)
174    0xff,  // DomainL2 (INVALID)
175    0xff,  // DomainL3 (INVALID)
176    0x0c,  // PermissionL0
177    0x0d,  // PermissionL1
178    0x0e,  // PermissionL2
179    0x0f,  // PermissionL3
180    0xff,  // DebugEvent (INVALID)
181    0x10,  // SynchronousExternalAbort
182    0x30,  // TLBConflictAbort
183    0x18,  // SynchPtyErrOnMemoryAccess
184    0xff,  // AsynchronousExternalAbort (INVALID)
185    0xff,  // AsynchPtyErrOnMemoryAccess (INVALID)
186    0x00,  // AddressSizeL0
187    0x01,  // AddressSizeL1
188    0x02,  // AddressSizeL2
189    0x03,  // AddressSizeL3
190    0x40,  // PrefetchTLBMiss
191    0x80   // PrefetchUncacheable
192};
193
194static_assert(sizeof(ArmFault::aarch64FaultSources) ==
195              ArmFault::NumFaultSources,
196              "Invalid size of ArmFault::aarch64FaultSources[]");
197
198// Fields: name, offset, cur{ELT,ELH}Offset, lowerEL{64,32}Offset, next mode,
199//         {ARM, Thumb, ARM_ELR, Thumb_ELR} PC offset, hyp trap,
200//         {A, F} disable, class, stat
201template<> ArmFault::FaultVals ArmFaultVals<Reset>::vals = {
202    // Some dummy values (the reset vector has an IMPLEMENTATION DEFINED
203    // location in AArch64)
204    "Reset",                 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
205    0, 0, 0, 0, false, true,  true,  EC_UNKNOWN, FaultStat()
206};
207template<> ArmFault::FaultVals ArmFaultVals<UndefinedInstruction>::vals = {
208    "Undefined Instruction", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED,
209    4, 2, 0, 0, true,  false, false, EC_UNKNOWN, FaultStat()
210};
211template<> ArmFault::FaultVals ArmFaultVals<SupervisorCall>::vals = {
212    "Supervisor Call",       0x008, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
213    4, 2, 4, 2, true,  false, false, EC_SVC_TO_HYP, FaultStat()
214};
215template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorCall>::vals = {
216    "Secure Monitor Call",   0x008, 0x000, 0x200, 0x400, 0x600, MODE_MON,
217    4, 4, 4, 4, false, true,  true,  EC_SMC_TO_HYP, FaultStat()
218};
219template<> ArmFault::FaultVals ArmFaultVals<HypervisorCall>::vals = {
220    "Hypervisor Call",       0x008, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
221    4, 4, 4, 4, true,  false, false, EC_HVC, FaultStat()
222};
223template<> ArmFault::FaultVals ArmFaultVals<PrefetchAbort>::vals = {
224    "Prefetch Abort",        0x00C, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
225    4, 4, 0, 0, true,  true,  false, EC_PREFETCH_ABORT_TO_HYP, FaultStat()
226};
227template<> ArmFault::FaultVals ArmFaultVals<DataAbort>::vals = {
228    "Data Abort",            0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
229    8, 8, 0, 0, true,  true,  false, EC_DATA_ABORT_TO_HYP, FaultStat()
230};
231template<> ArmFault::FaultVals ArmFaultVals<VirtualDataAbort>::vals = {
232    "Virtual Data Abort",    0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT,
233    8, 8, 0, 0, true,  true,  false, EC_INVALID, FaultStat()
234};
235template<> ArmFault::FaultVals ArmFaultVals<HypervisorTrap>::vals = {
236    // @todo: double check these values
237    "Hypervisor Trap",       0x014, 0x000, 0x200, 0x400, 0x600, MODE_HYP,
238    0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
239};
240template<> ArmFault::FaultVals ArmFaultVals<Interrupt>::vals = {
241    "IRQ",                   0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
242    4, 4, 0, 0, false, true,  false, EC_UNKNOWN, FaultStat()
243};
244template<> ArmFault::FaultVals ArmFaultVals<VirtualInterrupt>::vals = {
245    "Virtual IRQ",           0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ,
246    4, 4, 0, 0, false, true,  false, EC_INVALID, FaultStat()
247};
248template<> ArmFault::FaultVals ArmFaultVals<FastInterrupt>::vals = {
249    "FIQ",                   0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
250    4, 4, 0, 0, false, true,  true,  EC_UNKNOWN, FaultStat()
251};
252template<> ArmFault::FaultVals ArmFaultVals<VirtualFastInterrupt>::vals = {
253    "Virtual FIQ",           0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ,
254    4, 4, 0, 0, false, true,  true,  EC_INVALID, FaultStat()
255};
256template<> ArmFault::FaultVals ArmFaultVals<SupervisorTrap>::vals = {
257    // Some dummy values (SupervisorTrap is AArch64-only)
258    "Supervisor Trap",   0x014, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
259    0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
260};
261template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorTrap>::vals = {
262    // Some dummy values (SecureMonitorTrap is AArch64-only)
263    "Secure Monitor Trap",   0x014, 0x000, 0x200, 0x400, 0x600, MODE_MON,
264    0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat()
265};
266template<> ArmFault::FaultVals ArmFaultVals<PCAlignmentFault>::vals = {
267    // Some dummy values (PCAlignmentFault is AArch64-only)
268    "PC Alignment Fault",   0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
269    0, 0, 0, 0, true, false, false, EC_PC_ALIGNMENT, FaultStat()
270};
271template<> ArmFault::FaultVals ArmFaultVals<SPAlignmentFault>::vals = {
272    // Some dummy values (SPAlignmentFault is AArch64-only)
273    "SP Alignment Fault",   0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
274    0, 0, 0, 0, true, false, false, EC_STACK_PTR_ALIGNMENT, FaultStat()
275};
276template<> ArmFault::FaultVals ArmFaultVals<SystemError>::vals = {
277    // Some dummy values (SError is AArch64-only)
278    "SError",                0x000, 0x180, 0x380, 0x580, 0x780, MODE_SVC,
279    0, 0, 0, 0, false, true,  true,  EC_SERROR, FaultStat()
280};
281template<> ArmFault::FaultVals ArmFaultVals<FlushPipe>::vals = {
282    // Some dummy values
283    "Pipe Flush",            0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
284    0, 0, 0, 0, false, true,  true,  EC_UNKNOWN, FaultStat()
285};
286template<> ArmFault::FaultVals ArmFaultVals<ArmSev>::vals = {
287    // Some dummy values
288    "ArmSev Flush",          0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC,
289    0, 0, 0, 0, false, true,  true,  EC_UNKNOWN, FaultStat()
290};
291template<> ArmFault::FaultVals ArmFaultVals<IllegalInstSetStateFault>::vals = {
292    // Some dummy values (SPAlignmentFault is AArch64-only)
293    "Illegal Inst Set State Fault",   0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC,
294    0, 0, 0, 0, true, false, false, EC_ILLEGAL_INST, FaultStat()
295};
296
297Addr
298ArmFault::getVector(ThreadContext *tc)
299{
300    Addr base;
301
302    // ARM ARM issue C B1.8.1
303    bool haveSecurity = ArmSystem::haveSecurity(tc);
304
305    // panic if SCTLR.VE because I have no idea what to do with vectored
306    // interrupts
307    SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
308    assert(!sctlr.ve);
309    // Check for invalid modes
310    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
311    assert(haveSecurity                      || cpsr.mode != MODE_MON);
312    assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP);
313
314    switch (cpsr.mode)
315    {
316      case MODE_MON:
317        base = tc->readMiscReg(MISCREG_MVBAR);
318        break;
319      case MODE_HYP:
320        base = tc->readMiscReg(MISCREG_HVBAR);
321        break;
322      default:
323        if (sctlr.v) {
324            base = HighVecs;
325        } else {
326            base = haveSecurity ? tc->readMiscReg(MISCREG_VBAR) : 0;
327        }
328        break;
329    }
330    return base + offset(tc);
331}
332
333Addr
334ArmFault::getVector64(ThreadContext *tc)
335{
336    Addr vbar;
337    switch (toEL) {
338      case EL3:
339        assert(ArmSystem::haveSecurity(tc));
340        vbar = tc->readMiscReg(MISCREG_VBAR_EL3);
341        break;
342      case EL2:
343        assert(ArmSystem::haveVirtualization(tc));
344        vbar = tc->readMiscReg(MISCREG_VBAR_EL2);
345        break;
346      case EL1:
347        vbar = tc->readMiscReg(MISCREG_VBAR_EL1);
348        break;
349      default:
350        panic("Invalid target exception level");
351        break;
352    }
353    return vbar + offset64();
354}
355
356MiscRegIndex
357ArmFault::getSyndromeReg64() const
358{
359    switch (toEL) {
360      case EL1:
361        return MISCREG_ESR_EL1;
362      case EL2:
363        return MISCREG_ESR_EL2;
364      case EL3:
365        return MISCREG_ESR_EL3;
366      default:
367        panic("Invalid exception level");
368        break;
369    }
370}
371
372MiscRegIndex
373ArmFault::getFaultAddrReg64() const
374{
375    switch (toEL) {
376      case EL1:
377        return MISCREG_FAR_EL1;
378      case EL2:
379        return MISCREG_FAR_EL2;
380      case EL3:
381        return MISCREG_FAR_EL3;
382      default:
383        panic("Invalid exception level");
384        break;
385    }
386}
387
388void
389ArmFault::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg)
390{
391    uint32_t value;
392    uint32_t exc_class = (uint32_t) ec(tc);
393    uint32_t issVal = iss();
394    assert(!from64 || ArmSystem::highestELIs64(tc));
395
396    value = exc_class << 26;
397
398    // HSR.IL not valid for Prefetch Aborts (0x20, 0x21) and Data Aborts (0x24,
399    // 0x25) for which the ISS information is not valid (ARMv7).
400    // @todo: ARMv8 revises AArch32 functionality: when HSR.IL is not
401    // valid it is treated as RES1.
402    if (to64) {
403        value |= 1 << 25;
404    } else if ((bits(exc_class, 5, 3) != 4) ||
405               (bits(exc_class, 2) && bits(issVal, 24))) {
406        if (!machInst.thumb || machInst.bigThumb)
407            value |= 1 << 25;
408    }
409    // Condition code valid for EC[5:4] nonzero
410    if (!from64 && ((bits(exc_class, 5, 4) == 0) &&
411                    (bits(exc_class, 3, 0) != 0))) {
412        if (!machInst.thumb) {
413            uint32_t      cond;
414            ConditionCode condCode = (ConditionCode) (uint32_t) machInst.condCode;
415            // If its on unconditional instruction report with a cond code of
416            // 0xE, ie the unconditional code
417            cond  = (condCode == COND_UC) ? COND_AL : condCode;
418            value |= cond << 20;
419            value |= 1    << 24;
420        }
421        value |= bits(issVal, 19, 0);
422    } else {
423        value |= issVal;
424    }
425    tc->setMiscReg(syndrome_reg, value);
426}
427
428void
429ArmFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
430{
431    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
432
433    if (ArmSystem::highestELIs64(tc)) {  // ARMv8
434        // Determine source exception level and mode
435        fromMode = (OperatingMode) (uint8_t) cpsr.mode;
436        fromEL = opModeToEL(fromMode);
437        if (opModeIs64(fromMode))
438            from64 = true;
439
440        // Determine target exception level
441        if (ArmSystem::haveSecurity(tc) && routeToMonitor(tc))
442            toEL = EL3;
443        else if (ArmSystem::haveVirtualization(tc) && routeToHyp(tc))
444            toEL = EL2;
445        else
446            toEL = opModeToEL(nextMode());
447        if (fromEL > toEL)
448            toEL = fromEL;
449
450        if (toEL == ArmSystem::highestEL(tc) || ELIs64(tc, toEL)) {
451            // Invoke exception handler in AArch64 state
452            to64 = true;
453            invoke64(tc, inst);
454            return;
455        }
456    }
457
458    // ARMv7 (ARM ARM issue C B1.9)
459
460    bool have_security       = ArmSystem::haveSecurity(tc);
461    bool have_virtualization = ArmSystem::haveVirtualization(tc);
462
463    FaultBase::invoke(tc);
464    if (!FullSystem)
465        return;
466    countStat()++;
467
468    SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR);
469    SCR scr = tc->readMiscReg(MISCREG_SCR);
470    CPSR saved_cpsr = tc->readMiscReg(MISCREG_CPSR);
471    saved_cpsr.nz = tc->readCCReg(CCREG_NZ);
472    saved_cpsr.c = tc->readCCReg(CCREG_C);
473    saved_cpsr.v = tc->readCCReg(CCREG_V);
474    saved_cpsr.ge = tc->readCCReg(CCREG_GE);
475
476    Addr curPc M5_VAR_USED = tc->pcState().pc();
477    ITSTATE it = tc->pcState().itstate();
478    saved_cpsr.it2 = it.top6;
479    saved_cpsr.it1 = it.bottom2;
480
481    // if we have a valid instruction then use it to annotate this fault with
482    // extra information. This is used to generate the correct fault syndrome
483    // information
484    if (inst) {
485        ArmStaticInst *armInst = reinterpret_cast<ArmStaticInst *>(inst.get());
486        armInst->annotateFault(this);
487    }
488
489    if (have_security && routeToMonitor(tc))
490        cpsr.mode = MODE_MON;
491    else if (have_virtualization && routeToHyp(tc))
492        cpsr.mode = MODE_HYP;
493    else
494        cpsr.mode = nextMode();
495
496    // Ensure Secure state if initially in Monitor mode
497    if (have_security && saved_cpsr.mode == MODE_MON) {
498        SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
499        if (scr.ns) {
500            scr.ns = 0;
501            tc->setMiscRegNoEffect(MISCREG_SCR, scr);
502        }
503    }
504
505    // some bits are set differently if we have been routed to hyp mode
506    if (cpsr.mode == MODE_HYP) {
507        SCTLR hsctlr = tc->readMiscReg(MISCREG_HSCTLR);
508        cpsr.t = hsctlr.te;
509        cpsr.e = hsctlr.ee;
510        if (!scr.ea)  {cpsr.a = 1;}
511        if (!scr.fiq) {cpsr.f = 1;}
512        if (!scr.irq) {cpsr.i = 1;}
513    } else if (cpsr.mode == MODE_MON) {
514        // Special case handling when entering monitor mode
515        cpsr.t = sctlr.te;
516        cpsr.e = sctlr.ee;
517        cpsr.a = 1;
518        cpsr.f = 1;
519        cpsr.i = 1;
520    } else {
521        cpsr.t = sctlr.te;
522        cpsr.e = sctlr.ee;
523
524        // The *Disable functions are virtual and different per fault
525        cpsr.a = cpsr.a | abortDisable(tc);
526        cpsr.f = cpsr.f | fiqDisable(tc);
527        cpsr.i = 1;
528    }
529    cpsr.it1 = cpsr.it2 = 0;
530    cpsr.j = 0;
531    tc->setMiscReg(MISCREG_CPSR, cpsr);
532
533    // Make sure mailbox sets to one always
534    tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
535
536    // Clear the exclusive monitor
537    tc->setMiscReg(MISCREG_LOCKFLAG, 0);
538
539    if (cpsr.mode == MODE_HYP) {
540        tc->setMiscReg(MISCREG_ELR_HYP, curPc +
541                (saved_cpsr.t ? thumbPcOffset(true)  : armPcOffset(true)));
542    } else {
543        tc->setIntReg(INTREG_LR, curPc +
544                (saved_cpsr.t ? thumbPcOffset(false) : armPcOffset(false)));
545    }
546
547    switch (cpsr.mode) {
548      case MODE_FIQ:
549        tc->setMiscReg(MISCREG_SPSR_FIQ, saved_cpsr);
550        break;
551      case MODE_IRQ:
552        tc->setMiscReg(MISCREG_SPSR_IRQ, saved_cpsr);
553        break;
554      case MODE_SVC:
555        tc->setMiscReg(MISCREG_SPSR_SVC, saved_cpsr);
556        break;
557      case MODE_MON:
558        assert(have_security);
559        tc->setMiscReg(MISCREG_SPSR_MON, saved_cpsr);
560        break;
561      case MODE_ABORT:
562        tc->setMiscReg(MISCREG_SPSR_ABT, saved_cpsr);
563        break;
564      case MODE_UNDEFINED:
565        tc->setMiscReg(MISCREG_SPSR_UND, saved_cpsr);
566        if (ec(tc) != EC_UNKNOWN)
567            setSyndrome(tc, MISCREG_HSR);
568        break;
569      case MODE_HYP:
570        assert(have_virtualization);
571        tc->setMiscReg(MISCREG_SPSR_HYP, saved_cpsr);
572        setSyndrome(tc, MISCREG_HSR);
573        break;
574      default:
575        panic("unknown Mode\n");
576    }
577
578    Addr newPc = getVector(tc);
579    DPRINTF(Faults, "Invoking Fault:%s cpsr:%#x PC:%#x lr:%#x newVec: %#x\n",
580            name(), cpsr, curPc, tc->readIntReg(INTREG_LR), newPc);
581    PCState pc(newPc);
582    pc.thumb(cpsr.t);
583    pc.nextThumb(pc.thumb());
584    pc.jazelle(cpsr.j);
585    pc.nextJazelle(pc.jazelle());
586    pc.aarch64(!cpsr.width);
587    pc.nextAArch64(!cpsr.width);
588    tc->pcState(pc);
589}
590
591void
592ArmFault::invoke64(ThreadContext *tc, const StaticInstPtr &inst)
593{
594    // Determine actual misc. register indices for ELR_ELx and SPSR_ELx
595    MiscRegIndex elr_idx, spsr_idx;
596    switch (toEL) {
597      case EL1:
598        elr_idx = MISCREG_ELR_EL1;
599        spsr_idx = MISCREG_SPSR_EL1;
600        break;
601      case EL2:
602        assert(ArmSystem::haveVirtualization(tc));
603        elr_idx = MISCREG_ELR_EL2;
604        spsr_idx = MISCREG_SPSR_EL2;
605        break;
606      case EL3:
607        assert(ArmSystem::haveSecurity(tc));
608        elr_idx = MISCREG_ELR_EL3;
609        spsr_idx = MISCREG_SPSR_EL3;
610        break;
611      default:
612        panic("Invalid target exception level");
613        break;
614    }
615
616    // Save process state into SPSR_ELx
617    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
618    CPSR spsr = cpsr;
619    spsr.nz = tc->readCCReg(CCREG_NZ);
620    spsr.c = tc->readCCReg(CCREG_C);
621    spsr.v = tc->readCCReg(CCREG_V);
622    if (from64) {
623        // Force some bitfields to 0
624        spsr.q = 0;
625        spsr.it1 = 0;
626        spsr.j = 0;
627        spsr.res0_23_22 = 0;
628        spsr.ge = 0;
629        spsr.it2 = 0;
630        spsr.t = 0;
631    } else {
632        spsr.ge = tc->readCCReg(CCREG_GE);
633        ITSTATE it = tc->pcState().itstate();
634        spsr.it2 = it.top6;
635        spsr.it1 = it.bottom2;
636        // Force some bitfields to 0
637        spsr.res0_23_22 = 0;
638        spsr.ss = 0;
639    }
640    tc->setMiscReg(spsr_idx, spsr);
641
642    // Save preferred return address into ELR_ELx
643    Addr curr_pc = tc->pcState().pc();
644    Addr ret_addr = curr_pc;
645    if (from64)
646        ret_addr += armPcElrOffset();
647    else
648        ret_addr += spsr.t ? thumbPcElrOffset() : armPcElrOffset();
649    tc->setMiscReg(elr_idx, ret_addr);
650
651    // Update process state
652    OperatingMode64 mode = 0;
653    mode.spX = 1;
654    mode.el = toEL;
655    mode.width = 0;
656    cpsr.mode = mode;
657    cpsr.daif = 0xf;
658    cpsr.il = 0;
659    cpsr.ss = 0;
660    tc->setMiscReg(MISCREG_CPSR, cpsr);
661
662    // Set PC to start of exception handler
663    Addr new_pc = purifyTaggedAddr(getVector64(tc), tc, toEL);
664    DPRINTF(Faults, "Invoking Fault (AArch64 target EL):%s cpsr:%#x PC:%#x "
665            "elr:%#x newVec: %#x\n", name(), cpsr, curr_pc, ret_addr, new_pc);
666    PCState pc(new_pc);
667    pc.aarch64(!cpsr.width);
668    pc.nextAArch64(!cpsr.width);
669    tc->pcState(pc);
670
671    // If we have a valid instruction then use it to annotate this fault with
672    // extra information. This is used to generate the correct fault syndrome
673    // information
674    if (inst)
675        reinterpret_cast<ArmStaticInst *>(inst.get())->annotateFault(this);
676    // Save exception syndrome
677    if ((nextMode() != MODE_IRQ) && (nextMode() != MODE_FIQ))
678        setSyndrome(tc, getSyndromeReg64());
679}
680
681void
682Reset::invoke(ThreadContext *tc, const StaticInstPtr &inst)
683{
684    if (FullSystem) {
685        tc->getCpuPtr()->clearInterrupts(tc->threadId());
686        tc->clearArchRegs();
687    }
688    if (!ArmSystem::highestELIs64(tc)) {
689        ArmFault::invoke(tc, inst);
690        tc->setMiscReg(MISCREG_VMPIDR,
691                       getMPIDR(dynamic_cast<ArmSystem*>(tc->getSystemPtr()), tc));
692
693        // Unless we have SMC code to get us there, boot in HYP!
694        if (ArmSystem::haveVirtualization(tc) &&
695            !ArmSystem::haveSecurity(tc)) {
696            CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
697            cpsr.mode = MODE_HYP;
698            tc->setMiscReg(MISCREG_CPSR, cpsr);
699        }
700    } else {
701        // Advance the PC to the IMPLEMENTATION DEFINED reset value
702        PCState pc = ArmSystem::resetAddr64(tc);
703        pc.aarch64(true);
704        pc.nextAArch64(true);
705        tc->pcState(pc);
706    }
707}
708
709void
710UndefinedInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst)
711{
712    if (FullSystem) {
713        ArmFault::invoke(tc, inst);
714        return;
715    }
716
717    // If the mnemonic isn't defined this has to be an unknown instruction.
718    assert(unknown || mnemonic != NULL);
719    if (disabled) {
720        panic("Attempted to execute disabled instruction "
721                "'%s' (inst 0x%08x)", mnemonic, machInst);
722    } else if (unknown) {
723        panic("Attempted to execute unknown instruction (inst 0x%08x)",
724              machInst);
725    } else {
726        panic("Attempted to execute unimplemented instruction "
727                "'%s' (inst 0x%08x)", mnemonic, machInst);
728    }
729}
730
731bool
732UndefinedInstruction::routeToHyp(ThreadContext *tc) const
733{
734    bool toHyp;
735
736    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
737    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
738    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
739
740    // if in Hyp mode then stay in Hyp mode
741    toHyp  = scr.ns && (cpsr.mode == MODE_HYP);
742    // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
743    toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
744    return toHyp;
745}
746
747uint32_t
748UndefinedInstruction::iss() const
749{
750    if (overrideEc == EC_INVALID)
751        return issRaw;
752
753    uint32_t new_iss = 0;
754    uint32_t op0, op1, op2, CRn, CRm, Rt, dir;
755
756    dir = bits(machInst, 21, 21);
757    op0 = bits(machInst, 20, 19);
758    op1 = bits(machInst, 18, 16);
759    CRn = bits(machInst, 15, 12);
760    CRm = bits(machInst, 11, 8);
761    op2 = bits(machInst, 7, 5);
762    Rt = bits(machInst, 4, 0);
763
764    new_iss = op0 << 20 | op2 << 17 | op1 << 14 | CRn << 10 |
765            Rt << 5 | CRm << 1 | dir;
766
767    return new_iss;
768}
769
770void
771SupervisorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
772{
773    if (FullSystem) {
774        ArmFault::invoke(tc, inst);
775        return;
776    }
777
778    // As of now, there isn't a 32 bit thumb version of this instruction.
779    assert(!machInst.bigThumb);
780    uint32_t callNum;
781    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
782    OperatingMode mode = (OperatingMode)(uint8_t)cpsr.mode;
783    if (opModeIs64(mode))
784        callNum = tc->readIntReg(INTREG_X8);
785    else
786        callNum = tc->readIntReg(INTREG_R7);
787    Fault fault;
788    tc->syscall(callNum, &fault);
789
790    // Advance the PC since that won't happen automatically.
791    PCState pc = tc->pcState();
792    assert(inst);
793    inst->advancePC(pc);
794    tc->pcState(pc);
795}
796
797bool
798SupervisorCall::routeToHyp(ThreadContext *tc) const
799{
800    bool toHyp;
801
802    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
803    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
804    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
805
806    // if in Hyp mode then stay in Hyp mode
807    toHyp  = scr.ns && (cpsr.mode == MODE_HYP);
808    // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector
809    toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER);
810    return toHyp;
811}
812
813ExceptionClass
814SupervisorCall::ec(ThreadContext *tc) const
815{
816    return (overrideEc != EC_INVALID) ? overrideEc :
817        (from64 ? EC_SVC_64 : vals.ec);
818}
819
820uint32_t
821SupervisorCall::iss() const
822{
823    // Even if we have a 24 bit imm from an arm32 instruction then we only use
824    // the bottom 16 bits for the ISS value (it doesn't hurt for AArch64 SVC).
825    return issRaw & 0xFFFF;
826}
827
828uint32_t
829SecureMonitorCall::iss() const
830{
831    if (from64)
832        return bits(machInst, 20, 5);
833    return 0;
834}
835
836ExceptionClass
837UndefinedInstruction::ec(ThreadContext *tc) const
838{
839    return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
840}
841
842
843HypervisorCall::HypervisorCall(ExtMachInst _machInst, uint32_t _imm) :
844        ArmFaultVals<HypervisorCall>(_machInst, _imm)
845{}
846
847ExceptionClass
848HypervisorCall::ec(ThreadContext *tc) const
849{
850    return from64 ? EC_HVC_64 : vals.ec;
851}
852
853ExceptionClass
854HypervisorTrap::ec(ThreadContext *tc) const
855{
856    return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
857}
858
859template<class T>
860FaultOffset
861ArmFaultVals<T>::offset(ThreadContext *tc)
862{
863    bool isHypTrap = false;
864
865    // Normally we just use the exception vector from the table at the top if
866    // this file, however if this exception has caused a transition to hype
867    // mode, and its an exception type that would only do this if it has been
868    // trapped then we use the hyp trap vector instead of the normal vector
869    if (vals.hypTrappable) {
870        CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
871        if (cpsr.mode == MODE_HYP) {
872            CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
873            isHypTrap = spsr.mode != MODE_HYP;
874        }
875    }
876    return isHypTrap ? 0x14 : vals.offset;
877}
878
879// void
880// SupervisorCall::setSyndrome64(ThreadContext *tc, MiscRegIndex esr_idx)
881// {
882//     ESR esr = 0;
883//     esr.ec = machInst.aarch64 ? SvcAArch64 : SvcAArch32;
884//     esr.il = !machInst.thumb;
885//     if (machInst.aarch64)
886//         esr.imm16 = bits(machInst.instBits, 20, 5);
887//     else if (machInst.thumb)
888//         esr.imm16 = bits(machInst.instBits, 7, 0);
889//     else
890//         esr.imm16 = bits(machInst.instBits, 15, 0);
891//     tc->setMiscReg(esr_idx, esr);
892// }
893
894void
895SecureMonitorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst)
896{
897    if (FullSystem) {
898        ArmFault::invoke(tc, inst);
899        return;
900    }
901}
902
903ExceptionClass
904SecureMonitorCall::ec(ThreadContext *tc) const
905{
906    return (from64 ? EC_SMC_64 : vals.ec);
907}
908
909ExceptionClass
910SupervisorTrap::ec(ThreadContext *tc) const
911{
912    return (overrideEc != EC_INVALID) ? overrideEc : vals.ec;
913}
914
915ExceptionClass
916SecureMonitorTrap::ec(ThreadContext *tc) const
917{
918    return (overrideEc != EC_INVALID) ? overrideEc :
919        (from64 ? EC_SMC_64 : vals.ec);
920}
921
922template<class T>
923void
924AbortFault<T>::invoke(ThreadContext *tc, const StaticInstPtr &inst)
925{
926    if (tranMethod == ArmFault::UnknownTran) {
927        tranMethod = longDescFormatInUse(tc) ? ArmFault::LpaeTran
928                                             : ArmFault::VmsaTran;
929
930        if ((tranMethod == ArmFault::VmsaTran) && this->routeToMonitor(tc)) {
931            // See ARM ARM B3-1416
932            bool override_LPAE = false;
933            TTBCR ttbcr_s = tc->readMiscReg(MISCREG_TTBCR_S);
934            TTBCR M5_VAR_USED ttbcr_ns = tc->readMiscReg(MISCREG_TTBCR_NS);
935            if (ttbcr_s.eae) {
936                override_LPAE = true;
937            } else {
938                // Unimplemented code option, not seen in testing.  May need
939                // extension according to the manual exceprt above.
940                DPRINTF(Faults, "Warning: Incomplete translation method "
941                        "override detected.\n");
942            }
943            if (override_LPAE)
944                tranMethod = ArmFault::LpaeTran;
945        }
946    }
947
948    if (source == ArmFault::AsynchronousExternalAbort) {
949        tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
950    }
951    // Get effective fault source encoding
952    CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
953    FSR  fsr  = getFsr(tc);
954
955    // source must be determined BEFORE invoking generic routines which will
956    // try to set hsr etc. and are based upon source!
957    ArmFaultVals<T>::invoke(tc, inst);
958
959    if (!this->to64) {  // AArch32
960        if (cpsr.mode == MODE_HYP) {
961            tc->setMiscReg(T::HFarIndex, faultAddr);
962        } else if (stage2) {
963            tc->setMiscReg(MISCREG_HPFAR, (faultAddr >> 8) & ~0xf);
964            tc->setMiscReg(T::HFarIndex,  OVAddr);
965        } else {
966            tc->setMiscReg(T::FsrIndex, fsr);
967            tc->setMiscReg(T::FarIndex, faultAddr);
968        }
969        DPRINTF(Faults, "Abort Fault source=%#x fsr=%#x faultAddr=%#x "\
970                "tranMethod=%#x\n", source, fsr, faultAddr, tranMethod);
971    } else {  // AArch64
972        // Set the FAR register.  Nothing else to do if we are in AArch64 state
973        // because the syndrome register has already been set inside invoke64()
974        if (stage2) {
975            // stage 2 fault, set HPFAR_EL2 to the faulting IPA
976            // and FAR_EL2 to the Original VA
977            tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), OVAddr);
978            tc->setMiscReg(MISCREG_HPFAR_EL2, bits(faultAddr, 47, 12) << 4);
979
980            DPRINTF(Faults, "Abort Fault (Stage 2) VA: 0x%x IPA: 0x%x\n",
981                    OVAddr, faultAddr);
982        } else {
983            tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), faultAddr);
984        }
985    }
986}
987
988template<class T>
989FSR
990AbortFault<T>::getFsr(ThreadContext *tc)
991{
992    FSR fsr = 0;
993
994    if (((CPSR) tc->readMiscRegNoEffect(MISCREG_CPSR)).width) {
995        // AArch32
996        assert(tranMethod != ArmFault::UnknownTran);
997        if (tranMethod == ArmFault::LpaeTran) {
998            srcEncoded = ArmFault::longDescFaultSources[source];
999            fsr.status = srcEncoded;
1000            fsr.lpae   = 1;
1001        } else {
1002            srcEncoded = ArmFault::shortDescFaultSources[source];
1003            fsr.fsLow  = bits(srcEncoded, 3, 0);
1004            fsr.fsHigh = bits(srcEncoded, 4);
1005            fsr.domain = static_cast<uint8_t>(domain);
1006        }
1007        fsr.wnr = (write ? 1 : 0);
1008        fsr.ext = 0;
1009    } else {
1010        // AArch64
1011        srcEncoded = ArmFault::aarch64FaultSources[source];
1012    }
1013    if (srcEncoded == ArmFault::FaultSourceInvalid) {
1014        panic("Invalid fault source\n");
1015    }
1016    return fsr;
1017}
1018
1019template<class T>
1020bool
1021AbortFault<T>::abortDisable(ThreadContext *tc)
1022{
1023    if (ArmSystem::haveSecurity(tc)) {
1024        SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1025        return (!scr.ns || scr.aw);
1026    }
1027    return true;
1028}
1029
1030template<class T>
1031void
1032AbortFault<T>::annotate(ArmFault::AnnotationIDs id, uint64_t val)
1033{
1034    switch (id)
1035    {
1036      case ArmFault::S1PTW:
1037        s1ptw = val;
1038        break;
1039      case ArmFault::OVA:
1040        OVAddr = val;
1041        break;
1042
1043      // Just ignore unknown ID's
1044      default:
1045        break;
1046    }
1047}
1048
1049template<class T>
1050uint32_t
1051AbortFault<T>::iss() const
1052{
1053    uint32_t val;
1054
1055    val  = srcEncoded & 0x3F;
1056    val |= write << 6;
1057    val |= s1ptw << 7;
1058    return (val);
1059}
1060
1061template<class T>
1062bool
1063AbortFault<T>::isMMUFault() const
1064{
1065    // NOTE: Not relying on LL information being aligned to lowest bits here
1066    return
1067         (source == ArmFault::AlignmentFault)     ||
1068        ((source >= ArmFault::TranslationLL) &&
1069         (source <  ArmFault::TranslationLL + 4)) ||
1070        ((source >= ArmFault::AccessFlagLL) &&
1071         (source <  ArmFault::AccessFlagLL + 4))  ||
1072        ((source >= ArmFault::DomainLL) &&
1073         (source <  ArmFault::DomainLL + 4))      ||
1074        ((source >= ArmFault::PermissionLL) &&
1075         (source <  ArmFault::PermissionLL + 4));
1076}
1077
1078ExceptionClass
1079PrefetchAbort::ec(ThreadContext *tc) const
1080{
1081    if (to64) {
1082        // AArch64
1083        if (toEL == fromEL)
1084            return EC_PREFETCH_ABORT_CURR_EL;
1085        else
1086            return EC_PREFETCH_ABORT_LOWER_EL;
1087    } else {
1088        // AArch32
1089        // Abort faults have different EC codes depending on whether
1090        // the fault originated within HYP mode, or not. So override
1091        // the method and add the extra adjustment of the EC value.
1092
1093        ExceptionClass ec = ArmFaultVals<PrefetchAbort>::vals.ec;
1094
1095        CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1096        if (spsr.mode == MODE_HYP) {
1097            ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1098        }
1099        return ec;
1100    }
1101}
1102
1103bool
1104PrefetchAbort::routeToMonitor(ThreadContext *tc) const
1105{
1106    SCR scr = 0;
1107    if (from64)
1108        scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1109    else
1110        scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1111
1112    return scr.ea && !isMMUFault();
1113}
1114
1115bool
1116PrefetchAbort::routeToHyp(ThreadContext *tc) const
1117{
1118    bool toHyp;
1119
1120    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
1121    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
1122    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1123    HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1124
1125    // if in Hyp mode then stay in Hyp mode
1126    toHyp  = scr.ns && (cpsr.mode == MODE_HYP);
1127    // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1128    toHyp |= (stage2 ||
1129                ( (source ==               DebugEvent) && hdcr.tde && (cpsr.mode !=  MODE_HYP)) ||
1130                ( (source == SynchronousExternalAbort) && hcr.tge  && (cpsr.mode == MODE_USER))
1131             ) && !inSecureState(tc);
1132    return toHyp;
1133}
1134
1135ExceptionClass
1136DataAbort::ec(ThreadContext *tc) const
1137{
1138    if (to64) {
1139        // AArch64
1140        if (source == ArmFault::AsynchronousExternalAbort) {
1141            panic("Asynchronous External Abort should be handled with "
1142                    "SystemErrors (SErrors)!");
1143        }
1144        if (toEL == fromEL)
1145            return EC_DATA_ABORT_CURR_EL;
1146        else
1147            return EC_DATA_ABORT_LOWER_EL;
1148    } else {
1149        // AArch32
1150        // Abort faults have different EC codes depending on whether
1151        // the fault originated within HYP mode, or not. So override
1152        // the method and add the extra adjustment of the EC value.
1153
1154        ExceptionClass ec = ArmFaultVals<DataAbort>::vals.ec;
1155
1156        CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP);
1157        if (spsr.mode == MODE_HYP) {
1158            ec = ((ExceptionClass) (((uint32_t) ec) + 1));
1159        }
1160        return ec;
1161    }
1162}
1163
1164bool
1165DataAbort::routeToMonitor(ThreadContext *tc) const
1166{
1167    SCR scr = 0;
1168    if (from64)
1169        scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1170    else
1171        scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1172
1173    return scr.ea && !isMMUFault();
1174}
1175
1176bool
1177DataAbort::routeToHyp(ThreadContext *tc) const
1178{
1179    bool toHyp;
1180
1181    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
1182    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
1183    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1184    HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR);
1185
1186    // if in Hyp mode then stay in Hyp mode
1187    toHyp  = scr.ns && (cpsr.mode == MODE_HYP);
1188    // otherwise, check whether to take to Hyp mode through Hyp Trap vector
1189    toHyp |= (stage2 ||
1190                ( (cpsr.mode != MODE_HYP) && ( ((source == AsynchronousExternalAbort) && hcr.amo) ||
1191                                               ((source == DebugEvent) && hdcr.tde) )
1192                ) ||
1193                ( (cpsr.mode == MODE_USER) && hcr.tge &&
1194                  ((source == AlignmentFault)            ||
1195                   (source == SynchronousExternalAbort))
1196                )
1197             ) && !inSecureState(tc);
1198    return toHyp;
1199}
1200
1201uint32_t
1202DataAbort::iss() const
1203{
1204    uint32_t val;
1205
1206    // Add on the data abort specific fields to the generic abort ISS value
1207    val  = AbortFault<DataAbort>::iss();
1208    // ISS is valid if not caused by a stage 1 page table walk, and when taken
1209    // to AArch64 only when directed to EL2
1210    if (!s1ptw && (!to64 || toEL == EL2)) {
1211        val |= isv << 24;
1212        if (isv) {
1213            val |= sas << 22;
1214            val |= sse << 21;
1215            val |= srt << 16;
1216            // AArch64 only. These assignments are safe on AArch32 as well
1217            // because these vars are initialized to false
1218            val |= sf << 15;
1219            val |= ar << 14;
1220        }
1221    }
1222    return (val);
1223}
1224
1225void
1226DataAbort::annotate(AnnotationIDs id, uint64_t val)
1227{
1228    AbortFault<DataAbort>::annotate(id, val);
1229    switch (id)
1230    {
1231      case SAS:
1232        isv = true;
1233        sas = val;
1234        break;
1235      case SSE:
1236        isv = true;
1237        sse = val;
1238        break;
1239      case SRT:
1240        isv = true;
1241        srt = val;
1242        break;
1243      case SF:
1244        isv = true;
1245        sf  = val;
1246        break;
1247      case AR:
1248        isv = true;
1249        ar  = val;
1250        break;
1251      // Just ignore unknown ID's
1252      default:
1253        break;
1254    }
1255}
1256
1257void
1258VirtualDataAbort::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1259{
1260    AbortFault<VirtualDataAbort>::invoke(tc, inst);
1261    HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR);
1262    hcr.va = 0;
1263    tc->setMiscRegNoEffect(MISCREG_HCR, hcr);
1264}
1265
1266bool
1267Interrupt::routeToMonitor(ThreadContext *tc) const
1268{
1269    assert(ArmSystem::haveSecurity(tc));
1270    SCR scr = 0;
1271    if (from64)
1272        scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1273    else
1274        scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1275    return scr.irq;
1276}
1277
1278bool
1279Interrupt::routeToHyp(ThreadContext *tc) const
1280{
1281    bool toHyp;
1282
1283    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
1284    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
1285    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1286    // Determine whether IRQs are routed to Hyp mode.
1287    toHyp = (!scr.irq && hcr.imo && !inSecureState(tc)) ||
1288            (cpsr.mode == MODE_HYP);
1289    return toHyp;
1290}
1291
1292bool
1293Interrupt::abortDisable(ThreadContext *tc)
1294{
1295    if (ArmSystem::haveSecurity(tc)) {
1296        SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1297        return (!scr.ns || scr.aw);
1298    }
1299    return true;
1300}
1301
1302VirtualInterrupt::VirtualInterrupt()
1303{}
1304
1305bool
1306FastInterrupt::routeToMonitor(ThreadContext *tc) const
1307{
1308    assert(ArmSystem::haveSecurity(tc));
1309    SCR scr = 0;
1310    if (from64)
1311        scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1312    else
1313        scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1314    return scr.fiq;
1315}
1316
1317bool
1318FastInterrupt::routeToHyp(ThreadContext *tc) const
1319{
1320    bool toHyp;
1321
1322    SCR  scr  = tc->readMiscRegNoEffect(MISCREG_SCR);
1323    HCR  hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
1324    CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR);
1325    // Determine whether IRQs are routed to Hyp mode.
1326    toHyp = (!scr.fiq && hcr.fmo && !inSecureState(tc)) ||
1327            (cpsr.mode == MODE_HYP);
1328    return toHyp;
1329}
1330
1331bool
1332FastInterrupt::abortDisable(ThreadContext *tc)
1333{
1334    if (ArmSystem::haveSecurity(tc)) {
1335        SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1336        return (!scr.ns || scr.aw);
1337    }
1338    return true;
1339}
1340
1341bool
1342FastInterrupt::fiqDisable(ThreadContext *tc)
1343{
1344    if (ArmSystem::haveVirtualization(tc)) {
1345        return true;
1346    } else if (ArmSystem::haveSecurity(tc)) {
1347        SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR);
1348        return (!scr.ns || scr.fw);
1349    }
1350    return true;
1351}
1352
1353VirtualFastInterrupt::VirtualFastInterrupt()
1354{}
1355
1356void
1357PCAlignmentFault::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1358{
1359    ArmFaultVals<PCAlignmentFault>::invoke(tc, inst);
1360    assert(from64);
1361    // Set the FAR
1362    tc->setMiscReg(getFaultAddrReg64(), faultPC);
1363}
1364
1365SPAlignmentFault::SPAlignmentFault()
1366{}
1367
1368SystemError::SystemError()
1369{}
1370
1371void
1372SystemError::invoke(ThreadContext *tc, const StaticInstPtr &inst)
1373{
1374    tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0);
1375    ArmFault::invoke(tc, inst);
1376}
1377
1378bool
1379SystemError::routeToMonitor(ThreadContext *tc) const
1380{
1381    assert(ArmSystem::haveSecurity(tc));
1382    assert(from64);
1383    SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1384    return scr.ea;
1385}
1386
1387bool
1388SystemError::routeToHyp(ThreadContext *tc) const
1389{
1390    bool toHyp;
1391    assert(from64);
1392
1393    SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3);
1394    HCR hcr  = tc->readMiscRegNoEffect(MISCREG_HCR);
1395
1396    toHyp = (!scr.ea && hcr.amo && !inSecureState(tc)) ||
1397            (!scr.ea && !scr.rw && !hcr.amo && !inSecureState(tc));
1398    return toHyp;
1399}
1400
1401void
1402FlushPipe::invoke(ThreadContext *tc, const StaticInstPtr &inst) {
1403    DPRINTF(Faults, "Invoking FlushPipe Fault\n");
1404
1405    // Set the PC to the next instruction of the faulting instruction.
1406    // Net effect is simply squashing all instructions behind and
1407    // start refetching from the next instruction.
1408    PCState pc = tc->pcState();
1409    assert(inst);
1410    inst->advancePC(pc);
1411    tc->pcState(pc);
1412}
1413
1414void
1415ArmSev::invoke(ThreadContext *tc, const StaticInstPtr &inst) {
1416    DPRINTF(Faults, "Invoking ArmSev Fault\n");
1417    if (!FullSystem)
1418        return;
1419
1420    // Set sev_mailbox to 1, clear the pending interrupt from remote
1421    // SEV execution and let pipeline continue as pcState is still
1422    // valid.
1423    tc->setMiscReg(MISCREG_SEV_MAILBOX, 1);
1424    tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_SEV, 0);
1425}
1426
1427// Instantiate all the templates to make the linker happy
1428template class ArmFaultVals<Reset>;
1429template class ArmFaultVals<UndefinedInstruction>;
1430template class ArmFaultVals<SupervisorCall>;
1431template class ArmFaultVals<SecureMonitorCall>;
1432template class ArmFaultVals<HypervisorCall>;
1433template class ArmFaultVals<PrefetchAbort>;
1434template class ArmFaultVals<DataAbort>;
1435template class ArmFaultVals<VirtualDataAbort>;
1436template class ArmFaultVals<HypervisorTrap>;
1437template class ArmFaultVals<Interrupt>;
1438template class ArmFaultVals<VirtualInterrupt>;
1439template class ArmFaultVals<FastInterrupt>;
1440template class ArmFaultVals<VirtualFastInterrupt>;
1441template class ArmFaultVals<SupervisorTrap>;
1442template class ArmFaultVals<SecureMonitorTrap>;
1443template class ArmFaultVals<PCAlignmentFault>;
1444template class ArmFaultVals<SPAlignmentFault>;
1445template class ArmFaultVals<SystemError>;
1446template class ArmFaultVals<FlushPipe>;
1447template class ArmFaultVals<ArmSev>;
1448template class AbortFault<PrefetchAbort>;
1449template class AbortFault<DataAbort>;
1450template class AbortFault<VirtualDataAbort>;
1451
1452
1453IllegalInstSetStateFault::IllegalInstSetStateFault()
1454{}
1455
1456
1457} // namespace ArmISA
1458