1// -*- mode:c++ -*- 2 3// Copyright (c) 2013 ARM Limited 4// All rights reserved 5// 6// The license below extends only to copyright in the software and shall 7// not be construed as granting a license to any other intellectual 8// property including but not limited to intellectual property relating 9// to a hardware implementation of the functionality of the software 10// licensed hereunder. You may use the software subject to the license 11// terms below provided that you ensure that this notice is replicated 12// unmodified and in its entirety in all distributions of the software, 13// modified or unmodified, in source code or in binary form. 14// 15// Copyright (c) 2003-2006 The Regents of The University of Michigan 16// All rights reserved. 17// 18// Redistribution and use in source and binary forms, with or without 19// modification, are permitted provided that the following conditions are 20// met: redistributions of source code must retain the above copyright 21// notice, this list of conditions and the following disclaimer; 22// redistributions in binary form must reproduce the above copyright 23// notice, this list of conditions and the following disclaimer in the 24// documentation and/or other materials provided with the distribution; 25// neither the name of the copyright holders nor the names of its 26// contributors may be used to endorse or promote products derived from 27// this software without specific prior written permission. 28// 29// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 30// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 31// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 32// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 33// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 34// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 35// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 36// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 37// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 38// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 39// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40// 41// Authors: Steve Reinhardt 42 43//////////////////////////////////////////////////////////////////// 44// 45// The actual decoder specification 46// 47 48decode OPCODE default Unknown::unknown() { 49 50 format LoadAddress { 51 0x08: lda({{ Ra = Rb + disp; }}); 52 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 53 } 54 55 format LoadOrNop { 56 0x0a: ldbu({{ Ra_uq = Mem_ub; }}); 57 0x0c: ldwu({{ Ra_uq = Mem_uw; }}); 58 0x0b: ldq_u({{ Ra = Mem_uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 59 0x23: ldt({{ Fa = Mem_df; }}); 60 0x2a: ldl_l({{ Ra_sl = Mem_sl; }}, mem_flags = LLSC); 61 0x2b: ldq_l({{ Ra_uq = Mem_uq; }}, mem_flags = LLSC); 62 } 63 64 format LoadOrPrefetch { 65 0x28: ldl({{ Ra_sl = Mem_sl; }}); 66 0x29: ldq({{ Ra_uq = Mem_uq; }}, pf_flags = EVICT_NEXT); 67 // IsFloating flag on lds gets the prefetch to disassemble 68 // using f31 instead of r31... funcitonally it's unnecessary 69 0x22: lds({{ Fa_uq = s_to_t(Mem_ul); }}, 70 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 71 } 72 73 format Store { 74 0x0e: stb({{ Mem_ub = Ra<7:0>; }}); 75 0x0d: stw({{ Mem_uw = Ra<15:0>; }}); 76 0x2c: stl({{ Mem_ul = Ra<31:0>; }}); 77 0x2d: stq({{ Mem_uq = Ra_uq; }}); 78 0x0f: stq_u({{ Mem_uq = Ra_uq; }}, {{ EA = (Rb + disp) & ~7; }}); 79 0x26: sts({{ Mem_ul = t_to_s(Fa_uq); }}); 80 0x27: stt({{ Mem_df = Fa; }}); 81 } 82 83 format StoreCond { 84 0x2e: stl_c({{ Mem_ul = Ra<31:0>; }}, 85 {{ 86 uint64_t tmp = write_result; 87 // see stq_c 88 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 89 if (tmp == 1) { 90 xc->setStCondFailures(0); 91 } 92 }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 93 0x2f: stq_c({{ Mem_uq = Ra; }}, 94 {{ 95 uint64_t tmp = write_result; 96 // If the write operation returns 0 or 1, then 97 // this was a conventional store conditional, 98 // and the value indicates the success/failure 99 // of the operation. If another value is 100 // returned, then this was a Turbolaser 101 // mailbox access, and we don't update the 102 // result register at all. 103 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 104 if (tmp == 1) { 105 // clear failure counter... this is 106 // non-architectural and for debugging 107 // only. 108 xc->setStCondFailures(0); 109 } 110 }}, mem_flags = LLSC, inst_flags = IsStoreConditional); 111 } 112 113 format IntegerOperate { 114 115 0x10: decode INTFUNC { // integer arithmetic operations 116 117 0x00: addl({{ Rc_sl = Ra_sl + Rb_or_imm_sl; }}); 118 0x40: addlv({{ 119 int32_t tmp = Ra_sl + Rb_or_imm_sl; 120 // signed overflow occurs when operands have same sign 121 // and sign of result does not match. 122 if (Ra_sl<31:> == Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>) 123 fault = std::make_shared<IntegerOverflowFault>(); 124 Rc_sl = tmp; 125 }}); 126 0x02: s4addl({{ Rc_sl = (Ra_sl << 2) + Rb_or_imm_sl; }}); 127 0x12: s8addl({{ Rc_sl = (Ra_sl << 3) + Rb_or_imm_sl; }}); 128 129 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 130 0x60: addqv({{ 131 uint64_t tmp = Ra + Rb_or_imm; 132 // signed overflow occurs when operands have same sign 133 // and sign of result does not match. 134 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 135 fault = std::make_shared<IntegerOverflowFault>(); 136 Rc = tmp; 137 }}); 138 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 139 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 140 141 0x09: subl({{ Rc_sl = Ra_sl - Rb_or_imm_sl; }}); 142 0x49: sublv({{ 143 int32_t tmp = Ra_sl - Rb_or_imm_sl; 144 // signed overflow detection is same as for add, 145 // except we need to look at the *complemented* 146 // sign bit of the subtrahend (Rb), i.e., if the initial 147 // signs are the *same* then no overflow can occur 148 if (Ra_sl<31:> != Rb_or_imm_sl<31:> && tmp<31:> != Ra_sl<31:>) 149 fault = std::make_shared<IntegerOverflowFault>(); 150 Rc_sl = tmp; 151 }}); 152 0x0b: s4subl({{ Rc_sl = (Ra_sl << 2) - Rb_or_imm_sl; }}); 153 0x1b: s8subl({{ Rc_sl = (Ra_sl << 3) - Rb_or_imm_sl; }}); 154 155 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 156 0x69: subqv({{ 157 uint64_t tmp = Ra - Rb_or_imm; 158 // signed overflow detection is same as for add, 159 // except we need to look at the *complemented* 160 // sign bit of the subtrahend (Rb), i.e., if the initial 161 // signs are the *same* then no overflow can occur 162 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 163 fault = std::make_shared<IntegerOverflowFault>(); 164 Rc = tmp; 165 }}); 166 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 167 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 168 169 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 170 0x6d: cmple({{ Rc = (Ra_sq <= Rb_or_imm_sq); }}); 171 0x4d: cmplt({{ Rc = (Ra_sq < Rb_or_imm_sq); }}); 172 0x3d: cmpule({{ Rc = (Ra_uq <= Rb_or_imm_uq); }}); 173 0x1d: cmpult({{ Rc = (Ra_uq < Rb_or_imm_uq); }}); 174 175 0x0f: cmpbge({{ 176 int hi = 7; 177 int lo = 0; 178 uint64_t tmp = 0; 179 for (int i = 0; i < 8; ++i) { 180 tmp |= (Ra_uq<hi:lo> >= Rb_or_imm_uq<hi:lo>) << i; 181 hi += 8; 182 lo += 8; 183 } 184 Rc = tmp; 185 }}); 186 } 187 188 0x11: decode INTFUNC { // integer logical operations 189 190 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 191 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 192 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 193 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 194 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 195 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 196 197 // conditional moves 198 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 199 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 200 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 201 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 202 0x44: cmovlt({{ Rc = (Ra_sq < 0) ? Rb_or_imm : Rc; }}); 203 0x46: cmovge({{ Rc = (Ra_sq >= 0) ? Rb_or_imm : Rc; }}); 204 0x64: cmovle({{ Rc = (Ra_sq <= 0) ? Rb_or_imm : Rc; }}); 205 0x66: cmovgt({{ Rc = (Ra_sq > 0) ? Rb_or_imm : Rc; }}); 206 207 // For AMASK, RA must be R31. 208 0x61: decode RA { 209 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 210 } 211 212 // For IMPLVER, RA must be R31 and the B operand 213 // must be the immediate value 1. 214 0x6c: decode RA { 215 31: decode IMM { 216 1: decode INTIMM { 217 // return EV5 for FullSystem and EV6 otherwise 218 1: implver({{ Rc = FullSystem ? 1 : 2 }}); 219 } 220 } 221 } 222 223 // The mysterious 11.25... 224 0x25: WarnUnimpl::eleven25(); 225 } 226 227 0x12: decode INTFUNC { 228 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 229 0x34: srl({{ Rc = Ra_uq >> Rb_or_imm<5:0>; }}); 230 0x3c: sra({{ Rc = Ra_sq >> Rb_or_imm<5:0>; }}); 231 232 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 233 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 234 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 235 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 236 237 0x52: mskwh({{ 238 int bv = Rb_or_imm<2:0>; 239 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 240 }}); 241 0x62: msklh({{ 242 int bv = Rb_or_imm<2:0>; 243 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 244 }}); 245 0x72: mskqh({{ 246 int bv = Rb_or_imm<2:0>; 247 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 248 }}); 249 250 0x06: extbl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 251 0x16: extwl({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 252 0x26: extll({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 253 0x36: extql({{ Rc = (Ra_uq >> (Rb_or_imm<2:0> * 8)); }}); 254 255 0x5a: extwh({{ 256 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 257 0x6a: extlh({{ 258 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 259 0x7a: extqh({{ 260 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 261 262 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 263 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 264 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 265 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 266 267 0x57: inswh({{ 268 int bv = Rb_or_imm<2:0>; 269 Rc = bv ? (Ra_uq<15:0> >> (64 - 8 * bv)) : 0; 270 }}); 271 0x67: inslh({{ 272 int bv = Rb_or_imm<2:0>; 273 Rc = bv ? (Ra_uq<31:0> >> (64 - 8 * bv)) : 0; 274 }}); 275 0x77: insqh({{ 276 int bv = Rb_or_imm<2:0>; 277 Rc = bv ? (Ra_uq >> (64 - 8 * bv)) : 0; 278 }}); 279 280 0x30: zap({{ 281 uint64_t zapmask = 0; 282 for (int i = 0; i < 8; ++i) { 283 if (Rb_or_imm<i:>) 284 zapmask |= (mask(8) << (i * 8)); 285 } 286 Rc = Ra & ~zapmask; 287 }}); 288 0x31: zapnot({{ 289 uint64_t zapmask = 0; 290 for (int i = 0; i < 8; ++i) { 291 if (!Rb_or_imm<i:>) 292 zapmask |= (mask(8) << (i * 8)); 293 } 294 Rc = Ra & ~zapmask; 295 }}); 296 } 297 298 0x13: decode INTFUNC { // integer multiplies 299 0x00: mull({{ Rc_sl = Ra_sl * Rb_or_imm_sl; }}, IntMultOp); 300 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 301 0x30: umulh({{ 302 uint64_t hi, lo; 303 mul128(Ra, Rb_or_imm, hi, lo); 304 Rc = hi; 305 }}, IntMultOp); 306 0x40: mullv({{ 307 // 32-bit multiply with trap on overflow 308 int64_t Rax = Ra_sl; // sign extended version of Ra_sl 309 int64_t Rbx = Rb_or_imm_sl; 310 int64_t tmp = Rax * Rbx; 311 // To avoid overflow, all the upper 32 bits must match 312 // the sign bit of the lower 32. We code this as 313 // checking the upper 33 bits for all 0s or all 1s. 314 uint64_t sign_bits = tmp<63:31>; 315 if (sign_bits != 0 && sign_bits != mask(33)) 316 fault = std::make_shared<IntegerOverflowFault>(); 317 Rc_sl = tmp<31:0>; 318 }}, IntMultOp); 319 0x60: mulqv({{ 320 // 64-bit multiply with trap on overflow 321 uint64_t hi, lo; 322 mul128(Ra, Rb_or_imm, hi, lo); 323 // all the upper 64 bits must match the sign bit of 324 // the lower 64 325 if (!((hi == 0 && lo<63:> == 0) || 326 (hi == mask(64) && lo<63:> == 1))) 327 fault = std::make_shared<IntegerOverflowFault>(); 328 Rc = lo; 329 }}, IntMultOp); 330 } 331 332 0x1c: decode INTFUNC { 333 0x00: decode RA { 31: sextb({{ Rc_sb = Rb_or_imm< 7:0>; }}); } 334 0x01: decode RA { 31: sextw({{ Rc_sw = Rb_or_imm<15:0>; }}); } 335 336 0x30: ctpop({{ 337 uint64_t count = 0; 338 for (int i = 0; Rb<63:i>; ++i) { 339 if (Rb<i:i> == 0x1) 340 ++count; 341 } 342 Rc = count; 343 }}, IntAluOp); 344 345 0x31: perr({{ 346 uint64_t temp = 0; 347 int hi = 7; 348 int lo = 0; 349 for (int i = 0; i < 8; ++i) { 350 uint8_t ra_ub = Ra_uq<hi:lo>; 351 uint8_t rb_ub = Rb_uq<hi:lo>; 352 temp += (ra_ub >= rb_ub) ? 353 (ra_ub - rb_ub) : (rb_ub - ra_ub); 354 hi += 8; 355 lo += 8; 356 } 357 Rc = temp; 358 }}); 359 360 0x32: ctlz({{ 361 uint64_t count = 0; 362 uint64_t temp = Rb; 363 if (temp<63:32>) temp >>= 32; else count += 32; 364 if (temp<31:16>) temp >>= 16; else count += 16; 365 if (temp<15:8>) temp >>= 8; else count += 8; 366 if (temp<7:4>) temp >>= 4; else count += 4; 367 if (temp<3:2>) temp >>= 2; else count += 2; 368 if (temp<1:1>) temp >>= 1; else count += 1; 369 if ((temp<0:0>) != 0x1) count += 1; 370 Rc = count; 371 }}, IntAluOp); 372 373 0x33: cttz({{ 374 uint64_t count = 0; 375 uint64_t temp = Rb; 376 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 377 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 378 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 379 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 380 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 381 if (!(temp<0:0> & ULL(0x1))) { 382 temp >>= 1; count += 1; 383 } 384 if (!(temp<0:0> & ULL(0x1))) count += 1; 385 Rc = count; 386 }}, IntAluOp); 387 388 389 0x34: unpkbw({{ 390 Rc = (Rb_uq<7:0> 391 | (Rb_uq<15:8> << 16) 392 | (Rb_uq<23:16> << 32) 393 | (Rb_uq<31:24> << 48)); 394 }}, IntAluOp); 395 396 0x35: unpkbl({{ 397 Rc = (Rb_uq<7:0> | (Rb_uq<15:8> << 32)); 398 }}, IntAluOp); 399 400 0x36: pkwb({{ 401 Rc = (Rb_uq<7:0> 402 | (Rb_uq<23:16> << 8) 403 | (Rb_uq<39:32> << 16) 404 | (Rb_uq<55:48> << 24)); 405 }}, IntAluOp); 406 407 0x37: pklb({{ 408 Rc = (Rb_uq<7:0> | (Rb_uq<39:32> << 8)); 409 }}, IntAluOp); 410 411 0x38: minsb8({{ 412 uint64_t temp = 0; 413 int hi = 63; 414 int lo = 56; 415 for (int i = 7; i >= 0; --i) { 416 int8_t ra_sb = Ra_uq<hi:lo>; 417 int8_t rb_sb = Rb_uq<hi:lo>; 418 temp = ((temp << 8) 419 | ((ra_sb < rb_sb) ? Ra_uq<hi:lo> 420 : Rb_uq<hi:lo>)); 421 hi -= 8; 422 lo -= 8; 423 } 424 Rc = temp; 425 }}); 426 427 0x39: minsw4({{ 428 uint64_t temp = 0; 429 int hi = 63; 430 int lo = 48; 431 for (int i = 3; i >= 0; --i) { 432 int16_t ra_sw = Ra_uq<hi:lo>; 433 int16_t rb_sw = Rb_uq<hi:lo>; 434 temp = ((temp << 16) 435 | ((ra_sw < rb_sw) ? Ra_uq<hi:lo> 436 : Rb_uq<hi:lo>)); 437 hi -= 16; 438 lo -= 16; 439 } 440 Rc = temp; 441 }}); 442 443 0x3a: minub8({{ 444 uint64_t temp = 0; 445 int hi = 63; 446 int lo = 56; 447 for (int i = 7; i >= 0; --i) { 448 uint8_t ra_ub = Ra_uq<hi:lo>; 449 uint8_t rb_ub = Rb_uq<hi:lo>; 450 temp = ((temp << 8) 451 | ((ra_ub < rb_ub) ? Ra_uq<hi:lo> 452 : Rb_uq<hi:lo>)); 453 hi -= 8; 454 lo -= 8; 455 } 456 Rc = temp; 457 }}); 458 459 0x3b: minuw4({{ 460 uint64_t temp = 0; 461 int hi = 63; 462 int lo = 48; 463 for (int i = 3; i >= 0; --i) { 464 uint16_t ra_sw = Ra_uq<hi:lo>; 465 uint16_t rb_sw = Rb_uq<hi:lo>; 466 temp = ((temp << 16) 467 | ((ra_sw < rb_sw) ? Ra_uq<hi:lo> 468 : Rb_uq<hi:lo>)); 469 hi -= 16; 470 lo -= 16; 471 } 472 Rc = temp; 473 }}); 474 475 0x3c: maxub8({{ 476 uint64_t temp = 0; 477 int hi = 63; 478 int lo = 56; 479 for (int i = 7; i >= 0; --i) { 480 uint8_t ra_ub = Ra_uq<hi:lo>; 481 uint8_t rb_ub = Rb_uq<hi:lo>; 482 temp = ((temp << 8) 483 | ((ra_ub > rb_ub) ? Ra_uq<hi:lo> 484 : Rb_uq<hi:lo>)); 485 hi -= 8; 486 lo -= 8; 487 } 488 Rc = temp; 489 }}); 490 491 0x3d: maxuw4({{ 492 uint64_t temp = 0; 493 int hi = 63; 494 int lo = 48; 495 for (int i = 3; i >= 0; --i) { 496 uint16_t ra_uw = Ra_uq<hi:lo>; 497 uint16_t rb_uw = Rb_uq<hi:lo>; 498 temp = ((temp << 16) 499 | ((ra_uw > rb_uw) ? Ra_uq<hi:lo> 500 : Rb_uq<hi:lo>)); 501 hi -= 16; 502 lo -= 16; 503 } 504 Rc = temp; 505 }}); 506 507 0x3e: maxsb8({{ 508 uint64_t temp = 0; 509 int hi = 63; 510 int lo = 56; 511 for (int i = 7; i >= 0; --i) { 512 int8_t ra_sb = Ra_uq<hi:lo>; 513 int8_t rb_sb = Rb_uq<hi:lo>; 514 temp = ((temp << 8) 515 | ((ra_sb > rb_sb) ? Ra_uq<hi:lo> 516 : Rb_uq<hi:lo>)); 517 hi -= 8; 518 lo -= 8; 519 } 520 Rc = temp; 521 }}); 522 523 0x3f: maxsw4({{ 524 uint64_t temp = 0; 525 int hi = 63; 526 int lo = 48; 527 for (int i = 3; i >= 0; --i) { 528 int16_t ra_sw = Ra_uq<hi:lo>; 529 int16_t rb_sw = Rb_uq<hi:lo>; 530 temp = ((temp << 16) 531 | ((ra_sw > rb_sw) ? Ra_uq<hi:lo> 532 : Rb_uq<hi:lo>)); 533 hi -= 16; 534 lo -= 16; 535 } 536 Rc = temp; 537 }}); 538 539 format BasicOperateWithNopCheck { 540 0x70: decode RB { 541 31: ftoit({{ Rc = Fa_uq; }}, FloatCvtOp); 542 } 543 0x78: decode RB { 544 31: ftois({{ Rc_sl = t_to_s(Fa_uq); }}, 545 FloatCvtOp); 546 } 547 } 548 } 549 } 550 551 // Conditional branches. 552 format CondBranch { 553 0x39: beq({{ cond = (Ra == 0); }}); 554 0x3d: bne({{ cond = (Ra != 0); }}); 555 0x3e: bge({{ cond = (Ra_sq >= 0); }}); 556 0x3f: bgt({{ cond = (Ra_sq > 0); }}); 557 0x3b: ble({{ cond = (Ra_sq <= 0); }}); 558 0x3a: blt({{ cond = (Ra_sq < 0); }}); 559 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 560 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 561 562 0x31: fbeq({{ cond = (Fa == 0); }}); 563 0x35: fbne({{ cond = (Fa != 0); }}); 564 0x36: fbge({{ cond = (Fa >= 0); }}); 565 0x37: fbgt({{ cond = (Fa > 0); }}); 566 0x33: fble({{ cond = (Fa <= 0); }}); 567 0x32: fblt({{ cond = (Fa < 0); }}); 568 } 569 570 // unconditional branches 571 format UncondBranch { 572 0x30: br(); 573 0x34: bsr(IsCall); 574 } 575 576 // indirect branches 577 0x1a: decode JMPFUNC { 578 format Jump { 579 0: jmp(); 580 1: jsr(IsCall); 581 2: ret(IsReturn); 582 3: jsr_coroutine(IsCall, IsReturn); 583 } 584 } 585 586 // Square root and integer-to-FP moves 587 0x14: decode FP_SHORTFUNC { 588 // Integer to FP register moves must have RB == 31 589 0x4: decode RB { 590 31: decode FP_FULLFUNC { 591 format BasicOperateWithNopCheck { 592 0x004: itofs({{ Fc_uq = s_to_t(Ra_ul); }}, FloatCvtOp); 593 0x024: itoft({{ Fc_uq = Ra_uq; }}, FloatCvtOp); 594 0x014: FailUnimpl::itoff(); // VAX-format conversion 595 } 596 } 597 } 598 599 // Square root instructions must have FA == 31 600 0xb: decode FA { 601 31: decode FP_TYPEFUNC { 602 format FloatingPointOperate { 603#if SS_COMPATIBLE_FP 604 0x0b: sqrts({{ 605 if (Fb < 0.0) 606 fault = std::make_shared<ArithmeticFault>(); 607 Fc = sqrt(Fb); 608 }}, FloatSqrtOp); 609#else 610 0x0b: sqrts({{ 611 if (Fb_sf < 0.0) 612 fault = std::make_shared<ArithmeticFault>(); 613 Fc_sf = sqrt(Fb_sf); 614 }}, FloatSqrtOp); 615#endif 616 0x2b: sqrtt({{ 617 if (Fb < 0.0) 618 fault = std::make_shared<ArithmeticFault>(); 619 Fc = sqrt(Fb); 620 }}, FloatSqrtOp); 621 } 622 } 623 } 624 625 // VAX-format sqrtf and sqrtg are not implemented 626 0xa: FailUnimpl::sqrtfg(); 627 } 628 629 // IEEE floating point 630 0x16: decode FP_SHORTFUNC_TOP2 { 631 // The top two bits of the short function code break this 632 // space into four groups: binary ops, compares, reserved, and 633 // conversions. See Table 4-12 of AHB. There are different 634 // special cases in these different groups, so we decode on 635 // these top two bits first just to select a decode strategy. 636 // Most of these instructions may have various trapping and 637 // rounding mode flags set; these are decoded in the 638 // FloatingPointDecode template used by the 639 // FloatingPointOperate format. 640 641 // add/sub/mul/div: just decode on the short function code 642 // and source type. All valid trapping and rounding modes apply. 643 0: decode FP_TRAPMODE { 644 // check for valid trapping modes here 645 0,1,5,7: decode FP_TYPEFUNC { 646 format FloatingPointOperate { 647#if SS_COMPATIBLE_FP 648 0x00: adds({{ Fc = Fa + Fb; }}); 649 0x01: subs({{ Fc = Fa - Fb; }}); 650 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 651 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 652#else 653 0x00: adds({{ Fc_sf = Fa_sf + Fb_sf; }}); 654 0x01: subs({{ Fc_sf = Fa_sf - Fb_sf; }}); 655 0x02: muls({{ Fc_sf = Fa_sf * Fb_sf; }}, FloatMultOp); 656 0x03: divs({{ Fc_sf = Fa_sf / Fb_sf; }}, FloatDivOp); 657#endif 658 659 0x20: addt({{ Fc = Fa + Fb; }}); 660 0x21: subt({{ Fc = Fa - Fb; }}); 661 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 662 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 663 } 664 } 665 } 666 667 // Floating-point compare instructions must have the default 668 // rounding mode, and may use the default trapping mode or 669 // /SU. Both trapping modes are treated the same by M5; the 670 // only difference on the real hardware (as far a I can tell) 671 // is that without /SU you'd get an imprecise trap if you 672 // tried to compare a NaN with something else (instead of an 673 // "unordered" result). 674 1: decode FP_FULLFUNC { 675 format BasicOperateWithNopCheck { 676 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 677 FloatCmpOp); 678 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 679 FloatCmpOp); 680 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 681 FloatCmpOp); 682 0x0a4, 0x5a4: cmptun({{ // unordered 683 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 684 }}, FloatCmpOp); 685 } 686 } 687 688 // The FP-to-integer and integer-to-FP conversion insts 689 // require that FA be 31. 690 3: decode FA { 691 31: decode FP_TYPEFUNC { 692 format FloatingPointOperate { 693 0x2f: decode FP_ROUNDMODE { 694 format FPFixedRounding { 695 // "chopped" i.e. round toward zero 696 0: cvttq({{ Fc_sq = (int64_t)trunc(Fb); }}, 697 Chopped); 698 // round to minus infinity 699 1: cvttq({{ Fc_sq = (int64_t)floor(Fb); }}, 700 MinusInfinity); 701 } 702 default: cvttq({{ Fc_sq = (int64_t)nearbyint(Fb); }}); 703 } 704 705 // The cvtts opcode is overloaded to be cvtst if the trap 706 // mode is 2 or 6 (which are not valid otherwise) 707 0x2c: decode FP_FULLFUNC { 708 format BasicOperateWithNopCheck { 709 // trap on denorm version "cvtst/s" is 710 // simulated same as cvtst 711 0x2ac, 0x6ac: cvtst({{ Fc = Fb_sf; }}); 712 } 713 default: cvtts({{ Fc_sf = Fb; }}); 714 } 715 716 // The trapping mode for integer-to-FP conversions 717 // must be /SUI or nothing; /U and /SU are not 718 // allowed. The full set of rounding modes are 719 // supported though. 720 0x3c: decode FP_TRAPMODE { 721 0,7: cvtqs({{ Fc_sf = Fb_sq; }}); 722 } 723 0x3e: decode FP_TRAPMODE { 724 0,7: cvtqt({{ Fc = Fb_sq; }}); 725 } 726 } 727 } 728 } 729 } 730 731 // misc FP operate 732 0x17: decode FP_FULLFUNC { 733 format BasicOperateWithNopCheck { 734 0x010: cvtlq({{ 735 Fc_sl = (Fb_uq<63:62> << 30) | Fb_uq<58:29>; 736 }}); 737 0x030: cvtql({{ 738 Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29); 739 }}); 740 741 // We treat the precise & imprecise trapping versions of 742 // cvtql identically. 743 0x130, 0x530: cvtqlv({{ 744 // To avoid overflow, all the upper 32 bits must match 745 // the sign bit of the lower 32. We code this as 746 // checking the upper 33 bits for all 0s or all 1s. 747 uint64_t sign_bits = Fb_uq<63:31>; 748 if (sign_bits != 0 && sign_bits != mask(33)) 749 fault = std::make_shared<IntegerOverflowFault>(); 750 Fc_uq = (Fb_uq<31:30> << 62) | (Fb_uq<29:0> << 29); 751 }}); 752 753 0x020: cpys({{ // copy sign 754 Fc_uq = (Fa_uq<63:> << 63) | Fb_uq<62:0>; 755 }}); 756 0x021: cpysn({{ // copy sign negated 757 Fc_uq = (~Fa_uq<63:> << 63) | Fb_uq<62:0>; 758 }}); 759 0x022: cpyse({{ // copy sign and exponent 760 Fc_uq = (Fa_uq<63:52> << 52) | Fb_uq<51:0>; 761 }}); 762 763 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 764 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 765 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 766 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 767 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 768 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 769 770 0x024: mt_fpcr({{ FPCR = Fa_uq; }}, IsIprAccess); 771 0x025: mf_fpcr({{ Fa_uq = FPCR; }}, IsIprAccess); 772 } 773 } 774 775 // miscellaneous mem-format ops 776 0x18: decode MEMFUNC { 777 format WarnUnimpl { 778 0x8000: fetch(); 779 0xa000: fetch_m(); 780 0xe800: ecb(); 781 } 782 783 format MiscPrefetch { 784 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 785 {{ ; }}, 786 mem_flags = PREFETCH); 787 } 788 789 format BasicOperate { 790 0xc000: rpcc({{ 791 /* Rb is a fake dependency so here is a fun way to get 792 * the parser to understand that. 793 */ 794 uint64_t unused_var M5_VAR_USED = Rb; 795 Ra = FullSystem ? xc->readMiscReg(IPR_CC) : curTick(); 796 }}, IsUnverifiable); 797 798 // All of the barrier instructions below do nothing in 799 // their execute() methods (hence the empty code blocks). 800 // All of their functionality is hard-coded in the 801 // pipeline based on the flags IsSerializing, 802 // IsMemBarrier, and IsWriteBarrier. In the current 803 // detailed CPU model, the execute() function only gets 804 // called at fetch, so there's no way to generate pipeline 805 // behavior at any other stage. Once we go to an 806 // exec-in-exec CPU model we should be able to get rid of 807 // these flags and implement this behavior via the 808 // execute() methods. 809 810 // trapb is just a barrier on integer traps, where excb is 811 // a barrier on integer and FP traps. "EXCB is thus a 812 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 813 // them the same though. 814 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 815 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 816 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 817 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 818 } 819 820 0xe000: decode FullSystemInt { 821 0: FailUnimpl::rc_se(); 822 default: BasicOperate::rc({{ 823 Ra = IntrFlag; 824 IntrFlag = 0; 825 }}, IsNonSpeculative, IsUnverifiable); 826 } 827 0xf000: decode FullSystemInt { 828 0: FailUnimpl::rs_se(); 829 default: BasicOperate::rs({{ 830 Ra = IntrFlag; 831 IntrFlag = 1; 832 }}, IsNonSpeculative, IsUnverifiable); 833 } 834 } 835 836 0x00: decode FullSystemInt { 837 0: decode PALFUNC { 838 format EmulatedCallPal { 839 0x00: halt ({{ 840 exitSimLoop("halt instruction encountered"); 841 }}, IsNonSpeculative); 842 0x83: callsys({{ 843 xc->syscall(R0, &fault); 844 }}, IsSerializeAfter, IsNonSpeculative, IsSyscall); 845 // Read uniq reg into ABI return value register (r0) 846 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 847 // Write uniq reg with value from ABI arg register (r16) 848 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 849 } 850 } 851 default: CallPal::call_pal({{ 852 if (!palValid || 853 (palPriv 854 && xc->readMiscReg(IPR_ICM) != mode_kernel)) { 855 // invalid pal function code, or attempt to do privileged 856 // PAL call in non-kernel mode 857 fault = std::make_shared<UnimplementedOpcodeFault>(); 858 } else { 859 // check to see if simulator wants to do something special 860 // on this PAL call (including maybe suppress it) 861 bool dopal = true; 862 ThreadContext *tc = xc->tcBase(); 863 auto *base_stats = tc->getKernelStats(); 864 auto *stats = dynamic_cast<AlphaISA::Kernel::Statistics *>( 865 base_stats); 866 assert(stats || !base_stats); 867 if (stats) 868 stats->callpal(palFunc, tc); 869 870 System *sys = tc->getSystemPtr(); 871 872 switch (palFunc) { 873 case PAL::halt: 874 xc->tcBase()->halt(); 875 if (--System::numSystemsRunning == 0) 876 exitSimLoop("all cpus halted"); 877 break; 878 879 case PAL::bpt: 880 case PAL::bugchk: 881 if (sys->breakpoint()) 882 dopal = false; 883 break; 884 } 885 886 if (dopal) { 887 xc->setMiscReg(IPR_EXC_ADDR, NPC); 888 NPC = xc->readMiscReg(IPR_PAL_BASE) + palOffset; 889 } 890 } 891 }}, IsNonSpeculative); 892 } 893 894 0x1b: decode PALMODE { 895 0: OpcdecFault::hw_st_quad(); 896 1: decode HW_LDST_QUAD { 897 format HwLoad { 898 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem_ul; }}, 899 L, IsSerializing, IsSerializeBefore); 900 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem_uq; }}, 901 Q, IsSerializing, IsSerializeBefore); 902 } 903 } 904 } 905 906 0x1f: decode PALMODE { 907 0: OpcdecFault::hw_st_cond(); 908 format HwStore { 909 1: decode HW_LDST_COND { 910 0: decode HW_LDST_QUAD { 911 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 912 {{ Mem_ul = Ra<31:0>; }}, L, IsSerializing, IsSerializeBefore); 913 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 914 {{ Mem_uq = Ra_uq; }}, Q, IsSerializing, IsSerializeBefore); 915 } 916 917 1: FailUnimpl::hw_st_cond(); 918 } 919 } 920 } 921 922 0x19: decode PALMODE { 923 0: OpcdecFault::hw_mfpr(); 924 format HwMoveIPR { 925 1: hw_mfpr({{ 926 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 927 IprToMiscRegIndex[ipr_index] : -1; 928 if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) || 929 miscRegIndex >= NumInternalProcRegs) 930 fault = std::make_shared<UnimplementedOpcodeFault>(); 931 else 932 Ra = xc->readMiscReg(miscRegIndex); 933 }}, IsIprAccess); 934 } 935 } 936 937 0x1d: decode PALMODE { 938 0: OpcdecFault::hw_mtpr(); 939 format HwMoveIPR { 940 1: hw_mtpr({{ 941 int miscRegIndex = (ipr_index < MaxInternalProcRegs) ? 942 IprToMiscRegIndex[ipr_index] : -1; 943 if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) || 944 miscRegIndex >= NumInternalProcRegs) 945 fault = std::make_shared<UnimplementedOpcodeFault>(); 946 else 947 xc->setMiscReg(miscRegIndex, Ra); 948 if (traceData) { traceData->setData(Ra); } 949 }}, IsIprAccess); 950 } 951 } 952 953 0x1e: decode PALMODE { 954 0: OpcdecFault::hw_rei(); 955 format BasicOperate { 956 1: hw_rei({{ 957 Addr pc = PC; 958 if (!(pc & 0x3)) 959 return std::make_shared<UnimplementedOpcodeFault>(); 960 961 LockFlag = false; 962 NPC = IprExcAddr; 963 964 ThreadContext *tc = xc->tcBase(); 965 auto *base_stats = tc->getKernelStats(); 966 auto *stats = dynamic_cast<AlphaISA::Kernel::Statistics *>( 967 base_stats); 968 assert(stats || !base_stats); 969 if (stats) 970 stats->hwrei(); 971 972 CPA::cpa()->swAutoBegin(tc, IprExcAddr); 973 }}, IsSerializing, IsSerializeBefore); 974 } 975 } 976 977 format BasicOperate { 978 // M5 special opcodes use the reserved 0x01 opcode space 979 0x01: decode M5FUNC { 980 0x00: arm({{ 981 PseudoInst::arm(xc->tcBase()); 982 }}, IsNonSpeculative); 983 0x01: quiesce({{ 984 // Don't sleep if (unmasked) interrupts are pending 985 Interrupts* interrupts = 986 xc->tcBase()->getCpuPtr()->getInterruptController(0); 987 if (interrupts->checkInterrupts(xc->tcBase())) { 988 PseudoInst::quiesceSkip(xc->tcBase()); 989 } else { 990 PseudoInst::quiesce(xc->tcBase()); 991 } 992 }}, IsNonSpeculative, IsQuiesce); 993 0x02: quiesceNs({{ 994 PseudoInst::quiesceNs(xc->tcBase(), R16); 995 }}, IsNonSpeculative, IsQuiesce); 996 0x03: quiesceCycles({{ 997 PseudoInst::quiesceCycles(xc->tcBase(), R16); 998 }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 999 0x04: quiesceTime({{ 1000 R0 = PseudoInst::quiesceTime(xc->tcBase()); 1001 }}, IsNonSpeculative, IsUnverifiable); 1002 0x07: rpns({{ 1003 R0 = PseudoInst::rpns(xc->tcBase()); 1004 }}, IsNonSpeculative, IsUnverifiable); 1005 0x09: wakeCPU({{ 1006 PseudoInst::wakeCPU(xc->tcBase(), R16); 1007 }}, IsNonSpeculative, IsUnverifiable); 1008 0x10: deprecated_ivlb({{ 1009 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 1010 }}); 1011 0x11: deprecated_ivle({{ 1012 warn_once("Obsolete M5 ivlb instruction encountered.\n"); 1013 }}); 1014 0x20: deprecated_exit ({{ 1015 warn_once("deprecated M5 exit instruction encountered.\n"); 1016 PseudoInst::m5exit(xc->tcBase(), 0); 1017 }}, No_OpClass, IsNonSpeculative); 1018 0x21: m5exit({{ 1019 PseudoInst::m5exit(xc->tcBase(), R16); 1020 }}, No_OpClass, IsNonSpeculative); 1021 0x31: loadsymbol({{ 1022 PseudoInst::loadsymbol(xc->tcBase()); 1023 }}, No_OpClass, IsNonSpeculative); 1024 0x30: initparam({{ 1025 Ra = PseudoInst::initParam(xc->tcBase(), R16, R17); 1026 }}); 1027 0x40: resetstats({{ 1028 PseudoInst::resetstats(xc->tcBase(), R16, R17); 1029 }}, IsNonSpeculative); 1030 0x41: dumpstats({{ 1031 PseudoInst::dumpstats(xc->tcBase(), R16, R17); 1032 }}, IsNonSpeculative); 1033 0x42: dumpresetstats({{ 1034 PseudoInst::dumpresetstats(xc->tcBase(), R16, R17); 1035 }}, IsNonSpeculative); 1036 0x43: m5checkpoint({{ 1037 PseudoInst::m5checkpoint(xc->tcBase(), R16, R17); 1038 }}, IsNonSpeculative); 1039 0x50: m5readfile({{ 1040 R0 = PseudoInst::readfile(xc->tcBase(), R16, R17, R18); 1041 }}, IsNonSpeculative); 1042 0x51: m5break({{ 1043 PseudoInst::debugbreak(xc->tcBase()); 1044 }}, IsNonSpeculative); 1045 0x52: m5switchcpu({{ 1046 PseudoInst::switchcpu(xc->tcBase()); 1047 }}, IsNonSpeculative); 1048 0x53: m5addsymbol({{ 1049 PseudoInst::addsymbol(xc->tcBase(), R16, R17); 1050 }}, IsNonSpeculative); 1051 0x54: m5panic({{ 1052 panic("M5 panic instruction called at pc = %#x.", PC); 1053 }}, IsNonSpeculative); 1054#define CPANN(lbl) CPA::cpa()->lbl(xc->tcBase()) 1055 0x55: decode RA { 1056 0x00: m5a_old({{ 1057 panic("Deprecated M5 annotate instruction executed " 1058 "at pc = %#x\n", PC); 1059 }}, IsNonSpeculative); 1060 0x01: m5a_bsm({{ 1061 CPANN(swSmBegin); 1062 }}, IsNonSpeculative); 1063 0x02: m5a_esm({{ 1064 CPANN(swSmEnd); 1065 }}, IsNonSpeculative); 1066 0x03: m5a_begin({{ 1067 CPANN(swExplictBegin); 1068 }}, IsNonSpeculative); 1069 0x04: m5a_end({{ 1070 CPANN(swEnd); 1071 }}, IsNonSpeculative); 1072 0x06: m5a_q({{ 1073 CPANN(swQ); 1074 }}, IsNonSpeculative); 1075 0x07: m5a_dq({{ 1076 CPANN(swDq); 1077 }}, IsNonSpeculative); 1078 0x08: m5a_wf({{ 1079 CPANN(swWf); 1080 }}, IsNonSpeculative); 1081 0x09: m5a_we({{ 1082 CPANN(swWe); 1083 }}, IsNonSpeculative); 1084 0x0C: m5a_sq({{ 1085 CPANN(swSq); 1086 }}, IsNonSpeculative); 1087 0x0D: m5a_aq({{ 1088 CPANN(swAq); 1089 }}, IsNonSpeculative); 1090 0x0E: m5a_pq({{ 1091 CPANN(swPq); 1092 }}, IsNonSpeculative); 1093 0x0F: m5a_l({{ 1094 CPANN(swLink); 1095 }}, IsNonSpeculative); 1096 0x10: m5a_identify({{ 1097 CPANN(swIdentify); 1098 }}, IsNonSpeculative); 1099 0x11: m5a_getid({{ 1100 R0 = CPANN(swGetId); 1101 }}, IsNonSpeculative); 1102 0x13: m5a_scl({{ 1103 CPANN(swSyscallLink); 1104 }}, IsNonSpeculative); 1105 0x14: m5a_rq({{ 1106 CPANN(swRq); 1107 }}, IsNonSpeculative); 1108 } // M5 Annotate Operations 1109#undef CPANN 1110 0x56: m5reserved2({{ 1111 warn("M5 reserved opcode ignored"); 1112 }}, IsNonSpeculative); 1113 0x57: m5reserved3({{ 1114 warn("M5 reserved opcode ignored"); 1115 }}, IsNonSpeculative); 1116 0x58: m5reserved4({{ 1117 warn("M5 reserved opcode ignored"); 1118 }}, IsNonSpeculative); 1119 0x59: m5reserved5({{ 1120 warn("M5 reserved opcode ignored"); 1121 }}, IsNonSpeculative); 1122 } 1123 } 1124} 1125