decoder.isa revision 5780
1// -*- mode:c++ -*- 2 3// Copyright (c) 2003-2006 The Regents of The University of Michigan 4// All rights reserved. 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer; 10// redistributions in binary form must reproduce the above copyright 11// notice, this list of conditions and the following disclaimer in the 12// documentation and/or other materials provided with the distribution; 13// neither the name of the copyright holders nor the names of its 14// contributors may be used to endorse or promote products derived from 15// this software without specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28// 29// Authors: Steve Reinhardt 30 31//////////////////////////////////////////////////////////////////// 32// 33// The actual decoder specification 34// 35 36decode OPCODE default Unknown::unknown() { 37 38 format LoadAddress { 39 0x08: lda({{ Ra = Rb + disp; }}); 40 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 41 } 42 43 format LoadOrNop { 44 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 45 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 47 0x23: ldt({{ Fa = Mem.df; }}); 48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 50#ifdef USE_COPY 51 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, 52 {{ fault = xc->copySrcTranslate(EA); }}, 53 inst_flags = [IsMemRef, IsLoad, IsCopy]); 54#endif 55 } 56 57 format LoadOrPrefetch { 58 0x28: ldl({{ Ra.sl = Mem.sl; }}); 59 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 60 // IsFloating flag on lds gets the prefetch to disassemble 61 // using f31 instead of r31... funcitonally it's unnecessary 62 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 63 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 64 } 65 66 format Store { 67 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 68 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 69 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 70 0x2d: stq({{ Mem.uq = Ra.uq; }}); 71 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 72 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 73 0x27: stt({{ Mem.df = Fa; }}); 74#ifdef USE_COPY 75 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, 76 {{ fault = xc->copy(EA); }}, 77 inst_flags = [IsMemRef, IsStore, IsCopy]); 78#endif 79 } 80 81 format StoreCond { 82 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 83 {{ 84 uint64_t tmp = write_result; 85 // see stq_c 86 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 87 if (tmp == 1) { 88 xc->setStCondFailures(0); 89 } 90 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 91 0x2f: stq_c({{ Mem.uq = Ra; }}, 92 {{ 93 uint64_t tmp = write_result; 94 // If the write operation returns 0 or 1, then 95 // this was a conventional store conditional, 96 // and the value indicates the success/failure 97 // of the operation. If another value is 98 // returned, then this was a Turbolaser 99 // mailbox access, and we don't update the 100 // result register at all. 101 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 102 if (tmp == 1) { 103 // clear failure counter... this is 104 // non-architectural and for debugging 105 // only. 106 xc->setStCondFailures(0); 107 } 108 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 109 } 110 111 format IntegerOperate { 112 113 0x10: decode INTFUNC { // integer arithmetic operations 114 115 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 116 0x40: addlv({{ 117 uint32_t tmp = Ra.sl + Rb_or_imm.sl; 118 // signed overflow occurs when operands have same sign 119 // and sign of result does not match. 120 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 121 fault = new IntegerOverflowFault; 122 Rc.sl = tmp; 123 }}); 124 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 125 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 126 127 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 128 0x60: addqv({{ 129 uint64_t tmp = Ra + Rb_or_imm; 130 // signed overflow occurs when operands have same sign 131 // and sign of result does not match. 132 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 133 fault = new IntegerOverflowFault; 134 Rc = tmp; 135 }}); 136 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 137 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 138 139 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 140 0x49: sublv({{ 141 uint32_t tmp = Ra.sl - Rb_or_imm.sl; 142 // signed overflow detection is same as for add, 143 // except we need to look at the *complemented* 144 // sign bit of the subtrahend (Rb), i.e., if the initial 145 // signs are the *same* then no overflow can occur 146 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 147 fault = new IntegerOverflowFault; 148 Rc.sl = tmp; 149 }}); 150 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 151 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 152 153 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 154 0x69: subqv({{ 155 uint64_t tmp = Ra - Rb_or_imm; 156 // signed overflow detection is same as for add, 157 // except we need to look at the *complemented* 158 // sign bit of the subtrahend (Rb), i.e., if the initial 159 // signs are the *same* then no overflow can occur 160 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 161 fault = new IntegerOverflowFault; 162 Rc = tmp; 163 }}); 164 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 165 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 166 167 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 168 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 169 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 170 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 171 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 172 173 0x0f: cmpbge({{ 174 int hi = 7; 175 int lo = 0; 176 uint64_t tmp = 0; 177 for (int i = 0; i < 8; ++i) { 178 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 179 hi += 8; 180 lo += 8; 181 } 182 Rc = tmp; 183 }}); 184 } 185 186 0x11: decode INTFUNC { // integer logical operations 187 188 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 189 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 190 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 191 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 192 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 193 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 194 195 // conditional moves 196 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 197 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 198 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 199 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 200 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 201 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 202 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 203 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 204 205 // For AMASK, RA must be R31. 206 0x61: decode RA { 207 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 208 } 209 210 // For IMPLVER, RA must be R31 and the B operand 211 // must be the immediate value 1. 212 0x6c: decode RA { 213 31: decode IMM { 214 1: decode INTIMM { 215 // return EV5 for FULL_SYSTEM and EV6 otherwise 216 1: implver({{ 217#if FULL_SYSTEM 218 Rc = 1; 219#else 220 Rc = 2; 221#endif 222 }}); 223 } 224 } 225 } 226 227#if FULL_SYSTEM 228 // The mysterious 11.25... 229 0x25: WarnUnimpl::eleven25(); 230#endif 231 } 232 233 0x12: decode INTFUNC { 234 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 235 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 236 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 237 238 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 239 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 240 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 241 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 242 243 0x52: mskwh({{ 244 int bv = Rb_or_imm<2:0>; 245 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 246 }}); 247 0x62: msklh({{ 248 int bv = Rb_or_imm<2:0>; 249 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 250 }}); 251 0x72: mskqh({{ 252 int bv = Rb_or_imm<2:0>; 253 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 254 }}); 255 256 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 257 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 258 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 259 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 260 261 0x5a: extwh({{ 262 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 263 0x6a: extlh({{ 264 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 265 0x7a: extqh({{ 266 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 267 268 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 269 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 270 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 271 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 272 273 0x57: inswh({{ 274 int bv = Rb_or_imm<2:0>; 275 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 276 }}); 277 0x67: inslh({{ 278 int bv = Rb_or_imm<2:0>; 279 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 280 }}); 281 0x77: insqh({{ 282 int bv = Rb_or_imm<2:0>; 283 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 284 }}); 285 286 0x30: zap({{ 287 uint64_t zapmask = 0; 288 for (int i = 0; i < 8; ++i) { 289 if (Rb_or_imm<i:>) 290 zapmask |= (mask(8) << (i * 8)); 291 } 292 Rc = Ra & ~zapmask; 293 }}); 294 0x31: zapnot({{ 295 uint64_t zapmask = 0; 296 for (int i = 0; i < 8; ++i) { 297 if (!Rb_or_imm<i:>) 298 zapmask |= (mask(8) << (i * 8)); 299 } 300 Rc = Ra & ~zapmask; 301 }}); 302 } 303 304 0x13: decode INTFUNC { // integer multiplies 305 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 306 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 307 0x30: umulh({{ 308 uint64_t hi, lo; 309 mul128(Ra, Rb_or_imm, hi, lo); 310 Rc = hi; 311 }}, IntMultOp); 312 0x40: mullv({{ 313 // 32-bit multiply with trap on overflow 314 int64_t Rax = Ra.sl; // sign extended version of Ra.sl 315 int64_t Rbx = Rb_or_imm.sl; 316 int64_t tmp = Rax * Rbx; 317 // To avoid overflow, all the upper 32 bits must match 318 // the sign bit of the lower 32. We code this as 319 // checking the upper 33 bits for all 0s or all 1s. 320 uint64_t sign_bits = tmp<63:31>; 321 if (sign_bits != 0 && sign_bits != mask(33)) 322 fault = new IntegerOverflowFault; 323 Rc.sl = tmp<31:0>; 324 }}, IntMultOp); 325 0x60: mulqv({{ 326 // 64-bit multiply with trap on overflow 327 uint64_t hi, lo; 328 mul128(Ra, Rb_or_imm, hi, lo); 329 // all the upper 64 bits must match the sign bit of 330 // the lower 64 331 if (!((hi == 0 && lo<63:> == 0) || 332 (hi == mask(64) && lo<63:> == 1))) 333 fault = new IntegerOverflowFault; 334 Rc = lo; 335 }}, IntMultOp); 336 } 337 338 0x1c: decode INTFUNC { 339 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 340 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 341 0x32: ctlz({{ 342 uint64_t count = 0; 343 uint64_t temp = Rb; 344 if (temp<63:32>) temp >>= 32; else count += 32; 345 if (temp<31:16>) temp >>= 16; else count += 16; 346 if (temp<15:8>) temp >>= 8; else count += 8; 347 if (temp<7:4>) temp >>= 4; else count += 4; 348 if (temp<3:2>) temp >>= 2; else count += 2; 349 if (temp<1:1>) temp >>= 1; else count += 1; 350 if ((temp<0:0>) != 0x1) count += 1; 351 Rc = count; 352 }}, IntAluOp); 353 354 0x33: cttz({{ 355 uint64_t count = 0; 356 uint64_t temp = Rb; 357 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 358 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 359 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 360 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 361 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 362 if (!(temp<0:0> & ULL(0x1))) count += 1; 363 Rc = count; 364 }}, IntAluOp); 365 366 format FailUnimpl { 367 0x30: ctpop(); 368 0x31: perr(); 369 0x34: unpkbw(); 370 0x35: unpkbl(); 371 0x36: pkwb(); 372 0x37: pklb(); 373 0x38: minsb8(); 374 0x39: minsw4(); 375 0x3a: minub8(); 376 0x3b: minuw4(); 377 0x3c: maxub8(); 378 0x3d: maxuw4(); 379 0x3e: maxsb8(); 380 0x3f: maxsw4(); 381 } 382 383 format BasicOperateWithNopCheck { 384 0x70: decode RB { 385 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 386 } 387 0x78: decode RB { 388 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 389 FloatCvtOp); 390 } 391 } 392 } 393 } 394 395 // Conditional branches. 396 format CondBranch { 397 0x39: beq({{ cond = (Ra == 0); }}); 398 0x3d: bne({{ cond = (Ra != 0); }}); 399 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 400 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 401 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 402 0x3a: blt({{ cond = (Ra.sq < 0); }}); 403 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 404 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 405 406 0x31: fbeq({{ cond = (Fa == 0); }}); 407 0x35: fbne({{ cond = (Fa != 0); }}); 408 0x36: fbge({{ cond = (Fa >= 0); }}); 409 0x37: fbgt({{ cond = (Fa > 0); }}); 410 0x33: fble({{ cond = (Fa <= 0); }}); 411 0x32: fblt({{ cond = (Fa < 0); }}); 412 } 413 414 // unconditional branches 415 format UncondBranch { 416 0x30: br(); 417 0x34: bsr(IsCall); 418 } 419 420 // indirect branches 421 0x1a: decode JMPFUNC { 422 format Jump { 423 0: jmp(); 424 1: jsr(IsCall); 425 2: ret(IsReturn); 426 3: jsr_coroutine(IsCall, IsReturn); 427 } 428 } 429 430 // Square root and integer-to-FP moves 431 0x14: decode FP_SHORTFUNC { 432 // Integer to FP register moves must have RB == 31 433 0x4: decode RB { 434 31: decode FP_FULLFUNC { 435 format BasicOperateWithNopCheck { 436 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 437 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 438 0x014: FailUnimpl::itoff(); // VAX-format conversion 439 } 440 } 441 } 442 443 // Square root instructions must have FA == 31 444 0xb: decode FA { 445 31: decode FP_TYPEFUNC { 446 format FloatingPointOperate { 447#if SS_COMPATIBLE_FP 448 0x0b: sqrts({{ 449 if (Fb < 0.0) 450 fault = new ArithmeticFault; 451 Fc = sqrt(Fb); 452 }}, FloatSqrtOp); 453#else 454 0x0b: sqrts({{ 455 if (Fb.sf < 0.0) 456 fault = new ArithmeticFault; 457 Fc.sf = sqrt(Fb.sf); 458 }}, FloatSqrtOp); 459#endif 460 0x2b: sqrtt({{ 461 if (Fb < 0.0) 462 fault = new ArithmeticFault; 463 Fc = sqrt(Fb); 464 }}, FloatSqrtOp); 465 } 466 } 467 } 468 469 // VAX-format sqrtf and sqrtg are not implemented 470 0xa: FailUnimpl::sqrtfg(); 471 } 472 473 // IEEE floating point 474 0x16: decode FP_SHORTFUNC_TOP2 { 475 // The top two bits of the short function code break this 476 // space into four groups: binary ops, compares, reserved, and 477 // conversions. See Table 4-12 of AHB. There are different 478 // special cases in these different groups, so we decode on 479 // these top two bits first just to select a decode strategy. 480 // Most of these instructions may have various trapping and 481 // rounding mode flags set; these are decoded in the 482 // FloatingPointDecode template used by the 483 // FloatingPointOperate format. 484 485 // add/sub/mul/div: just decode on the short function code 486 // and source type. All valid trapping and rounding modes apply. 487 0: decode FP_TRAPMODE { 488 // check for valid trapping modes here 489 0,1,5,7: decode FP_TYPEFUNC { 490 format FloatingPointOperate { 491#if SS_COMPATIBLE_FP 492 0x00: adds({{ Fc = Fa + Fb; }}); 493 0x01: subs({{ Fc = Fa - Fb; }}); 494 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 495 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 496#else 497 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 498 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 499 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 500 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 501#endif 502 503 0x20: addt({{ Fc = Fa + Fb; }}); 504 0x21: subt({{ Fc = Fa - Fb; }}); 505 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 506 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 507 } 508 } 509 } 510 511 // Floating-point compare instructions must have the default 512 // rounding mode, and may use the default trapping mode or 513 // /SU. Both trapping modes are treated the same by M5; the 514 // only difference on the real hardware (as far a I can tell) 515 // is that without /SU you'd get an imprecise trap if you 516 // tried to compare a NaN with something else (instead of an 517 // "unordered" result). 518 1: decode FP_FULLFUNC { 519 format BasicOperateWithNopCheck { 520 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 521 FloatCmpOp); 522 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 523 FloatCmpOp); 524 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 525 FloatCmpOp); 526 0x0a4, 0x5a4: cmptun({{ // unordered 527 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 528 }}, FloatCmpOp); 529 } 530 } 531 532 // The FP-to-integer and integer-to-FP conversion insts 533 // require that FA be 31. 534 3: decode FA { 535 31: decode FP_TYPEFUNC { 536 format FloatingPointOperate { 537 0x2f: decode FP_ROUNDMODE { 538 format FPFixedRounding { 539 // "chopped" i.e. round toward zero 540 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 541 Chopped); 542 // round to minus infinity 543 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 544 MinusInfinity); 545 } 546 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 547 } 548 549 // The cvtts opcode is overloaded to be cvtst if the trap 550 // mode is 2 or 6 (which are not valid otherwise) 551 0x2c: decode FP_FULLFUNC { 552 format BasicOperateWithNopCheck { 553 // trap on denorm version "cvtst/s" is 554 // simulated same as cvtst 555 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 556 } 557 default: cvtts({{ Fc.sf = Fb; }}); 558 } 559 560 // The trapping mode for integer-to-FP conversions 561 // must be /SUI or nothing; /U and /SU are not 562 // allowed. The full set of rounding modes are 563 // supported though. 564 0x3c: decode FP_TRAPMODE { 565 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 566 } 567 0x3e: decode FP_TRAPMODE { 568 0,7: cvtqt({{ Fc = Fb.sq; }}); 569 } 570 } 571 } 572 } 573 } 574 575 // misc FP operate 576 0x17: decode FP_FULLFUNC { 577 format BasicOperateWithNopCheck { 578 0x010: cvtlq({{ 579 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 580 }}); 581 0x030: cvtql({{ 582 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 583 }}); 584 585 // We treat the precise & imprecise trapping versions of 586 // cvtql identically. 587 0x130, 0x530: cvtqlv({{ 588 // To avoid overflow, all the upper 32 bits must match 589 // the sign bit of the lower 32. We code this as 590 // checking the upper 33 bits for all 0s or all 1s. 591 uint64_t sign_bits = Fb.uq<63:31>; 592 if (sign_bits != 0 && sign_bits != mask(33)) 593 fault = new IntegerOverflowFault; 594 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 595 }}); 596 597 0x020: cpys({{ // copy sign 598 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 599 }}); 600 0x021: cpysn({{ // copy sign negated 601 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 602 }}); 603 0x022: cpyse({{ // copy sign and exponent 604 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 605 }}); 606 607 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 608 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 609 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 610 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 611 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 612 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 613 614 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 615 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); 616 } 617 } 618 619 // miscellaneous mem-format ops 620 0x18: decode MEMFUNC { 621 format WarnUnimpl { 622 0x8000: fetch(); 623 0xa000: fetch_m(); 624 0xe800: ecb(); 625 } 626 627 format MiscPrefetch { 628 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 629 {{ xc->writeHint(EA, 64, memAccessFlags); }}, 630 mem_flags = NO_FAULT, 631 inst_flags = [IsMemRef, IsDataPrefetch, 632 IsStore, MemWriteOp]); 633 } 634 635 format BasicOperate { 636 0xc000: rpcc({{ 637#if FULL_SYSTEM 638 /* Rb is a fake dependency so here is a fun way to get 639 * the parser to understand that. 640 */ 641 Ra = xc->readMiscReg(IPR_CC) + (Rb & 0); 642 643#else 644 Ra = curTick; 645#endif 646 }}, IsUnverifiable); 647 648 // All of the barrier instructions below do nothing in 649 // their execute() methods (hence the empty code blocks). 650 // All of their functionality is hard-coded in the 651 // pipeline based on the flags IsSerializing, 652 // IsMemBarrier, and IsWriteBarrier. In the current 653 // detailed CPU model, the execute() function only gets 654 // called at fetch, so there's no way to generate pipeline 655 // behavior at any other stage. Once we go to an 656 // exec-in-exec CPU model we should be able to get rid of 657 // these flags and implement this behavior via the 658 // execute() methods. 659 660 // trapb is just a barrier on integer traps, where excb is 661 // a barrier on integer and FP traps. "EXCB is thus a 662 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 663 // them the same though. 664 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 665 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 666 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 667 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 668 } 669 670#if FULL_SYSTEM 671 format BasicOperate { 672 0xe000: rc({{ 673 Ra = IntrFlag; 674 IntrFlag = 0; 675 }}, IsNonSpeculative, IsUnverifiable); 676 0xf000: rs({{ 677 Ra = IntrFlag; 678 IntrFlag = 1; 679 }}, IsNonSpeculative, IsUnverifiable); 680 } 681#else 682 format FailUnimpl { 683 0xe000: rc(); 684 0xf000: rs(); 685 } 686#endif 687 } 688 689#if FULL_SYSTEM 690 0x00: CallPal::call_pal({{ 691 if (!palValid || 692 (palPriv 693 && xc->readMiscReg(IPR_ICM) != mode_kernel)) { 694 // invalid pal function code, or attempt to do privileged 695 // PAL call in non-kernel mode 696 fault = new UnimplementedOpcodeFault; 697 } 698 else { 699 // check to see if simulator wants to do something special 700 // on this PAL call (including maybe suppress it) 701 bool dopal = xc->simPalCheck(palFunc); 702 703 if (dopal) { 704 xc->setMiscReg(IPR_EXC_ADDR, NPC); 705 NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset; 706 } 707 } 708 }}, IsNonSpeculative); 709#else 710 0x00: decode PALFUNC { 711 format EmulatedCallPal { 712 0x00: halt ({{ 713 exitSimLoop("halt instruction encountered"); 714 }}, IsNonSpeculative); 715 0x83: callsys({{ 716 xc->syscall(R0); 717 }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); 718 // Read uniq reg into ABI return value register (r0) 719 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 720 // Write uniq reg with value from ABI arg register (r16) 721 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 722 } 723 } 724#endif 725 726#if FULL_SYSTEM 727 0x1b: decode PALMODE { 728 0: OpcdecFault::hw_st_quad(); 729 1: decode HW_LDST_QUAD { 730 format HwLoad { 731 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, 732 L, IsSerializing, IsSerializeBefore); 733 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, 734 Q, IsSerializing, IsSerializeBefore); 735 } 736 } 737 } 738 739 0x1f: decode PALMODE { 740 0: OpcdecFault::hw_st_cond(); 741 format HwStore { 742 1: decode HW_LDST_COND { 743 0: decode HW_LDST_QUAD { 744 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 745 {{ Mem.ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore); 746 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 747 {{ Mem.uq = Ra.uq; }}, Q, IsSerializing, IsSerializeBefore); 748 } 749 750 1: FailUnimpl::hw_st_cond(); 751 } 752 } 753 } 754 755 0x19: decode PALMODE { 756 0: OpcdecFault::hw_mfpr(); 757 format HwMoveIPR { 758 1: hw_mfpr({{ 759 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 760 IprToMiscRegIndex[ipr_index] : -1; 761 if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) || 762 miscRegIndex >= NumInternalProcRegs) 763 fault = new UnimplementedOpcodeFault; 764 else 765 Ra = xc->readMiscReg(miscRegIndex); 766 }}, IsIprAccess); 767 } 768 } 769 770 0x1d: decode PALMODE { 771 0: OpcdecFault::hw_mtpr(); 772 format HwMoveIPR { 773 1: hw_mtpr({{ 774 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 775 IprToMiscRegIndex[ipr_index] : -1; 776 if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) || 777 miscRegIndex >= NumInternalProcRegs) 778 fault = new UnimplementedOpcodeFault; 779 else 780 xc->setMiscReg(miscRegIndex, Ra); 781 if (traceData) { traceData->setData(Ra); } 782 }}, IsIprAccess); 783 } 784 } 785 786 0x1e: decode PALMODE { 787 0: OpcdecFault::hw_rei(); 788 format BasicOperate { 789 1: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); 790 } 791 } 792 793#endif 794 795 format BasicOperate { 796 // M5 special opcodes use the reserved 0x01 opcode space 797 0x01: decode M5FUNC { 798#if FULL_SYSTEM 799 0x00: arm({{ 800 PseudoInst::arm(xc->tcBase()); 801 }}, IsNonSpeculative); 802 0x01: quiesce({{ 803 PseudoInst::quiesce(xc->tcBase()); 804 }}, IsNonSpeculative, IsQuiesce); 805 0x02: quiesceNs({{ 806 PseudoInst::quiesceNs(xc->tcBase(), R16); 807 }}, IsNonSpeculative, IsQuiesce); 808 0x03: quiesceCycles({{ 809 PseudoInst::quiesceCycles(xc->tcBase(), R16); 810 }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 811 0x04: quiesceTime({{ 812 R0 = PseudoInst::quiesceTime(xc->tcBase()); 813 }}, IsNonSpeculative, IsUnverifiable); 814#endif 815 0x07: rpns({{ 816 R0 = PseudoInst::rpns(xc->tcBase()); 817 }}, IsNonSpeculative, IsUnverifiable); 818 0x10: deprecated_ivlb({{ 819 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 820 }}); 821 0x11: deprecated_ivle({{ 822 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 823 }}); 824 0x20: deprecated_exit ({{ 825 warn_once("deprecated M5 exit instruction encountered.\n"); 826 PseudoInst::m5exit(xc->tcBase(), 0); 827 }}, No_OpClass, IsNonSpeculative); 828 0x21: m5exit({{ 829 PseudoInst::m5exit(xc->tcBase(), R16); 830 }}, No_OpClass, IsNonSpeculative); 831#if FULL_SYSTEM 832 0x31: loadsymbol({{ 833 PseudoInst::loadsymbol(xc->tcBase()); 834 }}, No_OpClass, IsNonSpeculative); 835 0x30: initparam({{ 836 Ra = xc->tcBase()->getCpuPtr()->system->init_param; 837 }}); 838#endif 839 0x40: resetstats({{ 840 PseudoInst::resetstats(xc->tcBase(), R16, R17); 841 }}, IsNonSpeculative); 842 0x41: dumpstats({{ 843 PseudoInst::dumpstats(xc->tcBase(), R16, R17); 844 }}, IsNonSpeculative); 845 0x42: dumpresetstats({{ 846 PseudoInst::dumpresetstats(xc->tcBase(), R16, R17); 847 }}, IsNonSpeculative); 848 0x43: m5checkpoint({{ 849 PseudoInst::m5checkpoint(xc->tcBase(), R16, R17); 850 }}, IsNonSpeculative); 851#if FULL_SYSTEM 852 0x50: m5readfile({{ 853 R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18); 854 }}, IsNonSpeculative); 855#endif 856 0x51: m5break({{ 857 PseudoInst::debugbreak(xc->tcBase()); 858 }}, IsNonSpeculative); 859 0x52: m5switchcpu({{ 860 PseudoInst::switchcpu(xc->tcBase()); 861 }}, IsNonSpeculative); 862#if FULL_SYSTEM 863 0x53: m5addsymbol({{ 864 PseudoInst::addsymbol(xc->tcBase(), R16, R17); 865 }}, IsNonSpeculative); 866#endif 867 0x54: m5panic({{ 868 panic("M5 panic instruction called at pc=%#x.", xc->readPC()); 869 }}, IsNonSpeculative); 870 0x55: m5reserved1({{ 871 warn("M5 reserved opcode ignored"); 872 }}, IsNonSpeculative); 873 0x56: m5reserved2({{ 874 warn("M5 reserved opcode ignored"); 875 }}, IsNonSpeculative); 876 0x57: m5reserved3({{ 877 warn("M5 reserved opcode ignored"); 878 }}, IsNonSpeculative); 879 0x58: m5reserved4({{ 880 warn("M5 reserved opcode ignored"); 881 }}, IsNonSpeculative); 882 0x59: m5reserved5({{ 883 warn("M5 reserved opcode ignored"); 884 }}, IsNonSpeculative); 885 } 886 } 887} 888