faults.cc revision 11578
1/* 2 * Copyright (c) 2010, 2012-2014, 2016 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2003-2005 The Regents of The University of Michigan 15 * Copyright (c) 2007-2008 The Florida State University 16 * All rights reserved. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions are 20 * met: redistributions of source code must retain the above copyright 21 * notice, this list of conditions and the following disclaimer; 22 * redistributions in binary form must reproduce the above copyright 23 * notice, this list of conditions and the following disclaimer in the 24 * documentation and/or other materials provided with the distribution; 25 * neither the name of the copyright holders nor the names of its 26 * contributors may be used to endorse or promote products derived from 27 * this software without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * Authors: Ali Saidi 42 * Gabe Black 43 * Giacomo Gabrielli 44 * Thomas Grocutt 45 */ 46 47#include "arch/arm/faults.hh" 48#include "arch/arm/system.hh" 49#include "arch/arm/utility.hh" 50#include "arch/arm/insts/static_inst.hh" 51#include "base/compiler.hh" 52#include "base/trace.hh" 53#include "cpu/base.hh" 54#include "cpu/thread_context.hh" 55#include "debug/Faults.hh" 56#include "sim/full_system.hh" 57 58namespace ArmISA 59{ 60 61uint8_t ArmFault::shortDescFaultSources[] = { 62 0x01, // AlignmentFault 63 0x04, // InstructionCacheMaintenance 64 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID) 65 0x0c, // SynchExtAbtOnTranslTableWalkL1 66 0x0e, // SynchExtAbtOnTranslTableWalkL2 67 0xff, // SynchExtAbtOnTranslTableWalkL3 (INVALID) 68 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID) 69 0x1c, // SynchPtyErrOnTranslTableWalkL1 70 0x1e, // SynchPtyErrOnTranslTableWalkL2 71 0xff, // SynchPtyErrOnTranslTableWalkL3 (INVALID) 72 0xff, // TranslationL0 (INVALID) 73 0x05, // TranslationL1 74 0x07, // TranslationL2 75 0xff, // TranslationL3 (INVALID) 76 0xff, // AccessFlagL0 (INVALID) 77 0x03, // AccessFlagL1 78 0x06, // AccessFlagL2 79 0xff, // AccessFlagL3 (INVALID) 80 0xff, // DomainL0 (INVALID) 81 0x09, // DomainL1 82 0x0b, // DomainL2 83 0xff, // DomainL3 (INVALID) 84 0xff, // PermissionL0 (INVALID) 85 0x0d, // PermissionL1 86 0x0f, // PermissionL2 87 0xff, // PermissionL3 (INVALID) 88 0x02, // DebugEvent 89 0x08, // SynchronousExternalAbort 90 0x10, // TLBConflictAbort 91 0x19, // SynchPtyErrOnMemoryAccess 92 0x16, // AsynchronousExternalAbort 93 0x18, // AsynchPtyErrOnMemoryAccess 94 0xff, // AddressSizeL0 (INVALID) 95 0xff, // AddressSizeL1 (INVALID) 96 0xff, // AddressSizeL2 (INVALID) 97 0xff, // AddressSizeL3 (INVALID) 98 0x40, // PrefetchTLBMiss 99 0x80 // PrefetchUncacheable 100}; 101 102static_assert(sizeof(ArmFault::shortDescFaultSources) == 103 ArmFault::NumFaultSources, 104 "Invalid size of ArmFault::shortDescFaultSources[]"); 105 106uint8_t ArmFault::longDescFaultSources[] = { 107 0x21, // AlignmentFault 108 0xff, // InstructionCacheMaintenance (INVALID) 109 0xff, // SynchExtAbtOnTranslTableWalkL0 (INVALID) 110 0x15, // SynchExtAbtOnTranslTableWalkL1 111 0x16, // SynchExtAbtOnTranslTableWalkL2 112 0x17, // SynchExtAbtOnTranslTableWalkL3 113 0xff, // SynchPtyErrOnTranslTableWalkL0 (INVALID) 114 0x1d, // SynchPtyErrOnTranslTableWalkL1 115 0x1e, // SynchPtyErrOnTranslTableWalkL2 116 0x1f, // SynchPtyErrOnTranslTableWalkL3 117 0xff, // TranslationL0 (INVALID) 118 0x05, // TranslationL1 119 0x06, // TranslationL2 120 0x07, // TranslationL3 121 0xff, // AccessFlagL0 (INVALID) 122 0x09, // AccessFlagL1 123 0x0a, // AccessFlagL2 124 0x0b, // AccessFlagL3 125 0xff, // DomainL0 (INVALID) 126 0x3d, // DomainL1 127 0x3e, // DomainL2 128 0xff, // DomainL3 (RESERVED) 129 0xff, // PermissionL0 (INVALID) 130 0x0d, // PermissionL1 131 0x0e, // PermissionL2 132 0x0f, // PermissionL3 133 0x22, // DebugEvent 134 0x10, // SynchronousExternalAbort 135 0x30, // TLBConflictAbort 136 0x18, // SynchPtyErrOnMemoryAccess 137 0x11, // AsynchronousExternalAbort 138 0x19, // AsynchPtyErrOnMemoryAccess 139 0xff, // AddressSizeL0 (INVALID) 140 0xff, // AddressSizeL1 (INVALID) 141 0xff, // AddressSizeL2 (INVALID) 142 0xff, // AddressSizeL3 (INVALID) 143 0x40, // PrefetchTLBMiss 144 0x80 // PrefetchUncacheable 145}; 146 147static_assert(sizeof(ArmFault::longDescFaultSources) == 148 ArmFault::NumFaultSources, 149 "Invalid size of ArmFault::longDescFaultSources[]"); 150 151uint8_t ArmFault::aarch64FaultSources[] = { 152 0x21, // AlignmentFault 153 0xff, // InstructionCacheMaintenance (INVALID) 154 0x14, // SynchExtAbtOnTranslTableWalkL0 155 0x15, // SynchExtAbtOnTranslTableWalkL1 156 0x16, // SynchExtAbtOnTranslTableWalkL2 157 0x17, // SynchExtAbtOnTranslTableWalkL3 158 0x1c, // SynchPtyErrOnTranslTableWalkL0 159 0x1d, // SynchPtyErrOnTranslTableWalkL1 160 0x1e, // SynchPtyErrOnTranslTableWalkL2 161 0x1f, // SynchPtyErrOnTranslTableWalkL3 162 0x04, // TranslationL0 163 0x05, // TranslationL1 164 0x06, // TranslationL2 165 0x07, // TranslationL3 166 0x08, // AccessFlagL0 167 0x09, // AccessFlagL1 168 0x0a, // AccessFlagL2 169 0x0b, // AccessFlagL3 170 // @todo: Section & Page Domain Fault in AArch64? 171 0xff, // DomainL0 (INVALID) 172 0xff, // DomainL1 (INVALID) 173 0xff, // DomainL2 (INVALID) 174 0xff, // DomainL3 (INVALID) 175 0x0c, // PermissionL0 176 0x0d, // PermissionL1 177 0x0e, // PermissionL2 178 0x0f, // PermissionL3 179 0xff, // DebugEvent (INVALID) 180 0x10, // SynchronousExternalAbort 181 0x30, // TLBConflictAbort 182 0x18, // SynchPtyErrOnMemoryAccess 183 0xff, // AsynchronousExternalAbort (INVALID) 184 0xff, // AsynchPtyErrOnMemoryAccess (INVALID) 185 0x00, // AddressSizeL0 186 0x01, // AddressSizeL1 187 0x02, // AddressSizeL2 188 0x03, // AddressSizeL3 189 0x40, // PrefetchTLBMiss 190 0x80 // PrefetchUncacheable 191}; 192 193static_assert(sizeof(ArmFault::aarch64FaultSources) == 194 ArmFault::NumFaultSources, 195 "Invalid size of ArmFault::aarch64FaultSources[]"); 196 197// Fields: name, offset, cur{ELT,ELH}Offset, lowerEL{64,32}Offset, next mode, 198// {ARM, Thumb, ARM_ELR, Thumb_ELR} PC offset, hyp trap, 199// {A, F} disable, class, stat 200template<> ArmFault::FaultVals ArmFaultVals<Reset>::vals = { 201 // Some dummy values (the reset vector has an IMPLEMENTATION DEFINED 202 // location in AArch64) 203 "Reset", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 204 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 205}; 206template<> ArmFault::FaultVals ArmFaultVals<UndefinedInstruction>::vals = { 207 "Undefined Instruction", 0x004, 0x000, 0x200, 0x400, 0x600, MODE_UNDEFINED, 208 4, 2, 0, 0, true, false, false, EC_UNKNOWN, FaultStat() 209}; 210template<> ArmFault::FaultVals ArmFaultVals<SupervisorCall>::vals = { 211 "Supervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 212 4, 2, 4, 2, true, false, false, EC_SVC_TO_HYP, FaultStat() 213}; 214template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorCall>::vals = { 215 "Secure Monitor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_MON, 216 4, 4, 4, 4, false, true, true, EC_SMC_TO_HYP, FaultStat() 217}; 218template<> ArmFault::FaultVals ArmFaultVals<HypervisorCall>::vals = { 219 "Hypervisor Call", 0x008, 0x000, 0x200, 0x400, 0x600, MODE_HYP, 220 4, 4, 4, 4, true, false, false, EC_HVC, FaultStat() 221}; 222template<> ArmFault::FaultVals ArmFaultVals<PrefetchAbort>::vals = { 223 "Prefetch Abort", 0x00C, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 224 4, 4, 0, 0, true, true, false, EC_PREFETCH_ABORT_TO_HYP, FaultStat() 225}; 226template<> ArmFault::FaultVals ArmFaultVals<DataAbort>::vals = { 227 "Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 228 8, 8, 0, 0, true, true, false, EC_DATA_ABORT_TO_HYP, FaultStat() 229}; 230template<> ArmFault::FaultVals ArmFaultVals<VirtualDataAbort>::vals = { 231 "Virtual Data Abort", 0x010, 0x000, 0x200, 0x400, 0x600, MODE_ABORT, 232 8, 8, 0, 0, true, true, false, EC_INVALID, FaultStat() 233}; 234template<> ArmFault::FaultVals ArmFaultVals<HypervisorTrap>::vals = { 235 // @todo: double check these values 236 "Hypervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_HYP, 237 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 238}; 239template<> ArmFault::FaultVals ArmFaultVals<Interrupt>::vals = { 240 "IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ, 241 4, 4, 0, 0, false, true, false, EC_UNKNOWN, FaultStat() 242}; 243template<> ArmFault::FaultVals ArmFaultVals<VirtualInterrupt>::vals = { 244 "Virtual IRQ", 0x018, 0x080, 0x280, 0x480, 0x680, MODE_IRQ, 245 4, 4, 0, 0, false, true, false, EC_INVALID, FaultStat() 246}; 247template<> ArmFault::FaultVals ArmFaultVals<FastInterrupt>::vals = { 248 "FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ, 249 4, 4, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 250}; 251template<> ArmFault::FaultVals ArmFaultVals<VirtualFastInterrupt>::vals = { 252 "Virtual FIQ", 0x01C, 0x100, 0x300, 0x500, 0x700, MODE_FIQ, 253 4, 4, 0, 0, false, true, true, EC_INVALID, FaultStat() 254}; 255template<> ArmFault::FaultVals ArmFaultVals<SupervisorTrap>::vals = { 256 // Some dummy values (SupervisorTrap is AArch64-only) 257 "Supervisor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 258 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 259}; 260template<> ArmFault::FaultVals ArmFaultVals<SecureMonitorTrap>::vals = { 261 // Some dummy values (SecureMonitorTrap is AArch64-only) 262 "Secure Monitor Trap", 0x014, 0x000, 0x200, 0x400, 0x600, MODE_MON, 263 0, 0, 0, 0, false, false, false, EC_UNKNOWN, FaultStat() 264}; 265template<> ArmFault::FaultVals ArmFaultVals<PCAlignmentFault>::vals = { 266 // Some dummy values (PCAlignmentFault is AArch64-only) 267 "PC Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 268 0, 0, 0, 0, true, false, false, EC_PC_ALIGNMENT, FaultStat() 269}; 270template<> ArmFault::FaultVals ArmFaultVals<SPAlignmentFault>::vals = { 271 // Some dummy values (SPAlignmentFault is AArch64-only) 272 "SP Alignment Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 273 0, 0, 0, 0, true, false, false, EC_STACK_PTR_ALIGNMENT, FaultStat() 274}; 275template<> ArmFault::FaultVals ArmFaultVals<SystemError>::vals = { 276 // Some dummy values (SError is AArch64-only) 277 "SError", 0x000, 0x180, 0x380, 0x580, 0x780, MODE_SVC, 278 0, 0, 0, 0, false, true, true, EC_SERROR, FaultStat() 279}; 280template<> ArmFault::FaultVals ArmFaultVals<FlushPipe>::vals = { 281 // Some dummy values 282 "Pipe Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 283 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 284}; 285template<> ArmFault::FaultVals ArmFaultVals<ArmSev>::vals = { 286 // Some dummy values 287 "ArmSev Flush", 0x000, 0x000, 0x000, 0x000, 0x000, MODE_SVC, 288 0, 0, 0, 0, false, true, true, EC_UNKNOWN, FaultStat() 289}; 290template<> ArmFault::FaultVals ArmFaultVals<IllegalInstSetStateFault>::vals = { 291 // Some dummy values (SPAlignmentFault is AArch64-only) 292 "Illegal Inst Set State Fault", 0x000, 0x000, 0x200, 0x400, 0x600, MODE_SVC, 293 0, 0, 0, 0, true, false, false, EC_ILLEGAL_INST, FaultStat() 294}; 295 296Addr 297ArmFault::getVector(ThreadContext *tc) 298{ 299 Addr base; 300 301 // ARM ARM issue C B1.8.1 302 bool haveSecurity = ArmSystem::haveSecurity(tc); 303 304 // panic if SCTLR.VE because I have no idea what to do with vectored 305 // interrupts 306 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR); 307 assert(!sctlr.ve); 308 // Check for invalid modes 309 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 310 assert(haveSecurity || cpsr.mode != MODE_MON); 311 assert(ArmSystem::haveVirtualization(tc) || cpsr.mode != MODE_HYP); 312 313 switch (cpsr.mode) 314 { 315 case MODE_MON: 316 base = tc->readMiscReg(MISCREG_MVBAR); 317 break; 318 case MODE_HYP: 319 base = tc->readMiscReg(MISCREG_HVBAR); 320 break; 321 default: 322 if (sctlr.v) { 323 base = HighVecs; 324 } else { 325 base = haveSecurity ? tc->readMiscReg(MISCREG_VBAR) : 0; 326 } 327 break; 328 } 329 return base + offset(tc); 330} 331 332Addr 333ArmFault::getVector64(ThreadContext *tc) 334{ 335 Addr vbar; 336 switch (toEL) { 337 case EL3: 338 assert(ArmSystem::haveSecurity(tc)); 339 vbar = tc->readMiscReg(MISCREG_VBAR_EL3); 340 break; 341 case EL2: 342 assert(ArmSystem::haveVirtualization(tc)); 343 vbar = tc->readMiscReg(MISCREG_VBAR_EL2); 344 break; 345 case EL1: 346 vbar = tc->readMiscReg(MISCREG_VBAR_EL1); 347 break; 348 default: 349 panic("Invalid target exception level"); 350 break; 351 } 352 return vbar + offset64(); 353} 354 355MiscRegIndex 356ArmFault::getSyndromeReg64() const 357{ 358 switch (toEL) { 359 case EL1: 360 return MISCREG_ESR_EL1; 361 case EL2: 362 return MISCREG_ESR_EL2; 363 case EL3: 364 return MISCREG_ESR_EL3; 365 default: 366 panic("Invalid exception level"); 367 break; 368 } 369} 370 371MiscRegIndex 372ArmFault::getFaultAddrReg64() const 373{ 374 switch (toEL) { 375 case EL1: 376 return MISCREG_FAR_EL1; 377 case EL2: 378 return MISCREG_FAR_EL2; 379 case EL3: 380 return MISCREG_FAR_EL3; 381 default: 382 panic("Invalid exception level"); 383 break; 384 } 385} 386 387void 388ArmFault::setSyndrome(ThreadContext *tc, MiscRegIndex syndrome_reg) 389{ 390 uint32_t value; 391 uint32_t exc_class = (uint32_t) ec(tc); 392 uint32_t issVal = iss(); 393 assert(!from64 || ArmSystem::highestELIs64(tc)); 394 395 value = exc_class << 26; 396 397 // HSR.IL not valid for Prefetch Aborts (0x20, 0x21) and Data Aborts (0x24, 398 // 0x25) for which the ISS information is not valid (ARMv7). 399 // @todo: ARMv8 revises AArch32 functionality: when HSR.IL is not 400 // valid it is treated as RES1. 401 if (to64) { 402 value |= 1 << 25; 403 } else if ((bits(exc_class, 5, 3) != 4) || 404 (bits(exc_class, 2) && bits(issVal, 24))) { 405 if (!machInst.thumb || machInst.bigThumb) 406 value |= 1 << 25; 407 } 408 // Condition code valid for EC[5:4] nonzero 409 if (!from64 && ((bits(exc_class, 5, 4) == 0) && 410 (bits(exc_class, 3, 0) != 0))) { 411 if (!machInst.thumb) { 412 uint32_t cond; 413 ConditionCode condCode = (ConditionCode) (uint32_t) machInst.condCode; 414 // If its on unconditional instruction report with a cond code of 415 // 0xE, ie the unconditional code 416 cond = (condCode == COND_UC) ? COND_AL : condCode; 417 value |= cond << 20; 418 value |= 1 << 24; 419 } 420 value |= bits(issVal, 19, 0); 421 } else { 422 value |= issVal; 423 } 424 tc->setMiscReg(syndrome_reg, value); 425} 426 427void 428ArmFault::invoke(ThreadContext *tc, const StaticInstPtr &inst) 429{ 430 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 431 432 if (ArmSystem::highestELIs64(tc)) { // ARMv8 433 // Determine source exception level and mode 434 fromMode = (OperatingMode) (uint8_t) cpsr.mode; 435 fromEL = opModeToEL(fromMode); 436 if (opModeIs64(fromMode)) 437 from64 = true; 438 439 // Determine target exception level 440 if (ArmSystem::haveSecurity(tc) && routeToMonitor(tc)) 441 toEL = EL3; 442 else if (ArmSystem::haveVirtualization(tc) && routeToHyp(tc)) 443 toEL = EL2; 444 else 445 toEL = opModeToEL(nextMode()); 446 if (fromEL > toEL) 447 toEL = fromEL; 448 449 if (toEL == ArmSystem::highestEL(tc) || ELIs64(tc, toEL)) { 450 // Invoke exception handler in AArch64 state 451 to64 = true; 452 invoke64(tc, inst); 453 return; 454 } 455 } 456 457 // ARMv7 (ARM ARM issue C B1.9) 458 459 bool have_security = ArmSystem::haveSecurity(tc); 460 bool have_virtualization = ArmSystem::haveVirtualization(tc); 461 462 FaultBase::invoke(tc); 463 if (!FullSystem) 464 return; 465 countStat()++; 466 467 SCTLR sctlr = tc->readMiscReg(MISCREG_SCTLR); 468 SCR scr = tc->readMiscReg(MISCREG_SCR); 469 CPSR saved_cpsr = tc->readMiscReg(MISCREG_CPSR); 470 saved_cpsr.nz = tc->readCCReg(CCREG_NZ); 471 saved_cpsr.c = tc->readCCReg(CCREG_C); 472 saved_cpsr.v = tc->readCCReg(CCREG_V); 473 saved_cpsr.ge = tc->readCCReg(CCREG_GE); 474 475 Addr curPc M5_VAR_USED = tc->pcState().pc(); 476 ITSTATE it = tc->pcState().itstate(); 477 saved_cpsr.it2 = it.top6; 478 saved_cpsr.it1 = it.bottom2; 479 480 // if we have a valid instruction then use it to annotate this fault with 481 // extra information. This is used to generate the correct fault syndrome 482 // information 483 if (inst) { 484 ArmStaticInst *armInst = reinterpret_cast<ArmStaticInst *>(inst.get()); 485 armInst->annotateFault(this); 486 } 487 488 if (have_security && routeToMonitor(tc)) 489 cpsr.mode = MODE_MON; 490 else if (have_virtualization && routeToHyp(tc)) 491 cpsr.mode = MODE_HYP; 492 else 493 cpsr.mode = nextMode(); 494 495 // Ensure Secure state if initially in Monitor mode 496 if (have_security && saved_cpsr.mode == MODE_MON) { 497 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 498 if (scr.ns) { 499 scr.ns = 0; 500 tc->setMiscRegNoEffect(MISCREG_SCR, scr); 501 } 502 } 503 504 // some bits are set differently if we have been routed to hyp mode 505 if (cpsr.mode == MODE_HYP) { 506 SCTLR hsctlr = tc->readMiscReg(MISCREG_HSCTLR); 507 cpsr.t = hsctlr.te; 508 cpsr.e = hsctlr.ee; 509 if (!scr.ea) {cpsr.a = 1;} 510 if (!scr.fiq) {cpsr.f = 1;} 511 if (!scr.irq) {cpsr.i = 1;} 512 } else if (cpsr.mode == MODE_MON) { 513 // Special case handling when entering monitor mode 514 cpsr.t = sctlr.te; 515 cpsr.e = sctlr.ee; 516 cpsr.a = 1; 517 cpsr.f = 1; 518 cpsr.i = 1; 519 } else { 520 cpsr.t = sctlr.te; 521 cpsr.e = sctlr.ee; 522 523 // The *Disable functions are virtual and different per fault 524 cpsr.a = cpsr.a | abortDisable(tc); 525 cpsr.f = cpsr.f | fiqDisable(tc); 526 cpsr.i = 1; 527 } 528 cpsr.it1 = cpsr.it2 = 0; 529 cpsr.j = 0; 530 tc->setMiscReg(MISCREG_CPSR, cpsr); 531 532 // Make sure mailbox sets to one always 533 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1); 534 535 // Clear the exclusive monitor 536 tc->setMiscReg(MISCREG_LOCKFLAG, 0); 537 538 if (cpsr.mode == MODE_HYP) { 539 tc->setMiscReg(MISCREG_ELR_HYP, curPc + 540 (saved_cpsr.t ? thumbPcOffset(true) : armPcOffset(true))); 541 } else { 542 tc->setIntReg(INTREG_LR, curPc + 543 (saved_cpsr.t ? thumbPcOffset(false) : armPcOffset(false))); 544 } 545 546 switch (cpsr.mode) { 547 case MODE_FIQ: 548 tc->setMiscReg(MISCREG_SPSR_FIQ, saved_cpsr); 549 break; 550 case MODE_IRQ: 551 tc->setMiscReg(MISCREG_SPSR_IRQ, saved_cpsr); 552 break; 553 case MODE_SVC: 554 tc->setMiscReg(MISCREG_SPSR_SVC, saved_cpsr); 555 break; 556 case MODE_MON: 557 assert(have_security); 558 tc->setMiscReg(MISCREG_SPSR_MON, saved_cpsr); 559 break; 560 case MODE_ABORT: 561 tc->setMiscReg(MISCREG_SPSR_ABT, saved_cpsr); 562 break; 563 case MODE_UNDEFINED: 564 tc->setMiscReg(MISCREG_SPSR_UND, saved_cpsr); 565 if (ec(tc) != EC_UNKNOWN) 566 setSyndrome(tc, MISCREG_HSR); 567 break; 568 case MODE_HYP: 569 assert(have_virtualization); 570 tc->setMiscReg(MISCREG_SPSR_HYP, saved_cpsr); 571 setSyndrome(tc, MISCREG_HSR); 572 break; 573 default: 574 panic("unknown Mode\n"); 575 } 576 577 Addr newPc = getVector(tc); 578 DPRINTF(Faults, "Invoking Fault:%s cpsr:%#x PC:%#x lr:%#x newVec: %#x\n", 579 name(), cpsr, curPc, tc->readIntReg(INTREG_LR), newPc); 580 PCState pc(newPc); 581 pc.thumb(cpsr.t); 582 pc.nextThumb(pc.thumb()); 583 pc.jazelle(cpsr.j); 584 pc.nextJazelle(pc.jazelle()); 585 pc.aarch64(!cpsr.width); 586 pc.nextAArch64(!cpsr.width); 587 tc->pcState(pc); 588} 589 590void 591ArmFault::invoke64(ThreadContext *tc, const StaticInstPtr &inst) 592{ 593 // Determine actual misc. register indices for ELR_ELx and SPSR_ELx 594 MiscRegIndex elr_idx, spsr_idx; 595 switch (toEL) { 596 case EL1: 597 elr_idx = MISCREG_ELR_EL1; 598 spsr_idx = MISCREG_SPSR_EL1; 599 break; 600 case EL2: 601 assert(ArmSystem::haveVirtualization(tc)); 602 elr_idx = MISCREG_ELR_EL2; 603 spsr_idx = MISCREG_SPSR_EL2; 604 break; 605 case EL3: 606 assert(ArmSystem::haveSecurity(tc)); 607 elr_idx = MISCREG_ELR_EL3; 608 spsr_idx = MISCREG_SPSR_EL3; 609 break; 610 default: 611 panic("Invalid target exception level"); 612 break; 613 } 614 615 // Save process state into SPSR_ELx 616 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 617 CPSR spsr = cpsr; 618 spsr.nz = tc->readCCReg(CCREG_NZ); 619 spsr.c = tc->readCCReg(CCREG_C); 620 spsr.v = tc->readCCReg(CCREG_V); 621 if (from64) { 622 // Force some bitfields to 0 623 spsr.q = 0; 624 spsr.it1 = 0; 625 spsr.j = 0; 626 spsr.res0_23_22 = 0; 627 spsr.ge = 0; 628 spsr.it2 = 0; 629 spsr.t = 0; 630 } else { 631 spsr.ge = tc->readCCReg(CCREG_GE); 632 ITSTATE it = tc->pcState().itstate(); 633 spsr.it2 = it.top6; 634 spsr.it1 = it.bottom2; 635 // Force some bitfields to 0 636 spsr.res0_23_22 = 0; 637 spsr.ss = 0; 638 } 639 tc->setMiscReg(spsr_idx, spsr); 640 641 // Save preferred return address into ELR_ELx 642 Addr curr_pc = tc->pcState().pc(); 643 Addr ret_addr = curr_pc; 644 if (from64) 645 ret_addr += armPcElrOffset(); 646 else 647 ret_addr += spsr.t ? thumbPcElrOffset() : armPcElrOffset(); 648 tc->setMiscReg(elr_idx, ret_addr); 649 650 // Update process state 651 OperatingMode64 mode = 0; 652 mode.spX = 1; 653 mode.el = toEL; 654 mode.width = 0; 655 cpsr.mode = mode; 656 cpsr.daif = 0xf; 657 cpsr.il = 0; 658 cpsr.ss = 0; 659 tc->setMiscReg(MISCREG_CPSR, cpsr); 660 661 // Set PC to start of exception handler 662 Addr new_pc = purifyTaggedAddr(getVector64(tc), tc, toEL); 663 DPRINTF(Faults, "Invoking Fault (AArch64 target EL):%s cpsr:%#x PC:%#x " 664 "elr:%#x newVec: %#x\n", name(), cpsr, curr_pc, ret_addr, new_pc); 665 PCState pc(new_pc); 666 pc.aarch64(!cpsr.width); 667 pc.nextAArch64(!cpsr.width); 668 tc->pcState(pc); 669 670 // If we have a valid instruction then use it to annotate this fault with 671 // extra information. This is used to generate the correct fault syndrome 672 // information 673 if (inst) 674 reinterpret_cast<ArmStaticInst *>(inst.get())->annotateFault(this); 675 // Save exception syndrome 676 if ((nextMode() != MODE_IRQ) && (nextMode() != MODE_FIQ)) 677 setSyndrome(tc, getSyndromeReg64()); 678} 679 680void 681Reset::invoke(ThreadContext *tc, const StaticInstPtr &inst) 682{ 683 if (FullSystem) { 684 tc->getCpuPtr()->clearInterrupts(tc->threadId()); 685 tc->clearArchRegs(); 686 } 687 if (!ArmSystem::highestELIs64(tc)) { 688 ArmFault::invoke(tc, inst); 689 tc->setMiscReg(MISCREG_VMPIDR, 690 getMPIDR(dynamic_cast<ArmSystem*>(tc->getSystemPtr()), tc)); 691 692 // Unless we have SMC code to get us there, boot in HYP! 693 if (ArmSystem::haveVirtualization(tc) && 694 !ArmSystem::haveSecurity(tc)) { 695 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 696 cpsr.mode = MODE_HYP; 697 tc->setMiscReg(MISCREG_CPSR, cpsr); 698 } 699 } else { 700 // Advance the PC to the IMPLEMENTATION DEFINED reset value 701 PCState pc = ArmSystem::resetAddr64(tc); 702 pc.aarch64(true); 703 pc.nextAArch64(true); 704 tc->pcState(pc); 705 } 706} 707 708void 709UndefinedInstruction::invoke(ThreadContext *tc, const StaticInstPtr &inst) 710{ 711 if (FullSystem) { 712 ArmFault::invoke(tc, inst); 713 return; 714 } 715 716 // If the mnemonic isn't defined this has to be an unknown instruction. 717 assert(unknown || mnemonic != NULL); 718 if (disabled) { 719 panic("Attempted to execute disabled instruction " 720 "'%s' (inst 0x%08x)", mnemonic, machInst); 721 } else if (unknown) { 722 panic("Attempted to execute unknown instruction (inst 0x%08x)", 723 machInst); 724 } else { 725 panic("Attempted to execute unimplemented instruction " 726 "'%s' (inst 0x%08x)", mnemonic, machInst); 727 } 728} 729 730bool 731UndefinedInstruction::routeToHyp(ThreadContext *tc) const 732{ 733 bool toHyp; 734 735 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 736 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 737 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 738 739 // if in Hyp mode then stay in Hyp mode 740 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 741 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector 742 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER); 743 return toHyp; 744} 745 746uint32_t 747UndefinedInstruction::iss() const 748{ 749 if (overrideEc == EC_INVALID) 750 return issRaw; 751 752 uint32_t new_iss = 0; 753 uint32_t op0, op1, op2, CRn, CRm, Rt, dir; 754 755 dir = bits(machInst, 21, 21); 756 op0 = bits(machInst, 20, 19); 757 op1 = bits(machInst, 18, 16); 758 CRn = bits(machInst, 15, 12); 759 CRm = bits(machInst, 11, 8); 760 op2 = bits(machInst, 7, 5); 761 Rt = bits(machInst, 4, 0); 762 763 new_iss = op0 << 20 | op2 << 17 | op1 << 14 | CRn << 10 | 764 Rt << 5 | CRm << 1 | dir; 765 766 return new_iss; 767} 768 769void 770SupervisorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst) 771{ 772 if (FullSystem) { 773 ArmFault::invoke(tc, inst); 774 return; 775 } 776 777 // As of now, there isn't a 32 bit thumb version of this instruction. 778 assert(!machInst.bigThumb); 779 uint32_t callNum; 780 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 781 OperatingMode mode = (OperatingMode)(uint8_t)cpsr.mode; 782 if (opModeIs64(mode)) 783 callNum = tc->readIntReg(INTREG_X8); 784 else 785 callNum = tc->readIntReg(INTREG_R7); 786 tc->syscall(callNum); 787 788 // Advance the PC since that won't happen automatically. 789 PCState pc = tc->pcState(); 790 assert(inst); 791 inst->advancePC(pc); 792 tc->pcState(pc); 793} 794 795bool 796SupervisorCall::routeToHyp(ThreadContext *tc) const 797{ 798 bool toHyp; 799 800 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 801 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 802 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 803 804 // if in Hyp mode then stay in Hyp mode 805 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 806 // if HCR.TGE is set to 1, take to Hyp mode through Hyp Trap vector 807 toHyp |= !inSecureState(scr, cpsr) && hcr.tge && (cpsr.mode == MODE_USER); 808 return toHyp; 809} 810 811ExceptionClass 812SupervisorCall::ec(ThreadContext *tc) const 813{ 814 return (overrideEc != EC_INVALID) ? overrideEc : 815 (from64 ? EC_SVC_64 : vals.ec); 816} 817 818uint32_t 819SupervisorCall::iss() const 820{ 821 // Even if we have a 24 bit imm from an arm32 instruction then we only use 822 // the bottom 16 bits for the ISS value (it doesn't hurt for AArch64 SVC). 823 return issRaw & 0xFFFF; 824} 825 826uint32_t 827SecureMonitorCall::iss() const 828{ 829 if (from64) 830 return bits(machInst, 20, 5); 831 return 0; 832} 833 834ExceptionClass 835UndefinedInstruction::ec(ThreadContext *tc) const 836{ 837 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 838} 839 840 841HypervisorCall::HypervisorCall(ExtMachInst _machInst, uint32_t _imm) : 842 ArmFaultVals<HypervisorCall>(_machInst, _imm) 843{} 844 845ExceptionClass 846HypervisorCall::ec(ThreadContext *tc) const 847{ 848 return from64 ? EC_HVC_64 : vals.ec; 849} 850 851ExceptionClass 852HypervisorTrap::ec(ThreadContext *tc) const 853{ 854 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 855} 856 857template<class T> 858FaultOffset 859ArmFaultVals<T>::offset(ThreadContext *tc) 860{ 861 bool isHypTrap = false; 862 863 // Normally we just use the exception vector from the table at the top if 864 // this file, however if this exception has caused a transition to hype 865 // mode, and its an exception type that would only do this if it has been 866 // trapped then we use the hyp trap vector instead of the normal vector 867 if (vals.hypTrappable) { 868 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 869 if (cpsr.mode == MODE_HYP) { 870 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 871 isHypTrap = spsr.mode != MODE_HYP; 872 } 873 } 874 return isHypTrap ? 0x14 : vals.offset; 875} 876 877// void 878// SupervisorCall::setSyndrome64(ThreadContext *tc, MiscRegIndex esr_idx) 879// { 880// ESR esr = 0; 881// esr.ec = machInst.aarch64 ? SvcAArch64 : SvcAArch32; 882// esr.il = !machInst.thumb; 883// if (machInst.aarch64) 884// esr.imm16 = bits(machInst.instBits, 20, 5); 885// else if (machInst.thumb) 886// esr.imm16 = bits(machInst.instBits, 7, 0); 887// else 888// esr.imm16 = bits(machInst.instBits, 15, 0); 889// tc->setMiscReg(esr_idx, esr); 890// } 891 892void 893SecureMonitorCall::invoke(ThreadContext *tc, const StaticInstPtr &inst) 894{ 895 if (FullSystem) { 896 ArmFault::invoke(tc, inst); 897 return; 898 } 899} 900 901ExceptionClass 902SecureMonitorCall::ec(ThreadContext *tc) const 903{ 904 return (from64 ? EC_SMC_64 : vals.ec); 905} 906 907ExceptionClass 908SupervisorTrap::ec(ThreadContext *tc) const 909{ 910 return (overrideEc != EC_INVALID) ? overrideEc : vals.ec; 911} 912 913ExceptionClass 914SecureMonitorTrap::ec(ThreadContext *tc) const 915{ 916 return (overrideEc != EC_INVALID) ? overrideEc : 917 (from64 ? EC_SMC_64 : vals.ec); 918} 919 920template<class T> 921void 922AbortFault<T>::invoke(ThreadContext *tc, const StaticInstPtr &inst) 923{ 924 if (tranMethod == ArmFault::UnknownTran) { 925 tranMethod = longDescFormatInUse(tc) ? ArmFault::LpaeTran 926 : ArmFault::VmsaTran; 927 928 if ((tranMethod == ArmFault::VmsaTran) && this->routeToMonitor(tc)) { 929 // See ARM ARM B3-1416 930 bool override_LPAE = false; 931 TTBCR ttbcr_s = tc->readMiscReg(MISCREG_TTBCR_S); 932 TTBCR M5_VAR_USED ttbcr_ns = tc->readMiscReg(MISCREG_TTBCR_NS); 933 if (ttbcr_s.eae) { 934 override_LPAE = true; 935 } else { 936 // Unimplemented code option, not seen in testing. May need 937 // extension according to the manual exceprt above. 938 DPRINTF(Faults, "Warning: Incomplete translation method " 939 "override detected.\n"); 940 } 941 if (override_LPAE) 942 tranMethod = ArmFault::LpaeTran; 943 } 944 } 945 946 if (source == ArmFault::AsynchronousExternalAbort) { 947 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0); 948 } 949 // Get effective fault source encoding 950 CPSR cpsr = tc->readMiscReg(MISCREG_CPSR); 951 FSR fsr = getFsr(tc); 952 953 // source must be determined BEFORE invoking generic routines which will 954 // try to set hsr etc. and are based upon source! 955 ArmFaultVals<T>::invoke(tc, inst); 956 957 if (!this->to64) { // AArch32 958 if (cpsr.mode == MODE_HYP) { 959 tc->setMiscReg(T::HFarIndex, faultAddr); 960 } else if (stage2) { 961 tc->setMiscReg(MISCREG_HPFAR, (faultAddr >> 8) & ~0xf); 962 tc->setMiscReg(T::HFarIndex, OVAddr); 963 } else { 964 tc->setMiscReg(T::FsrIndex, fsr); 965 tc->setMiscReg(T::FarIndex, faultAddr); 966 } 967 DPRINTF(Faults, "Abort Fault source=%#x fsr=%#x faultAddr=%#x "\ 968 "tranMethod=%#x\n", source, fsr, faultAddr, tranMethod); 969 } else { // AArch64 970 // Set the FAR register. Nothing else to do if we are in AArch64 state 971 // because the syndrome register has already been set inside invoke64() 972 tc->setMiscReg(AbortFault<T>::getFaultAddrReg64(), faultAddr); 973 } 974} 975 976template<class T> 977FSR 978AbortFault<T>::getFsr(ThreadContext *tc) 979{ 980 FSR fsr = 0; 981 982 if (((CPSR) tc->readMiscRegNoEffect(MISCREG_CPSR)).width) { 983 // AArch32 984 assert(tranMethod != ArmFault::UnknownTran); 985 if (tranMethod == ArmFault::LpaeTran) { 986 srcEncoded = ArmFault::longDescFaultSources[source]; 987 fsr.status = srcEncoded; 988 fsr.lpae = 1; 989 } else { 990 srcEncoded = ArmFault::shortDescFaultSources[source]; 991 fsr.fsLow = bits(srcEncoded, 3, 0); 992 fsr.fsHigh = bits(srcEncoded, 4); 993 fsr.domain = static_cast<uint8_t>(domain); 994 } 995 fsr.wnr = (write ? 1 : 0); 996 fsr.ext = 0; 997 } else { 998 // AArch64 999 srcEncoded = ArmFault::aarch64FaultSources[source]; 1000 } 1001 if (srcEncoded == ArmFault::FaultSourceInvalid) { 1002 panic("Invalid fault source\n"); 1003 } 1004 return fsr; 1005} 1006 1007template<class T> 1008bool 1009AbortFault<T>::abortDisable(ThreadContext *tc) 1010{ 1011 if (ArmSystem::haveSecurity(tc)) { 1012 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1013 return (!scr.ns || scr.aw); 1014 } 1015 return true; 1016} 1017 1018template<class T> 1019void 1020AbortFault<T>::annotate(ArmFault::AnnotationIDs id, uint64_t val) 1021{ 1022 switch (id) 1023 { 1024 case ArmFault::S1PTW: 1025 s1ptw = val; 1026 break; 1027 case ArmFault::OVA: 1028 OVAddr = val; 1029 break; 1030 1031 // Just ignore unknown ID's 1032 default: 1033 break; 1034 } 1035} 1036 1037template<class T> 1038uint32_t 1039AbortFault<T>::iss() const 1040{ 1041 uint32_t val; 1042 1043 val = srcEncoded & 0x3F; 1044 val |= write << 6; 1045 val |= s1ptw << 7; 1046 return (val); 1047} 1048 1049template<class T> 1050bool 1051AbortFault<T>::isMMUFault() const 1052{ 1053 // NOTE: Not relying on LL information being aligned to lowest bits here 1054 return 1055 (source == ArmFault::AlignmentFault) || 1056 ((source >= ArmFault::TranslationLL) && 1057 (source < ArmFault::TranslationLL + 4)) || 1058 ((source >= ArmFault::AccessFlagLL) && 1059 (source < ArmFault::AccessFlagLL + 4)) || 1060 ((source >= ArmFault::DomainLL) && 1061 (source < ArmFault::DomainLL + 4)) || 1062 ((source >= ArmFault::PermissionLL) && 1063 (source < ArmFault::PermissionLL + 4)); 1064} 1065 1066ExceptionClass 1067PrefetchAbort::ec(ThreadContext *tc) const 1068{ 1069 if (to64) { 1070 // AArch64 1071 if (toEL == fromEL) 1072 return EC_PREFETCH_ABORT_CURR_EL; 1073 else 1074 return EC_PREFETCH_ABORT_LOWER_EL; 1075 } else { 1076 // AArch32 1077 // Abort faults have different EC codes depending on whether 1078 // the fault originated within HYP mode, or not. So override 1079 // the method and add the extra adjustment of the EC value. 1080 1081 ExceptionClass ec = ArmFaultVals<PrefetchAbort>::vals.ec; 1082 1083 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 1084 if (spsr.mode == MODE_HYP) { 1085 ec = ((ExceptionClass) (((uint32_t) ec) + 1)); 1086 } 1087 return ec; 1088 } 1089} 1090 1091bool 1092PrefetchAbort::routeToMonitor(ThreadContext *tc) const 1093{ 1094 SCR scr = 0; 1095 if (from64) 1096 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1097 else 1098 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1099 1100 return scr.ea && !isMMUFault(); 1101} 1102 1103bool 1104PrefetchAbort::routeToHyp(ThreadContext *tc) const 1105{ 1106 bool toHyp; 1107 1108 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1109 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1110 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1111 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR); 1112 1113 // if in Hyp mode then stay in Hyp mode 1114 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 1115 // otherwise, check whether to take to Hyp mode through Hyp Trap vector 1116 toHyp |= (stage2 || 1117 ( (source == DebugEvent) && hdcr.tde && (cpsr.mode != MODE_HYP)) || 1118 ( (source == SynchronousExternalAbort) && hcr.tge && (cpsr.mode == MODE_USER)) 1119 ) && !inSecureState(scr, cpsr); 1120 return toHyp; 1121} 1122 1123ExceptionClass 1124DataAbort::ec(ThreadContext *tc) const 1125{ 1126 if (to64) { 1127 // AArch64 1128 if (source == ArmFault::AsynchronousExternalAbort) { 1129 panic("Asynchronous External Abort should be handled with " 1130 "SystemErrors (SErrors)!"); 1131 } 1132 if (toEL == fromEL) 1133 return EC_DATA_ABORT_CURR_EL; 1134 else 1135 return EC_DATA_ABORT_LOWER_EL; 1136 } else { 1137 // AArch32 1138 // Abort faults have different EC codes depending on whether 1139 // the fault originated within HYP mode, or not. So override 1140 // the method and add the extra adjustment of the EC value. 1141 1142 ExceptionClass ec = ArmFaultVals<DataAbort>::vals.ec; 1143 1144 CPSR spsr = tc->readMiscReg(MISCREG_SPSR_HYP); 1145 if (spsr.mode == MODE_HYP) { 1146 ec = ((ExceptionClass) (((uint32_t) ec) + 1)); 1147 } 1148 return ec; 1149 } 1150} 1151 1152bool 1153DataAbort::routeToMonitor(ThreadContext *tc) const 1154{ 1155 SCR scr = 0; 1156 if (from64) 1157 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1158 else 1159 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1160 1161 return scr.ea && !isMMUFault(); 1162} 1163 1164bool 1165DataAbort::routeToHyp(ThreadContext *tc) const 1166{ 1167 bool toHyp; 1168 1169 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1170 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1171 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1172 HDCR hdcr = tc->readMiscRegNoEffect(MISCREG_HDCR); 1173 1174 // if in Hyp mode then stay in Hyp mode 1175 toHyp = scr.ns && (cpsr.mode == MODE_HYP); 1176 // otherwise, check whether to take to Hyp mode through Hyp Trap vector 1177 toHyp |= (stage2 || 1178 ( (cpsr.mode != MODE_HYP) && ( ((source == AsynchronousExternalAbort) && hcr.amo) || 1179 ((source == DebugEvent) && hdcr.tde) ) 1180 ) || 1181 ( (cpsr.mode == MODE_USER) && hcr.tge && 1182 ((source == AlignmentFault) || 1183 (source == SynchronousExternalAbort)) 1184 ) 1185 ) && !inSecureState(scr, cpsr); 1186 return toHyp; 1187} 1188 1189uint32_t 1190DataAbort::iss() const 1191{ 1192 uint32_t val; 1193 1194 // Add on the data abort specific fields to the generic abort ISS value 1195 val = AbortFault<DataAbort>::iss(); 1196 // ISS is valid if not caused by a stage 1 page table walk, and when taken 1197 // to AArch64 only when directed to EL2 1198 if (!s1ptw && (!to64 || toEL == EL2)) { 1199 val |= isv << 24; 1200 if (isv) { 1201 val |= sas << 22; 1202 val |= sse << 21; 1203 val |= srt << 16; 1204 // AArch64 only. These assignments are safe on AArch32 as well 1205 // because these vars are initialized to false 1206 val |= sf << 15; 1207 val |= ar << 14; 1208 } 1209 } 1210 return (val); 1211} 1212 1213void 1214DataAbort::annotate(AnnotationIDs id, uint64_t val) 1215{ 1216 AbortFault<DataAbort>::annotate(id, val); 1217 switch (id) 1218 { 1219 case SAS: 1220 isv = true; 1221 sas = val; 1222 break; 1223 case SSE: 1224 isv = true; 1225 sse = val; 1226 break; 1227 case SRT: 1228 isv = true; 1229 srt = val; 1230 break; 1231 case SF: 1232 isv = true; 1233 sf = val; 1234 break; 1235 case AR: 1236 isv = true; 1237 ar = val; 1238 break; 1239 // Just ignore unknown ID's 1240 default: 1241 break; 1242 } 1243} 1244 1245void 1246VirtualDataAbort::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1247{ 1248 AbortFault<VirtualDataAbort>::invoke(tc, inst); 1249 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1250 hcr.va = 0; 1251 tc->setMiscRegNoEffect(MISCREG_HCR, hcr); 1252} 1253 1254bool 1255Interrupt::routeToMonitor(ThreadContext *tc) const 1256{ 1257 assert(ArmSystem::haveSecurity(tc)); 1258 SCR scr = 0; 1259 if (from64) 1260 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1261 else 1262 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1263 return scr.irq; 1264} 1265 1266bool 1267Interrupt::routeToHyp(ThreadContext *tc) const 1268{ 1269 bool toHyp; 1270 1271 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1272 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1273 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1274 // Determine whether IRQs are routed to Hyp mode. 1275 toHyp = (!scr.irq && hcr.imo && !inSecureState(scr, cpsr)) || 1276 (cpsr.mode == MODE_HYP); 1277 return toHyp; 1278} 1279 1280bool 1281Interrupt::abortDisable(ThreadContext *tc) 1282{ 1283 if (ArmSystem::haveSecurity(tc)) { 1284 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1285 return (!scr.ns || scr.aw); 1286 } 1287 return true; 1288} 1289 1290VirtualInterrupt::VirtualInterrupt() 1291{} 1292 1293bool 1294FastInterrupt::routeToMonitor(ThreadContext *tc) const 1295{ 1296 assert(ArmSystem::haveSecurity(tc)); 1297 SCR scr = 0; 1298 if (from64) 1299 scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1300 else 1301 scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1302 return scr.fiq; 1303} 1304 1305bool 1306FastInterrupt::routeToHyp(ThreadContext *tc) const 1307{ 1308 bool toHyp; 1309 1310 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1311 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1312 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1313 // Determine whether IRQs are routed to Hyp mode. 1314 toHyp = (!scr.fiq && hcr.fmo && !inSecureState(scr, cpsr)) || 1315 (cpsr.mode == MODE_HYP); 1316 return toHyp; 1317} 1318 1319bool 1320FastInterrupt::abortDisable(ThreadContext *tc) 1321{ 1322 if (ArmSystem::haveSecurity(tc)) { 1323 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1324 return (!scr.ns || scr.aw); 1325 } 1326 return true; 1327} 1328 1329bool 1330FastInterrupt::fiqDisable(ThreadContext *tc) 1331{ 1332 if (ArmSystem::haveVirtualization(tc)) { 1333 return true; 1334 } else if (ArmSystem::haveSecurity(tc)) { 1335 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR); 1336 return (!scr.ns || scr.fw); 1337 } 1338 return true; 1339} 1340 1341VirtualFastInterrupt::VirtualFastInterrupt() 1342{} 1343 1344void 1345PCAlignmentFault::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1346{ 1347 ArmFaultVals<PCAlignmentFault>::invoke(tc, inst); 1348 assert(from64); 1349 // Set the FAR 1350 tc->setMiscReg(getFaultAddrReg64(), faultPC); 1351} 1352 1353SPAlignmentFault::SPAlignmentFault() 1354{} 1355 1356SystemError::SystemError() 1357{} 1358 1359void 1360SystemError::invoke(ThreadContext *tc, const StaticInstPtr &inst) 1361{ 1362 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_ABT, 0); 1363 ArmFault::invoke(tc, inst); 1364} 1365 1366bool 1367SystemError::routeToMonitor(ThreadContext *tc) const 1368{ 1369 assert(ArmSystem::haveSecurity(tc)); 1370 assert(from64); 1371 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1372 return scr.ea; 1373} 1374 1375bool 1376SystemError::routeToHyp(ThreadContext *tc) const 1377{ 1378 bool toHyp; 1379 assert(from64); 1380 1381 SCR scr = tc->readMiscRegNoEffect(MISCREG_SCR_EL3); 1382 HCR hcr = tc->readMiscRegNoEffect(MISCREG_HCR); 1383 CPSR cpsr = tc->readMiscRegNoEffect(MISCREG_CPSR); 1384 1385 toHyp = (!scr.ea && hcr.amo && !inSecureState(scr, cpsr)) || 1386 (!scr.ea && !scr.rw && !hcr.amo && !inSecureState(scr,cpsr)); 1387 return toHyp; 1388} 1389 1390void 1391FlushPipe::invoke(ThreadContext *tc, const StaticInstPtr &inst) { 1392 DPRINTF(Faults, "Invoking FlushPipe Fault\n"); 1393 1394 // Set the PC to the next instruction of the faulting instruction. 1395 // Net effect is simply squashing all instructions behind and 1396 // start refetching from the next instruction. 1397 PCState pc = tc->pcState(); 1398 assert(inst); 1399 inst->advancePC(pc); 1400 tc->pcState(pc); 1401} 1402 1403void 1404ArmSev::invoke(ThreadContext *tc, const StaticInstPtr &inst) { 1405 DPRINTF(Faults, "Invoking ArmSev Fault\n"); 1406 if (!FullSystem) 1407 return; 1408 1409 // Set sev_mailbox to 1, clear the pending interrupt from remote 1410 // SEV execution and let pipeline continue as pcState is still 1411 // valid. 1412 tc->setMiscReg(MISCREG_SEV_MAILBOX, 1); 1413 tc->getCpuPtr()->clearInterrupt(tc->threadId(), INT_SEV, 0); 1414} 1415 1416// Instantiate all the templates to make the linker happy 1417template class ArmFaultVals<Reset>; 1418template class ArmFaultVals<UndefinedInstruction>; 1419template class ArmFaultVals<SupervisorCall>; 1420template class ArmFaultVals<SecureMonitorCall>; 1421template class ArmFaultVals<HypervisorCall>; 1422template class ArmFaultVals<PrefetchAbort>; 1423template class ArmFaultVals<DataAbort>; 1424template class ArmFaultVals<VirtualDataAbort>; 1425template class ArmFaultVals<HypervisorTrap>; 1426template class ArmFaultVals<Interrupt>; 1427template class ArmFaultVals<VirtualInterrupt>; 1428template class ArmFaultVals<FastInterrupt>; 1429template class ArmFaultVals<VirtualFastInterrupt>; 1430template class ArmFaultVals<SupervisorTrap>; 1431template class ArmFaultVals<SecureMonitorTrap>; 1432template class ArmFaultVals<PCAlignmentFault>; 1433template class ArmFaultVals<SPAlignmentFault>; 1434template class ArmFaultVals<SystemError>; 1435template class ArmFaultVals<FlushPipe>; 1436template class ArmFaultVals<ArmSev>; 1437template class AbortFault<PrefetchAbort>; 1438template class AbortFault<DataAbort>; 1439template class AbortFault<VirtualDataAbort>; 1440 1441 1442IllegalInstSetStateFault::IllegalInstSetStateFault() 1443{} 1444 1445 1446} // namespace ArmISA 1447