faults.cc revision 11793
1/* 2 * Copyright (c) 2010, 2012-2014, 2016 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * Copyright (c) 2007-2008 The Florida State University 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Ali Saidi 42 * Gabe Black 43 * Giacomo Gabrielli 44 * Thomas Grocutt 45 */ 46 47#include "arch/arm/faults.hh" 48 49#include "arch/arm/insts/static_inst.hh" 50#include "arch/arm/system.hh" 51#include "arch/arm/utility.hh" 52#include "base/compiler.hh" 53#include "base/trace.hh" 54#include "cpu/base.hh" 55#include "cpu/thread_context.hh" 56#include "debug/Faults.hh" 57#include "sim/full_system.hh" 58 59namespace ArmISA 60{ 61 62uint8_t ArmFault::shortDescFaultSources[] = { 63 0x01, // AlignmentFault 64 0x04, // InstructionCacheMaintenance 65 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID) 66 0x0c, // SynchExtAbtOnTranslTableWalkL1 67 0x0e, // SynchExtAbtOnTranslTableWalkL2 68 0xff, // SynchExtAbtOnTranslTableWalkL3 (INVALID) 69 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID) 70 0x1c, // SynchPtyErrOnTranslTableWalkL1 71 0x1e, // SynchPtyErrOnTranslTableWalkL2 72 0xff, // SynchPtyErrOnTranslTableWalkL3 (INVALID) 73 0xff, // TranslationL0 (INVALID) 74 0x05, // TranslationL1 75 0x07, // TranslationL2 76 0xff, // TranslationL3 (INVALID) 77 0xff, // AccessFlagL0 (INVALID) 78 0x03, // AccessFlagL1 79 0x06, // AccessFlagL2 80 0xff, // AccessFlagL3 (INVALID) 81 0xff, // DomainL0 (INVALID) 82 0x09, // DomainL1 83 0x0b, // DomainL2 84 0xff, // DomainL3 (INVALID) 85 0xff, // PermissionL0 (INVALID) 86 0x0d, // PermissionL1 87 0x0f, // PermissionL2 88 0xff, // PermissionL3 (INVALID) 89 0x02, // DebugEvent 90 0x08, // SynchronousExternalAbort 91 0x10, // TLBConflictAbort 92 0x19, // SynchPtyErrOnMemoryAccess 93 0x16, // AsynchronousExternalAbort 94 0x18, // AsynchPtyErrOnMemoryAccess 95 0xff, // AddressSizeL0 (INVALID) 96 0xff, // AddressSizeL1 (INVALID) 97 0xff, // AddressSizeL2 (INVALID) 98 0xff, // AddressSizeL3 (INVALID) 99 0x40, // PrefetchTLBMiss 100 0x80 // PrefetchUncacheable 101}; 102 103static_assert(sizeof(ArmFault::shortDescFaultSources) == 104 ArmFault::NumFaultSources, 105 "Invalid size of ArmFault::shortDescFaultSources[]"); 106 107uint8_t ArmFault::longDescFaultSources[] = { 108 0x21, // AlignmentFault 109 0xff, // InstructionCacheMaintenance (INVALID) 110 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID) 111 0x15, // SynchExtAbtOnTranslTableWalkL1 112 0x16, // SynchExtAbtOnTranslTableWalkL2 113 0x17, // SynchExtAbtOnTranslTableWalkL3 114 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID) 115 0x1d, // SynchPtyErrOnTranslTableWalkL1 116 0x1e, // SynchPtyErrOnTranslTableWalkL2 117 0x1f, // SynchPtyErrOnTranslTableWalkL3 118 0xff, // TranslationL0 (INVALID) 119 0x05, // TranslationL1 120 0x06, // TranslationL2 121 0x07, // TranslationL3 122 0xff, // AccessFlagL0 (INVALID) 123 0x09, // AccessFlagL1 124 0x0a, // AccessFlagL2 125 0x0b, // AccessFlagL3 126 0xff, // DomainL0 (INVALID) 127 0x3d, // DomainL1 128 0x3e, // DomainL2 129 0xff, // DomainL3 (RESERVED) 130 0xff, // PermissionL0 (INVALID) 131 0x0d, // PermissionL1 132 0x0e, // PermissionL2 133 0x0f, // PermissionL3 134 0x22, // DebugEvent 135 0x10, // SynchronousExternalAbort 136 0x30, // TLBConflictAbort 137 0x18, // SynchPtyErrOnMemoryAccess 138 0x11, // AsynchronousExternalAbort 139 0x19, // AsynchPtyErrOnMemoryAccess 140 0xff, // AddressSizeL0 (INVALID) 141 0xff, // AddressSizeL1 (INVALID) 142 0xff, // AddressSizeL2 (INVALID) 143 0xff, // AddressSizeL3 (INVALID) 144 0x40, // PrefetchTLBMiss 145 0x80 // PrefetchUncacheable 146}; 147 148static_assert(sizeof(ArmFault::longDescFaultSources) == 149 ArmFault::NumFaultSources, 150 "Invalid size of ArmFault::longDescFaultSources[]"); 151 152uint8_t ArmFault::aarch64FaultSources[] = { 153 0x21, // AlignmentFault 154 0xff, // InstructionCacheMaintenance (INVALID) 155 0x14, // SynchExtAbtOnTranslTableWalkL0 156 0x15, // SynchExtAbtOnTranslTableWalkL1 157 0x16, // SynchExtAbtOnTranslTableWalkL2 158 0x17, // SynchExtAbtOnTranslTableWalkL3 159 0x1c, // SynchPtyErrOnTranslTableWalkL0 160 0x1d, // SynchPtyErrOnTranslTableWalkL1 161 0x1e, // SynchPtyErrOnTranslTableWalkL2 162 0x1f, // SynchPtyErrOnTranslTableWalkL3 163 0x04, // TranslationL0 164 0x05, // TranslationL1 165 0x06, // TranslationL2 166 0x07, // TranslationL3 167 0x08, // AccessFlagL0 168 0x09, // AccessFlagL1 169 0x0a, // AccessFlagL2 170 0x0b, // AccessFlagL3 171 // @todo: Section & Page Domain Fault in AArch64? 172 0xff, // DomainL0 (INVALID) 173 0xff, // DomainL1 (INVALID) 174 0xff, // DomainL2 (INVALID) 175 0xff, // DomainL3 (INVALID) 176 0x0c, // PermissionL0 177 0x0d, // PermissionL1 178 0x0e, // PermissionL2 179 0x0f, // PermissionL3 180 0xff, // DebugEvent (INVALID) 181 0x10, // SynchronousExternalAbort 182 0x30, // TLBConflictAbort 183 0x18, // SynchPtyErrOnMemoryAccess 184 0xff, // AsynchronousExternalAbort (INVALID) 185 0xff, // AsynchPtyErrOnMemoryAccess (INVALID) 186 0x00, // AddressSizeL0 187 0x01, // AddressSizeL1 188 0x02, // AddressSizeL2 189 0x03, // AddressSizeL3 190 0x40, // PrefetchTLBMiss 191 0x80 // PrefetchUncacheable 192}; 193 194static_assert(sizeof(ArmFault::aarch64FaultSources) == 195 ArmFault::NumFaultSources, 196 "Invalid size of ArmFault::aarch64FaultSources[]"); 197 198// Fields: name, offset, cur{ELT,ELH}Offset, lowerEL{64,32}Offset, next mode, 199// {ARM, Thumb, ARM_ELR, Thumb_ELR} PC offset, hyp trap, 200// {A, F} disable, class, stat 201template<> ArmFault::FaultVals ArmFaultVals<Reset>::vals = { 202 // Some dummy values (the reset vector has an IMPLEMENTATION DEFINED 203 // location in AArch64) 204 "Reset", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 205 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 206}; 207template<> ArmFault::FaultVals ArmFaultVals<UndefinedInstruction>::vals = { 208 "Undefined Instruction", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED, 209 4, 2, 0, 0, true, false, false, EC_UNKNOWN, FaultStat() 210}; 211template<> ArmFault::FaultVals ArmFaultVals<SupervisorCall>::vals = { 212 "Supervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 213 4, 2, 4, 2, true, false, false, EC_SVC_TO_HYP, FaultStat() 214}; 215template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorCall>::vals = { 216 "Secure Monitor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_MON, 217 4, 4, 4, 4, false, true, true, EC_SMC_TO_HYP, FaultStat() 218}; 219template<> ArmFault::FaultVals ArmFaultVals<HypervisorCall>::vals = { 220 "Hypervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_HYP, 221 4, 4, 4, 4, true, false, false, EC_HVC, FaultStat() 222}; 223template<> ArmFault::FaultVals ArmFaultVals<PrefetchAbort>::vals = { 224 "Prefetch Abort", 0x00C, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 225 4, 4, 0, 0, true, true, false, EC_PREFETCH_ABORT_TO_HYP, FaultStat() 226}; 227template<> ArmFault::FaultVals ArmFaultVals<DataAbort>::vals = { 228 "Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 229 8, 8, 0, 0, true, true, false, EC_DATA_ABORT_TO_HYP, FaultStat() 230}; 231template<> ArmFault::FaultVals ArmFaultVals<VirtualDataAbort>::vals = { 232 "Virtual Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 233 8, 8, 0, 0, true, true, false, EC_INVALID, FaultStat() 234}; 235template<> ArmFault::FaultVals ArmFaultVals<HypervisorTrap>::vals = { 236 // @todo: double check these values 237 "Hypervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_HYP, 238 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 239}; 240template<> ArmFault::FaultVals ArmFaultVals<Interrupt>::vals = { 241 "IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ, 242 4, 4, 0, 0, false, true, false, EC_UNKNOWN, FaultStat() 243}; 244template<> ArmFault::FaultVals ArmFaultVals<VirtualInterrupt>::vals = { 245 "Virtual IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ, 246 4, 4, 0, 0, false, true, false, EC_INVALID, FaultStat() 247}; 248template<> ArmFault::FaultVals ArmFaultVals<FastInterrupt>::vals = { 249 "FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ, 250 4, 4, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 251}; 252template<> ArmFault::FaultVals ArmFaultVals<VirtualFastInterrupt>::vals = { 253 "Virtual FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ, 254 4, 4, 0, 0, false, true, true, EC_INVALID, FaultStat() 255}; 256template<> ArmFault::FaultVals ArmFaultVals<SupervisorTrap>::vals = { 257 // Some dummy values (SupervisorTrap is AArch64-only) 258 "Supervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 259 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 260}; 261template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorTrap>::vals = { 262 // Some dummy values (SecureMonitorTrap is AArch64-only) 263 "Secure Monitor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_MON, 264 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 265}; 266template<> ArmFault::FaultVals ArmFaultVals<PCAlignmentFault>::vals = { 267 // Some dummy values (PCAlignmentFault is AArch64-only) 268 "PC Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 269 0, 0, 0, 0, true, false, false, EC_PC_ALIGNMENT, FaultStat() 270}; 271template<> ArmFault::FaultVals ArmFaultVals<SPAlignmentFault>::vals = { 272 // Some dummy values (SPAlignmentFault is AArch64-only) 273 "SP Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 274 0, 0, 0, 0, true, false, false, EC_STACK_PTR_ALIGNMENT, FaultStat() 275}; 276template<> ArmFault::FaultVals ArmFaultVals<SystemError>::vals = { 277 // Some dummy values (SError is AArch64-only) 278 "SError", 0x000, 0x180, 0x380, 0x580, 0x780, MODE_SVC, 279 0, 0, 0, 0, false, true, true, EC_SERROR, FaultStat() 280}; 281template<> ArmFault::FaultVals ArmFaultVals<FlushPipe>::vals = { 282 // Some dummy values 283 "Pipe Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 284 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 285}; 286template<> ArmFault::FaultVals ArmFaultVals<ArmSev>::vals = { 287 // Some dummy values 288 "ArmSev Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 289 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 290}; 291template<> ArmFault::FaultVals ArmFaultVals<IllegalInstSetStateFault>::vals = { 292 // Some dummy values (SPAlignmentFault is AArch64-only) 293 "Illegal Inst Set State Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 294 0, 0, 0, 0, true, false, false, EC_ILLEGAL_INST, FaultStat() 295}; 296 297Addr 298ArmFault::getVector(ThreadContext *tc) 299{ 300 Addr base; 301 302 // ARM ARM issue C B1.8.1 303 bool haveSecurity = ArmSystem::haveSecurity(tc); 304 305 // panic if SCTLR.VE because I have no idea what to do with vectored 306 // interrupts 307 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR); 308 assert(!sctlr.ve); 309 // Check for invalid modes 310 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 311 assert(haveSecurity || cpsr.mode != MODE_MON); 312 assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP); 313 314 switch (cpsr.mode) 315 { 316 case MODE_MON: 317 base = tc->readMiscReg(MISCREG_MVBAR); 318 break; 319 case MODE_HYP: 320 base = tc->readMiscReg(MISCREG_HVBAR); 321 break; 322 default: 323 if (sctlr.v) { 324 base = HighVecs; 325 } else { 326 base = haveSecurity ? tc->readMiscReg(MISCREG_VBAR) : 0; 327 } 328 break; 329 } 330 return base + offset(tc); 331} 332 333Addr 334ArmFault::getVector64(ThreadContext *tc) 335{ 336 Addr vbar; 337 switch (toEL) { 338 case EL3: 339 assert(ArmSystem::haveSecurity(tc)); 340 vbar = tc->readMiscReg(MISCREG_VBAR_EL3); 341 break; 342 case EL2: 343 assert(ArmSystem::haveVirtualization(tc)); 344 vbar = tc->readMiscReg(MISCREG_VBAR_EL2); 345 break; 346 case EL1: 347 vbar = tc->readMiscReg(MISCREG_VBAR_EL1); 348 break; 349 default: 350 panic("Invalid target exception level"); 351 break; 352 } 353 return vbar + offset64(); 354} 355 356MiscRegIndex 357ArmFault::getSyndromeReg64() const 358{ 359 switch (toEL) { 360 case EL1: 361 return MISCREG_ESR_EL1; 362 case EL2: 363 return MISCREG_ESR_EL2; 364 case EL3: 365 return MISCREG_ESR_EL3; 366 default: 367 panic("Invalid exception level"); 368 break; 369 } 370} 371 372MiscRegIndex 373ArmFault::getFaultAddrReg64() const 374{ 375 switch (toEL) { 376 case EL1: 377 return MISCREG_FAR_EL1; 378 case EL2: 379 return MISCREG_FAR_EL2; 380 case EL3: 381 return MISCREG_FAR_EL3; 382 default: 383 panic("Invalid exception level"); 384 break; 385 } 386} 387 388void 389ArmFault::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg) 390{ 391 uint32_t value; 392 uint32_t exc_class = (uint32_t) ec(tc); 393 uint32_t issVal = iss(); 394 assert(!from64 || ArmSystem::highestELIs64(tc)); 395 396 value = exc_class << 26; 397 398 // HSR.IL not valid for Prefetch Aborts (0x20, 0x21) and Data Aborts (0x24, 399 // 0x25) for which the ISS information is not valid (ARMv7). 400 // @todo: ARMv8 revises AArch32 functionality: when HSR.IL is not 401 // valid it is treated as RES1. 402 if (to64) { 403 value |= 1 << 25; 404 } else if ((bits(exc_class, 5, 3) != 4) || 405 (bits(exc_class, 2) && bits(issVal, 24))) { 406 if (!machInst.thumb || machInst.bigThumb) 407 value |= 1 << 25; 408 } 409 // Condition code valid for EC[5:4] nonzero 410 if (!from64 && ((bits(exc_class, 5, 4) == 0) && 411 (bits(exc_class, 3, 0) != 0))) { 412 if (!machInst.thumb) { 413 uint32_t cond; 414 ConditionCode condCode = (ConditionCode) (uint32_t) machInst.condCode; 415 // If its on unconditional instruction report with a cond code of 416 // 0xE, ie the unconditional code 417 cond = (condCode == COND_UC) ? COND_AL : condCode; 418 value |= cond << 20; 419 value |= 1 << 24; 420 } 421 value |= bits(issVal, 19, 0); 422 } else { 423 value |= issVal; 424 } 425 tc->setMiscReg(syndrome_reg, value); 426} 427 428void 429ArmFault::invoke(ThreadContext *tc, const StaticInstPtr &inst) 430{ 431 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 432 433 if (ArmSystem::highestELIs64(tc)) { // ARMv8 434 // Determine source exception level and mode 435 fromMode = (OperatingMode) (uint8_t) cpsr.mode; 436 fromEL = opModeToEL(fromMode); 437 if (opModeIs64(fromMode)) 438 from64 = true; 439 440 // Determine target exception level 441 if (ArmSystem::haveSecurity(tc) && routeToMonitor(tc)) 442 toEL = EL3; 443 else if (ArmSystem::haveVirtualization(tc) && routeToHyp(tc)) 444 toEL = EL2; 445 else 446 toEL = opModeToEL(nextMode()); 447 if (fromEL > toEL) 448 toEL = fromEL; 449 450 if (toEL == ArmSystem::highestEL(tc) || ELIs64(tc, toEL)) { 451 // Invoke exception handler in AArch64 state 452 to64 = true; 453 invoke64(tc, inst); 454 return; 455 } 456 } 457 458 // ARMv7 (ARM ARM issue C B1.9) 459 460 bool have_security = ArmSystem::haveSecurity(tc); 461 bool have_virtualization = ArmSystem::haveVirtualization(tc); 462 463 FaultBase::invoke(tc); 464 if (!FullSystem) 465 return; 466 countStat()++; 467 468 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR); 469 SCR scr = tc->readMiscReg(MISCREG_SCR); 470 CPSR saved_cpsr = tc->readMiscReg(MISCREG_CPSR); 471 saved_cpsr.nz = tc->readCCReg(CCREG_NZ); 472 saved_cpsr.c = tc->readCCReg(CCREG_C); 473 saved_cpsr.v = tc->readCCReg(CCREG_V); 474 saved_cpsr.ge = tc->readCCReg(CCREG_GE); 475 476 Addr curPc M5_VAR_USED = tc->pcState().pc(); 477 ITSTATE it = tc->pcState().itstate(); 478 saved_cpsr.it2 = it.top6; 479 saved_cpsr.it1 = it.bottom2; 480 481 // if we have a valid instruction then use it to annotate this fault with 482 // extra information. This is used to generate the correct fault syndrome 483 // information 484 if (inst) { 485 ArmStaticInst *armInst = reinterpret_cast<ArmStaticInst *>(inst.get()); 486 armInst->annotateFault(this); 487 } 488 489 if (have_security && routeToMonitor(tc)) 490 cpsr.mode = MODE_MON; 491 else if (have_virtualization && routeToHyp(tc)) 492 cpsr.mode = MODE_HYP; 493 else 494 cpsr.mode = nextMode(); 495 496 // Ensure Secure state if initially in Monitor mode 497 if (have_security && saved_cpsr.mode == MODE_MON) { 498 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 499 if (scr.ns) { 500 scr.ns = 0; 501 tc->setMiscRegNoEffect(MISCREG_SCR, scr); 502 } 503 } 504 505 // some bits are set differently if we have been routed to hyp mode 506 if (cpsr.mode == MODE_HYP) { 507 SCTLR hsctlr = tc->readMiscReg(MISCREG_HSCTLR); 508 cpsr.t = hsctlr.te; 509 cpsr.e = hsctlr.ee; 510 if (!scr.ea) {cpsr.a = 1;} 511 if (!scr.fiq) {cpsr.f = 1;} 512 if (!scr.irq) {cpsr.i = 1;} 513 } else if (cpsr.mode == MODE_MON) { 514 // Special case handling when entering monitor mode 515 cpsr.t = sctlr.te; 516 cpsr.e = sctlr.ee; 517 cpsr.a = 1; 518 cpsr.f = 1; 519 cpsr.i = 1; 520 } else { 521 cpsr.t = sctlr.te; 522 cpsr.e = sctlr.ee; 523 524 // The *Disable functions are virtual and different per fault 525 cpsr.a = cpsr.a | abortDisable(tc); 526 cpsr.f = cpsr.f | fiqDisable(tc); 527 cpsr.i = 1; 528 } 529 cpsr.it1 = cpsr.it2 = 0; 530 cpsr.j = 0; 531 tc->setMiscReg(MISCREG_CPSR, cpsr); 532 533 // Make sure mailbox sets to one always 534 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1); 535 536 // Clear the exclusive monitor 537 tc->setMiscReg(MISCREG_LOCKFLAG, 0); 538 539 if (cpsr.mode == MODE_HYP) { 540 tc->setMiscReg(MISCREG_ELR_HYP, curPc + 541 (saved_cpsr.t ? thumbPcOffset(true) : armPcOffset(true))); 542 } else { 543 tc->setIntReg(INTREG_LR, curPc + 544 (saved_cpsr.t ? thumbPcOffset(false) : armPcOffset(false))); 545 } 546 547 switch (cpsr.mode) { 548 case MODE_FIQ: 549 tc->setMiscReg(MISCREG_SPSR_FIQ, saved_cpsr); 550 break; 551 case MODE_IRQ: 552 tc->setMiscReg(MISCREG_SPSR_IRQ, saved_cpsr); 553 break; 554 case MODE_SVC: 555 tc->setMiscReg(MISCREG_SPSR_SVC, saved_cpsr); 556 break; 557 case MODE_MON: 558 assert(have_security); 559 tc->setMiscReg(MISCREG_SPSR_MON, saved_cpsr); 560 break; 561 case MODE_ABORT: 562 tc->setMiscReg(MISCREG_SPSR_ABT, saved_cpsr); 563 break; 564 case MODE_UNDEFINED: 565 tc->setMiscReg(MISCREG_SPSR_UND, saved_cpsr); 566 if (ec(tc) != EC_UNKNOWN) 567 setSyndrome(tc, MISCREG_HSR); 568 break; 569 case MODE_HYP: 570 assert(have_virtualization); 571 tc->setMiscReg(MISCREG_SPSR_HYP, saved_cpsr); 572 setSyndrome(tc, MISCREG_HSR); 573 break; 574 default: 575 panic("unknown Mode\n"); 576 } 577 578 Addr newPc = getVector(tc); 579 DPRINTF(Faults, "Invoking Fault:%s cpsr:%#x PC:%#x lr:%#x newVec: %#x\n", 580 name(), cpsr, curPc, tc->readIntReg(INTREG_LR), newPc); 581 PCState pc(newPc); 582 pc.thumb(cpsr.t); 583 pc.nextThumb(pc.thumb()); 584 pc.jazelle(cpsr.j); 585 pc.nextJazelle(pc.jazelle()); 586 pc.aarch64(!cpsr.width); 587 pc.nextAArch64(!cpsr.width); 588 tc->pcState(pc); 589} 590 591void 592ArmFault::invoke64(ThreadContext *tc, const StaticInstPtr &inst) 593{ 594 // Determine actual misc. register indices for ELR_ELx and SPSR_ELx 595 MiscRegIndex elr_idx, spsr_idx; 596 switch (toEL) { 597 case EL1: 598 elr_idx = MISCREG_ELR_EL1; 599 spsr_idx = MISCREG_SPSR_EL1; 600 break; 601 case EL2: 602 assert(ArmSystem::haveVirtualization(tc)); 603 elr_idx = MISCREG_ELR_EL2; 604 spsr_idx = MISCREG_SPSR_EL2; 605 break; 606 case EL3: 607 assert(ArmSystem::haveSecurity(tc)); 608 elr_idx = MISCREG_ELR_EL3; 609 spsr_idx = MISCREG_SPSR_EL3; 610 break; 611 default: 612 panic("Invalid target exception level"); 613 break; 614 } 615 616 // Save process state into SPSR_ELx 617 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 618 CPSR spsr = cpsr; 619 spsr.nz = tc->readCCReg(CCREG_NZ); 620 spsr.c = tc->readCCReg(CCREG_C); 621 spsr.v = tc->readCCReg(CCREG_V); 622 if (from64) { 623 // Force some bitfields to 0 624 spsr.q = 0; 625 spsr.it1 = 0; 626 spsr.j = 0; 627 spsr.res0_23_22 = 0; 628 spsr.ge = 0; 629 spsr.it2 = 0; 630 spsr.t = 0; 631 } else { 632 spsr.ge = tc->readCCReg(CCREG_GE); 633 ITSTATE it = tc->pcState().itstate(); 634 spsr.it2 = it.top6; 635 spsr.it1 = it.bottom2; 636 // Force some bitfields to 0 637 spsr.res0_23_22 = 0; 638 spsr.ss = 0; 639 } 640 tc->setMiscReg(spsr_idx, spsr); 641 642 // Save preferred return address into ELR_ELx 643 Addr curr_pc = tc->pcState().pc(); 644 Addr ret_addr = curr_pc; 645 if (from64) 646 ret_addr += armPcElrOffset(); 647 else 648 ret_addr += spsr.t ? thumbPcElrOffset() : armPcElrOffset(); 649 tc->setMiscReg(elr_idx, ret_addr); 650 651 // Update process state 652 OperatingMode64 mode = 0; 653 mode.spX = 1; 654 mode.el = toEL; 655 mode.width = 0; 656 cpsr.mode = mode; 657 cpsr.daif = 0xf; 658 cpsr.il = 0; 659 cpsr.ss = 0; 660 tc->setMiscReg(MISCREG_CPSR, cpsr); 661 662 // Set PC to start of exception handler 663 Addr new_pc = purifyTaggedAddr(getVector64(tc), tc, toEL); 664 DPRINTF(Faults, "Invoking Fault (AArch64 target EL):%s cpsr:%#x PC:%#x " 665 "elr:%#x newVec: %#x\n", name(), cpsr, curr_pc, ret_addr, new_pc); 666 PCState pc(new_pc); 667 pc.aarch64(!cpsr.width); 668 pc.nextAArch64(!cpsr.width); 669 tc->pcState(pc); 670 671 // If we have a valid instruction then use it to annotate this fault with 672 // extra information. This is used to generate the correct fault syndrome 673 // information 674 if (inst) 675 reinterpret_cast<ArmStaticInst *>(inst.get())->annotateFault(this); 676 // Save exception syndrome 677 if ((nextMode() != MODE_IRQ) && (nextMode() != MODE_FIQ)) 678 setSyndrome(tc, getSyndromeReg64()); 679} 680 681void 682Reset::invoke(ThreadContext *tc, const StaticInstPtr &inst) 683{ 684 if (FullSystem) { 685 tc->getCpuPtr()->clearInterrupts(tc->threadId()); 686 tc->clearArchRegs(); 687 } 688 if (!ArmSystem::highestELIs64(tc)) { 689 ArmFault::invoke(tc, inst); 690 tc->setMiscReg(MISCREG_VMPIDR, 691 getMPIDR(dynamic_cast<ArmSystem*>(tc->getSystemPtr()), tc)); 692 693 // Unless we have SMC code to get us there, boot in HYP! 694 if (ArmSystem::haveVirtualization(tc) && 695 !ArmSystem::haveSecurity(tc)) { 696 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 697 cpsr.mode = MODE_HYP; 698 tc->setMiscReg(MISCREG_CPSR, cpsr); 699 } 700 } else { 701 // Advance the PC to the IMPLEMENTATION DEFINED reset value 702 PCState pc = ArmSystem::resetAddr64(tc); 703 pc.aarch64(true); 704 pc.nextAArch64(true); 705 tc->pcState(pc); 706 } 707} 708 709void 710UndefinedInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst) 711{ 712 if (FullSystem) { 713 ArmFault::invoke(tc, inst); 714 return; 715 } 716 717 // If the mnemonic isn't defined this has to be an unknown instruction. 718 assert(unknown || mnemonic != NULL); 719 if (disabled) { 720 panic("Attempted to execute disabled instruction " 721 "'%s' (inst 0x%08x)", mnemonic, machInst); 722 } else if (unknown) { 723 panic("Attempted to execute unknown instruction (inst 0x%08x)", 724 machInst); 725 } else { 726 panic("Attempted to execute unimplemented instruction " 727 "'%s' (inst 0x%08x)", mnemonic, machInst); 728 } 729} 730 731bool 732UndefinedInstruction::routeToHyp(ThreadContext *tc) const 733{ 734 bool toHyp; 735 736 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 737 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 738 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 739 740 // if in Hyp mode then stay in Hyp mode 741 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 742 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector 743 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER); 744 return toHyp; 745} 746 747uint32_t 748UndefinedInstruction::iss() const 749{ 750 if (overrideEc == EC_INVALID) 751 return issRaw; 752 753 uint32_t new_iss = 0; 754 uint32_t op0, op1, op2, CRn, CRm, Rt, dir; 755 756 dir = bits(machInst, 21, 21); 757 op0 = bits(machInst, 20, 19); 758 op1 = bits(machInst, 18, 16); 759 CRn = bits(machInst, 15, 12); 760 CRm = bits(machInst, 11, 8); 761 op2 = bits(machInst, 7, 5); 762 Rt = bits(machInst, 4, 0); 763 764 new_iss = op0 << 20 | op2 << 17 | op1 << 14 | CRn << 10 | 765 Rt << 5 | CRm << 1 | dir; 766 767 return new_iss; 768} 769 770void 771SupervisorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst) 772{ 773 if (FullSystem) { 774 ArmFault::invoke(tc, inst); 775 return; 776 } 777 778 // As of now, there isn't a 32 bit thumb version of this instruction. 779 assert(!machInst.bigThumb); 780 uint32_t callNum; 781 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 782 OperatingMode mode = (OperatingMode)(uint8_t)cpsr.mode; 783 if (opModeIs64(mode)) 784 callNum = tc->readIntReg(INTREG_X8); 785 else 786 callNum = tc->readIntReg(INTREG_R7); 787 tc->syscall(callNum); 788 789 // Advance the PC since that won't happen automatically. 790 PCState pc = tc->pcState(); 791 assert(inst); 792 inst->advancePC(pc); 793 tc->pcState(pc); 794} 795 796bool 797SupervisorCall::routeToHyp(ThreadContext *tc) const 798{ 799 bool toHyp; 800 801 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 802 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 803 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 804 805 // if in Hyp mode then stay in Hyp mode 806 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 807 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector 808 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER); 809 return toHyp; 810} 811 812ExceptionClass 813SupervisorCall::ec(ThreadContext *tc) const 814{ 815 return (overrideEc != EC_INVALID) ? overrideEc : 816 (from64 ? EC_SVC_64 : vals.ec); 817} 818 819uint32_t 820SupervisorCall::iss() const 821{ 822 // Even if we have a 24 bit imm from an arm32 instruction then we only use 823 // the bottom 16 bits for the ISS value (it doesn't hurt for AArch64 SVC). 824 return issRaw & 0xFFFF; 825} 826 827uint32_t 828SecureMonitorCall::iss() const 829{ 830 if (from64) 831 return bits(machInst, 20, 5); 832 return 0; 833} 834 835ExceptionClass 836UndefinedInstruction::ec(ThreadContext *tc) const 837{ 838 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 839} 840 841 842HypervisorCall::HypervisorCall(ExtMachInst _machInst, uint32_t _imm) : 843 ArmFaultVals<HypervisorCall>(_machInst, _imm) 844{} 845 846ExceptionClass 847HypervisorCall::ec(ThreadContext *tc) const 848{ 849 return from64 ? EC_HVC_64 : vals.ec; 850} 851 852ExceptionClass 853HypervisorTrap::ec(ThreadContext *tc) const 854{ 855 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 856} 857 858template<class T> 859FaultOffset 860ArmFaultVals<T>::offset(ThreadContext *tc) 861{ 862 bool isHypTrap = false; 863 864 // Normally we just use the exception vector from the table at the top if 865 // this file, however if this exception has caused a transition to hype 866 // mode, and its an exception type that would only do this if it has been 867 // trapped then we use the hyp trap vector instead of the normal vector 868 if (vals.hypTrappable) { 869 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 870 if (cpsr.mode == MODE_HYP) { 871 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 872 isHypTrap = spsr.mode != MODE_HYP; 873 } 874 } 875 return isHypTrap ? 0x14 : vals.offset; 876} 877 878// void 879// SupervisorCall::setSyndrome64(ThreadContext *tc, MiscRegIndex esr_idx) 880// { 881// ESR esr = 0; 882// esr.ec = machInst.aarch64 ? SvcAArch64 : SvcAArch32; 883// esr.il = !machInst.thumb; 884// if (machInst.aarch64) 885// esr.imm16 = bits(machInst.instBits, 20, 5); 886// else if (machInst.thumb) 887// esr.imm16 = bits(machInst.instBits, 7, 0); 888// else 889// esr.imm16 = bits(machInst.instBits, 15, 0); 890// tc->setMiscReg(esr_idx, esr); 891// } 892 893void 894SecureMonitorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst) 895{ 896 if (FullSystem) { 897 ArmFault::invoke(tc, inst); 898 return; 899 } 900} 901 902ExceptionClass 903SecureMonitorCall::ec(ThreadContext *tc) const 904{ 905 return (from64 ? EC_SMC_64 : vals.ec); 906} 907 908ExceptionClass 909SupervisorTrap::ec(ThreadContext *tc) const 910{ 911 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 912} 913 914ExceptionClass 915SecureMonitorTrap::ec(ThreadContext *tc) const 916{ 917 return (overrideEc != EC_INVALID) ? overrideEc : 918 (from64 ? EC_SMC_64 : vals.ec); 919} 920 921template<class T> 922void 923AbortFault<T>::invoke(ThreadContext *tc, const StaticInstPtr &inst) 924{ 925 if (tranMethod == ArmFault::UnknownTran) { 926 tranMethod = longDescFormatInUse(tc) ? ArmFault::LpaeTran 927 : ArmFault::VmsaTran; 928 929 if ((tranMethod == ArmFault::VmsaTran) && this->routeToMonitor(tc)) { 930 // See ARM ARM B3-1416 931 bool override_LPAE = false; 932 TTBCR ttbcr_s = tc->readMiscReg(MISCREG_TTBCR_S); 933 TTBCR M5_VAR_USED ttbcr_ns = tc->readMiscReg(MISCREG_TTBCR_NS); 934 if (ttbcr_s.eae) { 935 override_LPAE = true; 936 } else { 937 // Unimplemented code option, not seen in testing. May need 938 // extension according to the manual exceprt above. 939 DPRINTF(Faults, "Warning: Incomplete translation method " 940 "override detected.\n"); 941 } 942 if (override_LPAE) 943 tranMethod = ArmFault::LpaeTran; 944 } 945 } 946 947 if (source == ArmFault::AsynchronousExternalAbort) { 948 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0); 949 } 950 // Get effective fault source encoding 951 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 952 FSR fsr = getFsr(tc); 953 954 // source must be determined BEFORE invoking generic routines which will 955 // try to set hsr etc. and are based upon source! 956 ArmFaultVals<T>::invoke(tc, inst); 957 958 if (!this->to64) { // AArch32 959 if (cpsr.mode == MODE_HYP) { 960 tc->setMiscReg(T::HFarIndex, faultAddr); 961 } else if (stage2) { 962 tc->setMiscReg(MISCREG_HPFAR, (faultAddr >> 8) & ~0xf); 963 tc->setMiscReg(T::HFarIndex, OVAddr); 964 } else { 965 tc->setMiscReg(T::FsrIndex, fsr); 966 tc->setMiscReg(T::FarIndex, faultAddr); 967 } 968 DPRINTF(Faults, "Abort Fault source=%#x fsr=%#x faultAddr=%#x "\ 969 "tranMethod=%#x\n", source, fsr, faultAddr, tranMethod); 970 } else { // AArch64 971 // Set the FAR register. Nothing else to do if we are in AArch64 state 972 // because the syndrome register has already been set inside invoke64() 973 if (stage2) { 974 // stage 2 fault, set HPFAR_EL2 to the faulting IPA 975 // and FAR_EL2 to the Original VA 976 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), OVAddr); 977 tc->setMiscReg(MISCREG_HPFAR_EL2, bits(faultAddr, 47, 12) << 4); 978 979 DPRINTF(Faults, "Abort Fault (Stage 2) VA: 0x%x IPA: 0x%x\n", 980 OVAddr, faultAddr); 981 } else { 982 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), faultAddr); 983 } 984 } 985} 986 987template<class T> 988FSR 989AbortFault<T>::getFsr(ThreadContext *tc) 990{ 991 FSR fsr = 0; 992 993 if (((CPSR) tc->readMiscRegNoEffect(MISCREG_CPSR)).width) { 994 // AArch32 995 assert(tranMethod != ArmFault::UnknownTran); 996 if (tranMethod == ArmFault::LpaeTran) { 997 srcEncoded = ArmFault::longDescFaultSources[source]; 998 fsr.status = srcEncoded; 999 fsr.lpae = 1; 1000 } else { 1001 srcEncoded = ArmFault::shortDescFaultSources[source]; 1002 fsr.fsLow = bits(srcEncoded, 3, 0); 1003 fsr.fsHigh = bits(srcEncoded, 4); 1004 fsr.domain = static_cast<uint8_t>(domain); 1005 } 1006 fsr.wnr = (write ? 1 : 0); 1007 fsr.ext = 0; 1008 } else { 1009 // AArch64 1010 srcEncoded = ArmFault::aarch64FaultSources[source]; 1011 } 1012 if (srcEncoded == ArmFault::FaultSourceInvalid) { 1013 panic("Invalid fault source\n"); 1014 } 1015 return fsr; 1016} 1017 1018template<class T> 1019bool 1020AbortFault<T>::abortDisable(ThreadContext *tc) 1021{ 1022 if (ArmSystem::haveSecurity(tc)) { 1023 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1024 return (!scr.ns || scr.aw); 1025 } 1026 return true; 1027} 1028 1029template<class T> 1030void 1031AbortFault<T>::annotate(ArmFault::AnnotationIDs id, uint64_t val) 1032{ 1033 switch (id) 1034 { 1035 case ArmFault::S1PTW: 1036 s1ptw = val; 1037 break; 1038 case ArmFault::OVA: 1039 OVAddr = val; 1040 break; 1041 1042 // Just ignore unknown ID's 1043 default: 1044 break; 1045 } 1046} 1047 1048template<class T> 1049uint32_t 1050AbortFault<T>::iss() const 1051{ 1052 uint32_t val; 1053 1054 val = srcEncoded & 0x3F; 1055 val |= write << 6; 1056 val |= s1ptw << 7; 1057 return (val); 1058} 1059 1060template<class T> 1061bool 1062AbortFault<T>::isMMUFault() const 1063{ 1064 // NOTE: Not relying on LL information being aligned to lowest bits here 1065 return 1066 (source == ArmFault::AlignmentFault) || 1067 ((source >= ArmFault::TranslationLL) && 1068 (source < ArmFault::TranslationLL + 4)) || 1069 ((source >= ArmFault::AccessFlagLL) && 1070 (source < ArmFault::AccessFlagLL + 4)) || 1071 ((source >= ArmFault::DomainLL) && 1072 (source < ArmFault::DomainLL + 4)) || 1073 ((source >= ArmFault::PermissionLL) && 1074 (source < ArmFault::PermissionLL + 4)); 1075} 1076 1077ExceptionClass 1078PrefetchAbort::ec(ThreadContext *tc) const 1079{ 1080 if (to64) { 1081 // AArch64 1082 if (toEL == fromEL) 1083 return EC_PREFETCH_ABORT_CURR_EL; 1084 else 1085 return EC_PREFETCH_ABORT_LOWER_EL; 1086 } else { 1087 // AArch32 1088 // Abort faults have different EC codes depending on whether 1089 // the fault originated within HYP mode, or not. So override 1090 // the method and add the extra adjustment of the EC value. 1091 1092 ExceptionClass ec = ArmFaultVals<PrefetchAbort>::vals.ec; 1093 1094 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 1095 if (spsr.mode == MODE_HYP) { 1096 ec = ((ExceptionClass) (((uint32_t) ec) + 1)); 1097 } 1098 return ec; 1099 } 1100} 1101 1102bool 1103PrefetchAbort::routeToMonitor(ThreadContext *tc) const 1104{ 1105 SCR scr = 0; 1106 if (from64) 1107 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1108 else 1109 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1110 1111 return scr.ea && !isMMUFault(); 1112} 1113 1114bool 1115PrefetchAbort::routeToHyp(ThreadContext *tc) const 1116{ 1117 bool toHyp; 1118 1119 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1120 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1121 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1122 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR); 1123 1124 // if in Hyp mode then stay in Hyp mode 1125 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 1126 // otherwise, check whether to take to Hyp mode through Hyp Trap vector 1127 toHyp |= (stage2 || 1128 ( (source == DebugEvent) && hdcr.tde && (cpsr.mode != MODE_HYP)) || 1129 ( (source == SynchronousExternalAbort) && hcr.tge && (cpsr.mode == MODE_USER)) 1130 ) && !inSecureState(tc); 1131 return toHyp; 1132} 1133 1134ExceptionClass 1135DataAbort::ec(ThreadContext *tc) const 1136{ 1137 if (to64) { 1138 // AArch64 1139 if (source == ArmFault::AsynchronousExternalAbort) { 1140 panic("Asynchronous External Abort should be handled with " 1141 "SystemErrors (SErrors)!"); 1142 } 1143 if (toEL == fromEL) 1144 return EC_DATA_ABORT_CURR_EL; 1145 else 1146 return EC_DATA_ABORT_LOWER_EL; 1147 } else { 1148 // AArch32 1149 // Abort faults have different EC codes depending on whether 1150 // the fault originated within HYP mode, or not. So override 1151 // the method and add the extra adjustment of the EC value. 1152 1153 ExceptionClass ec = ArmFaultVals<DataAbort>::vals.ec; 1154 1155 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 1156 if (spsr.mode == MODE_HYP) { 1157 ec = ((ExceptionClass) (((uint32_t) ec) + 1)); 1158 } 1159 return ec; 1160 } 1161} 1162 1163bool 1164DataAbort::routeToMonitor(ThreadContext *tc) const 1165{ 1166 SCR scr = 0; 1167 if (from64) 1168 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1169 else 1170 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1171 1172 return scr.ea && !isMMUFault(); 1173} 1174 1175bool 1176DataAbort::routeToHyp(ThreadContext *tc) const 1177{ 1178 bool toHyp; 1179 1180 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1181 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1182 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1183 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR); 1184 1185 // if in Hyp mode then stay in Hyp mode 1186 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 1187 // otherwise, check whether to take to Hyp mode through Hyp Trap vector 1188 toHyp |= (stage2 || 1189 ( (cpsr.mode != MODE_HYP) && ( ((source == AsynchronousExternalAbort) && hcr.amo) || 1190 ((source == DebugEvent) && hdcr.tde) ) 1191 ) || 1192 ( (cpsr.mode == MODE_USER) && hcr.tge && 1193 ((source == AlignmentFault) || 1194 (source == SynchronousExternalAbort)) 1195 ) 1196 ) && !inSecureState(tc); 1197 return toHyp; 1198} 1199 1200uint32_t 1201DataAbort::iss() const 1202{ 1203 uint32_t val; 1204 1205 // Add on the data abort specific fields to the generic abort ISS value 1206 val = AbortFault<DataAbort>::iss(); 1207 // ISS is valid if not caused by a stage 1 page table walk, and when taken 1208 // to AArch64 only when directed to EL2 1209 if (!s1ptw && (!to64 || toEL == EL2)) { 1210 val |= isv << 24; 1211 if (isv) { 1212 val |= sas << 22; 1213 val |= sse << 21; 1214 val |= srt << 16; 1215 // AArch64 only. These assignments are safe on AArch32 as well 1216 // because these vars are initialized to false 1217 val |= sf << 15; 1218 val |= ar << 14; 1219 } 1220 } 1221 return (val); 1222} 1223 1224void 1225DataAbort::annotate(AnnotationIDs id, uint64_t val) 1226{ 1227 AbortFault<DataAbort>::annotate(id, val); 1228 switch (id) 1229 { 1230 case SAS: 1231 isv = true; 1232 sas = val; 1233 break; 1234 case SSE: 1235 isv = true; 1236 sse = val; 1237 break; 1238 case SRT: 1239 isv = true; 1240 srt = val; 1241 break; 1242 case SF: 1243 isv = true; 1244 sf = val; 1245 break; 1246 case AR: 1247 isv = true; 1248 ar = val; 1249 break; 1250 // Just ignore unknown ID's 1251 default: 1252 break; 1253 } 1254} 1255 1256void 1257VirtualDataAbort::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1258{ 1259 AbortFault<VirtualDataAbort>::invoke(tc, inst); 1260 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1261 hcr.va = 0; 1262 tc->setMiscRegNoEffect(MISCREG_HCR, hcr); 1263} 1264 1265bool 1266Interrupt::routeToMonitor(ThreadContext *tc) const 1267{ 1268 assert(ArmSystem::haveSecurity(tc)); 1269 SCR scr = 0; 1270 if (from64) 1271 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1272 else 1273 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1274 return scr.irq; 1275} 1276 1277bool 1278Interrupt::routeToHyp(ThreadContext *tc) const 1279{ 1280 bool toHyp; 1281 1282 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1283 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1284 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1285 // Determine whether IRQs are routed to Hyp mode. 1286 toHyp = (!scr.irq && hcr.imo && !inSecureState(tc)) || 1287 (cpsr.mode == MODE_HYP); 1288 return toHyp; 1289} 1290 1291bool 1292Interrupt::abortDisable(ThreadContext *tc) 1293{ 1294 if (ArmSystem::haveSecurity(tc)) { 1295 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1296 return (!scr.ns || scr.aw); 1297 } 1298 return true; 1299} 1300 1301VirtualInterrupt::VirtualInterrupt() 1302{} 1303 1304bool 1305FastInterrupt::routeToMonitor(ThreadContext *tc) const 1306{ 1307 assert(ArmSystem::haveSecurity(tc)); 1308 SCR scr = 0; 1309 if (from64) 1310 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1311 else 1312 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1313 return scr.fiq; 1314} 1315 1316bool 1317FastInterrupt::routeToHyp(ThreadContext *tc) const 1318{ 1319 bool toHyp; 1320 1321 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1322 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1323 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1324 // Determine whether IRQs are routed to Hyp mode. 1325 toHyp = (!scr.fiq && hcr.fmo && !inSecureState(tc)) || 1326 (cpsr.mode == MODE_HYP); 1327 return toHyp; 1328} 1329 1330bool 1331FastInterrupt::abortDisable(ThreadContext *tc) 1332{ 1333 if (ArmSystem::haveSecurity(tc)) { 1334 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1335 return (!scr.ns || scr.aw); 1336 } 1337 return true; 1338} 1339 1340bool 1341FastInterrupt::fiqDisable(ThreadContext *tc) 1342{ 1343 if (ArmSystem::haveVirtualization(tc)) { 1344 return true; 1345 } else if (ArmSystem::haveSecurity(tc)) { 1346 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1347 return (!scr.ns || scr.fw); 1348 } 1349 return true; 1350} 1351 1352VirtualFastInterrupt::VirtualFastInterrupt() 1353{} 1354 1355void 1356PCAlignmentFault::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1357{ 1358 ArmFaultVals<PCAlignmentFault>::invoke(tc, inst); 1359 assert(from64); 1360 // Set the FAR 1361 tc->setMiscReg(getFaultAddrReg64(), faultPC); 1362} 1363 1364SPAlignmentFault::SPAlignmentFault() 1365{} 1366 1367SystemError::SystemError() 1368{} 1369 1370void 1371SystemError::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1372{ 1373 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0); 1374 ArmFault::invoke(tc, inst); 1375} 1376 1377bool 1378SystemError::routeToMonitor(ThreadContext *tc) const 1379{ 1380 assert(ArmSystem::haveSecurity(tc)); 1381 assert(from64); 1382 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1383 return scr.ea; 1384} 1385 1386bool 1387SystemError::routeToHyp(ThreadContext *tc) const 1388{ 1389 bool toHyp; 1390 assert(from64); 1391 1392 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1393 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1394 1395 toHyp = (!scr.ea && hcr.amo && !inSecureState(tc)) || 1396 (!scr.ea && !scr.rw && !hcr.amo && !inSecureState(tc)); 1397 return toHyp; 1398} 1399 1400void 1401FlushPipe::invoke(ThreadContext *tc, const StaticInstPtr &inst) { 1402 DPRINTF(Faults, "Invoking FlushPipe Fault\n"); 1403 1404 // Set the PC to the next instruction of the faulting instruction. 1405 // Net effect is simply squashing all instructions behind and 1406 // start refetching from the next instruction. 1407 PCState pc = tc->pcState(); 1408 assert(inst); 1409 inst->advancePC(pc); 1410 tc->pcState(pc); 1411} 1412 1413void 1414ArmSev::invoke(ThreadContext *tc, const StaticInstPtr &inst) { 1415 DPRINTF(Faults, "Invoking ArmSev Fault\n"); 1416 if (!FullSystem) 1417 return; 1418 1419 // Set sev_mailbox to 1, clear the pending interrupt from remote 1420 // SEV execution and let pipeline continue as pcState is still 1421 // valid. 1422 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1); 1423 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_SEV, 0); 1424} 1425 1426// Instantiate all the templates to make the linker happy 1427template class ArmFaultVals<Reset>; 1428template class ArmFaultVals<UndefinedInstruction>; 1429template class ArmFaultVals<SupervisorCall>; 1430template class ArmFaultVals<SecureMonitorCall>; 1431template class ArmFaultVals<HypervisorCall>; 1432template class ArmFaultVals<PrefetchAbort>; 1433template class ArmFaultVals<DataAbort>; 1434template class ArmFaultVals<VirtualDataAbort>; 1435template class ArmFaultVals<HypervisorTrap>; 1436template class ArmFaultVals<Interrupt>; 1437template class ArmFaultVals<VirtualInterrupt>; 1438template class ArmFaultVals<FastInterrupt>; 1439template class ArmFaultVals<VirtualFastInterrupt>; 1440template class ArmFaultVals<SupervisorTrap>; 1441template class ArmFaultVals<SecureMonitorTrap>; 1442template class ArmFaultVals<PCAlignmentFault>; 1443template class ArmFaultVals<SPAlignmentFault>; 1444template class ArmFaultVals<SystemError>; 1445template class ArmFaultVals<FlushPipe>; 1446template class ArmFaultVals<ArmSev>; 1447template class AbortFault<PrefetchAbort>; 1448template class AbortFault<DataAbort>; 1449template class AbortFault<VirtualDataAbort>; 1450 1451 1452IllegalInstSetStateFault::IllegalInstSetStateFault() 1453{} 1454 1455 1456} // namespace ArmISA 1457