decoder.isa revision 3458
1// -*- mode:c++ -*- 2 3// Copyright (c) 2003-2006 The Regents of The University of Michigan 4// All rights reserved. 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer; 10// redistributions in binary form must reproduce the above copyright 11// notice, this list of conditions and the following disclaimer in the 12// documentation and/or other materials provided with the distribution; 13// neither the name of the copyright holders nor the names of its 14// contributors may be used to endorse or promote products derived from 15// this software without specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28// 29// Authors: Steve Reinhardt 30 31//////////////////////////////////////////////////////////////////// 32// 33// The actual decoder specification 34// 35 36decode OPCODE default Unknown::unknown() { 37 38 format LoadAddress { 39 0x08: lda({{ Ra = Rb + disp; }}); 40 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 41 } 42 43 format LoadOrNop { 44 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 45 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 46 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 47 0x23: ldt({{ Fa = Mem.df; }}); 48 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 49 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 50#ifdef USE_COPY 51 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, 52 {{ fault = xc->copySrcTranslate(EA); }}, 53 inst_flags = [IsMemRef, IsLoad, IsCopy]); 54#endif 55 } 56 57 format LoadOrPrefetch { 58 0x28: ldl({{ Ra.sl = Mem.sl; }}); 59 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 60 // IsFloating flag on lds gets the prefetch to disassemble 61 // using f31 instead of r31... funcitonally it's unnecessary 62 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 63 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 64 } 65 66 format Store { 67 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 68 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 69 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 70 0x2d: stq({{ Mem.uq = Ra.uq; }}); 71 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 72 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 73 0x27: stt({{ Mem.df = Fa; }}); 74#ifdef USE_COPY 75 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, 76 {{ fault = xc->copy(EA); }}, 77 inst_flags = [IsMemRef, IsStore, IsCopy]); 78#endif 79 } 80 81 format StoreCond { 82 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 83 {{ 84 uint64_t tmp = write_result; 85 // see stq_c 86 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 87 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 88 0x2f: stq_c({{ Mem.uq = Ra; }}, 89 {{ 90 uint64_t tmp = write_result; 91 // If the write operation returns 0 or 1, then 92 // this was a conventional store conditional, 93 // and the value indicates the success/failure 94 // of the operation. If another value is 95 // returned, then this was a Turbolaser 96 // mailbox access, and we don't update the 97 // result register at all. 98 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 99 }}, mem_flags = LOCKED, inst_flags = IsStoreConditional); 100 } 101 102 format IntegerOperate { 103 104 0x10: decode INTFUNC { // integer arithmetic operations 105 106 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 107 0x40: addlv({{ 108 uint32_t tmp = Ra.sl + Rb_or_imm.sl; 109 // signed overflow occurs when operands have same sign 110 // and sign of result does not match. 111 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 112 fault = new IntegerOverflowFault; 113 Rc.sl = tmp; 114 }}); 115 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 116 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 117 118 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 119 0x60: addqv({{ 120 uint64_t tmp = Ra + Rb_or_imm; 121 // signed overflow occurs when operands have same sign 122 // and sign of result does not match. 123 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 124 fault = new IntegerOverflowFault; 125 Rc = tmp; 126 }}); 127 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 128 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 129 130 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 131 0x49: sublv({{ 132 uint32_t tmp = Ra.sl - Rb_or_imm.sl; 133 // signed overflow detection is same as for add, 134 // except we need to look at the *complemented* 135 // sign bit of the subtrahend (Rb), i.e., if the initial 136 // signs are the *same* then no overflow can occur 137 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 138 fault = new IntegerOverflowFault; 139 Rc.sl = tmp; 140 }}); 141 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 142 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 143 144 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 145 0x69: subqv({{ 146 uint64_t tmp = Ra - Rb_or_imm; 147 // signed overflow detection is same as for add, 148 // except we need to look at the *complemented* 149 // sign bit of the subtrahend (Rb), i.e., if the initial 150 // signs are the *same* then no overflow can occur 151 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 152 fault = new IntegerOverflowFault; 153 Rc = tmp; 154 }}); 155 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 156 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 157 158 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 159 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 160 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 161 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 162 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 163 164 0x0f: cmpbge({{ 165 int hi = 7; 166 int lo = 0; 167 uint64_t tmp = 0; 168 for (int i = 0; i < 8; ++i) { 169 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 170 hi += 8; 171 lo += 8; 172 } 173 Rc = tmp; 174 }}); 175 } 176 177 0x11: decode INTFUNC { // integer logical operations 178 179 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 180 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 181 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 182 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 183 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 184 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 185 186 // conditional moves 187 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 188 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 189 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 190 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 191 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 192 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 193 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 194 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 195 196 // For AMASK, RA must be R31. 197 0x61: decode RA { 198 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 199 } 200 201 // For IMPLVER, RA must be R31 and the B operand 202 // must be the immediate value 1. 203 0x6c: decode RA { 204 31: decode IMM { 205 1: decode INTIMM { 206 // return EV5 for FULL_SYSTEM and EV6 otherwise 207 1: implver({{ 208#if FULL_SYSTEM 209 Rc = 1; 210#else 211 Rc = 2; 212#endif 213 }}); 214 } 215 } 216 } 217 218#if FULL_SYSTEM 219 // The mysterious 11.25... 220 0x25: WarnUnimpl::eleven25(); 221#endif 222 } 223 224 0x12: decode INTFUNC { 225 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 226 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 227 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 228 229 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 230 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 231 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 232 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 233 234 0x52: mskwh({{ 235 int bv = Rb_or_imm<2:0>; 236 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 237 }}); 238 0x62: msklh({{ 239 int bv = Rb_or_imm<2:0>; 240 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 241 }}); 242 0x72: mskqh({{ 243 int bv = Rb_or_imm<2:0>; 244 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 245 }}); 246 247 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 248 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 249 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 250 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 251 252 0x5a: extwh({{ 253 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 254 0x6a: extlh({{ 255 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 256 0x7a: extqh({{ 257 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 258 259 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 260 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 261 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 262 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 263 264 0x57: inswh({{ 265 int bv = Rb_or_imm<2:0>; 266 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 267 }}); 268 0x67: inslh({{ 269 int bv = Rb_or_imm<2:0>; 270 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 271 }}); 272 0x77: insqh({{ 273 int bv = Rb_or_imm<2:0>; 274 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 275 }}); 276 277 0x30: zap({{ 278 uint64_t zapmask = 0; 279 for (int i = 0; i < 8; ++i) { 280 if (Rb_or_imm<i:>) 281 zapmask |= (mask(8) << (i * 8)); 282 } 283 Rc = Ra & ~zapmask; 284 }}); 285 0x31: zapnot({{ 286 uint64_t zapmask = 0; 287 for (int i = 0; i < 8; ++i) { 288 if (!Rb_or_imm<i:>) 289 zapmask |= (mask(8) << (i * 8)); 290 } 291 Rc = Ra & ~zapmask; 292 }}); 293 } 294 295 0x13: decode INTFUNC { // integer multiplies 296 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 297 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 298 0x30: umulh({{ 299 uint64_t hi, lo; 300 mul128(Ra, Rb_or_imm, hi, lo); 301 Rc = hi; 302 }}, IntMultOp); 303 0x40: mullv({{ 304 // 32-bit multiply with trap on overflow 305 int64_t Rax = Ra.sl; // sign extended version of Ra.sl 306 int64_t Rbx = Rb_or_imm.sl; 307 int64_t tmp = Rax * Rbx; 308 // To avoid overflow, all the upper 32 bits must match 309 // the sign bit of the lower 32. We code this as 310 // checking the upper 33 bits for all 0s or all 1s. 311 uint64_t sign_bits = tmp<63:31>; 312 if (sign_bits != 0 && sign_bits != mask(33)) 313 fault = new IntegerOverflowFault; 314 Rc.sl = tmp<31:0>; 315 }}, IntMultOp); 316 0x60: mulqv({{ 317 // 64-bit multiply with trap on overflow 318 uint64_t hi, lo; 319 mul128(Ra, Rb_or_imm, hi, lo); 320 // all the upper 64 bits must match the sign bit of 321 // the lower 64 322 if (!((hi == 0 && lo<63:> == 0) || 323 (hi == mask(64) && lo<63:> == 1))) 324 fault = new IntegerOverflowFault; 325 Rc = lo; 326 }}, IntMultOp); 327 } 328 329 0x1c: decode INTFUNC { 330 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 331 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 332 0x32: ctlz({{ 333 uint64_t count = 0; 334 uint64_t temp = Rb; 335 if (temp<63:32>) temp >>= 32; else count += 32; 336 if (temp<31:16>) temp >>= 16; else count += 16; 337 if (temp<15:8>) temp >>= 8; else count += 8; 338 if (temp<7:4>) temp >>= 4; else count += 4; 339 if (temp<3:2>) temp >>= 2; else count += 2; 340 if (temp<1:1>) temp >>= 1; else count += 1; 341 if ((temp<0:0>) != 0x1) count += 1; 342 Rc = count; 343 }}, IntAluOp); 344 345 0x33: cttz({{ 346 uint64_t count = 0; 347 uint64_t temp = Rb; 348 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 349 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 350 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 351 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 352 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 353 if (!(temp<0:0> & ULL(0x1))) count += 1; 354 Rc = count; 355 }}, IntAluOp); 356 357 format FailUnimpl { 358 0x30: ctpop(); 359 0x31: perr(); 360 0x34: unpkbw(); 361 0x35: unpkbl(); 362 0x36: pkwb(); 363 0x37: pklb(); 364 0x38: minsb8(); 365 0x39: minsw4(); 366 0x3a: minub8(); 367 0x3b: minuw4(); 368 0x3c: maxub8(); 369 0x3d: maxuw4(); 370 0x3e: maxsb8(); 371 0x3f: maxsw4(); 372 } 373 374 format BasicOperateWithNopCheck { 375 0x70: decode RB { 376 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 377 } 378 0x78: decode RB { 379 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 380 FloatCvtOp); 381 } 382 } 383 } 384 } 385 386 // Conditional branches. 387 format CondBranch { 388 0x39: beq({{ cond = (Ra == 0); }}); 389 0x3d: bne({{ cond = (Ra != 0); }}); 390 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 391 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 392 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 393 0x3a: blt({{ cond = (Ra.sq < 0); }}); 394 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 395 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 396 397 0x31: fbeq({{ cond = (Fa == 0); }}); 398 0x35: fbne({{ cond = (Fa != 0); }}); 399 0x36: fbge({{ cond = (Fa >= 0); }}); 400 0x37: fbgt({{ cond = (Fa > 0); }}); 401 0x33: fble({{ cond = (Fa <= 0); }}); 402 0x32: fblt({{ cond = (Fa < 0); }}); 403 } 404 405 // unconditional branches 406 format UncondBranch { 407 0x30: br(); 408 0x34: bsr(IsCall); 409 } 410 411 // indirect branches 412 0x1a: decode JMPFUNC { 413 format Jump { 414 0: jmp(); 415 1: jsr(IsCall); 416 2: ret(IsReturn); 417 3: jsr_coroutine(IsCall, IsReturn); 418 } 419 } 420 421 // Square root and integer-to-FP moves 422 0x14: decode FP_SHORTFUNC { 423 // Integer to FP register moves must have RB == 31 424 0x4: decode RB { 425 31: decode FP_FULLFUNC { 426 format BasicOperateWithNopCheck { 427 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 428 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 429 0x014: FailUnimpl::itoff(); // VAX-format conversion 430 } 431 } 432 } 433 434 // Square root instructions must have FA == 31 435 0xb: decode FA { 436 31: decode FP_TYPEFUNC { 437 format FloatingPointOperate { 438#if SS_COMPATIBLE_FP 439 0x0b: sqrts({{ 440 if (Fb < 0.0) 441 fault = new ArithmeticFault; 442 Fc = sqrt(Fb); 443 }}, FloatSqrtOp); 444#else 445 0x0b: sqrts({{ 446 if (Fb.sf < 0.0) 447 fault = new ArithmeticFault; 448 Fc.sf = sqrt(Fb.sf); 449 }}, FloatSqrtOp); 450#endif 451 0x2b: sqrtt({{ 452 if (Fb < 0.0) 453 fault = new ArithmeticFault; 454 Fc = sqrt(Fb); 455 }}, FloatSqrtOp); 456 } 457 } 458 } 459 460 // VAX-format sqrtf and sqrtg are not implemented 461 0xa: FailUnimpl::sqrtfg(); 462 } 463 464 // IEEE floating point 465 0x16: decode FP_SHORTFUNC_TOP2 { 466 // The top two bits of the short function code break this 467 // space into four groups: binary ops, compares, reserved, and 468 // conversions. See Table 4-12 of AHB. There are different 469 // special cases in these different groups, so we decode on 470 // these top two bits first just to select a decode strategy. 471 // Most of these instructions may have various trapping and 472 // rounding mode flags set; these are decoded in the 473 // FloatingPointDecode template used by the 474 // FloatingPointOperate format. 475 476 // add/sub/mul/div: just decode on the short function code 477 // and source type. All valid trapping and rounding modes apply. 478 0: decode FP_TRAPMODE { 479 // check for valid trapping modes here 480 0,1,5,7: decode FP_TYPEFUNC { 481 format FloatingPointOperate { 482#if SS_COMPATIBLE_FP 483 0x00: adds({{ Fc = Fa + Fb; }}); 484 0x01: subs({{ Fc = Fa - Fb; }}); 485 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 486 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 487#else 488 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 489 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 490 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 491 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 492#endif 493 494 0x20: addt({{ Fc = Fa + Fb; }}); 495 0x21: subt({{ Fc = Fa - Fb; }}); 496 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 497 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 498 } 499 } 500 } 501 502 // Floating-point compare instructions must have the default 503 // rounding mode, and may use the default trapping mode or 504 // /SU. Both trapping modes are treated the same by M5; the 505 // only difference on the real hardware (as far a I can tell) 506 // is that without /SU you'd get an imprecise trap if you 507 // tried to compare a NaN with something else (instead of an 508 // "unordered" result). 509 1: decode FP_FULLFUNC { 510 format BasicOperateWithNopCheck { 511 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 512 FloatCmpOp); 513 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 514 FloatCmpOp); 515 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 516 FloatCmpOp); 517 0x0a4, 0x5a4: cmptun({{ // unordered 518 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 519 }}, FloatCmpOp); 520 } 521 } 522 523 // The FP-to-integer and integer-to-FP conversion insts 524 // require that FA be 31. 525 3: decode FA { 526 31: decode FP_TYPEFUNC { 527 format FloatingPointOperate { 528 0x2f: decode FP_ROUNDMODE { 529 format FPFixedRounding { 530 // "chopped" i.e. round toward zero 531 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 532 Chopped); 533 // round to minus infinity 534 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 535 MinusInfinity); 536 } 537 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 538 } 539 540 // The cvtts opcode is overloaded to be cvtst if the trap 541 // mode is 2 or 6 (which are not valid otherwise) 542 0x2c: decode FP_FULLFUNC { 543 format BasicOperateWithNopCheck { 544 // trap on denorm version "cvtst/s" is 545 // simulated same as cvtst 546 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 547 } 548 default: cvtts({{ Fc.sf = Fb; }}); 549 } 550 551 // The trapping mode for integer-to-FP conversions 552 // must be /SUI or nothing; /U and /SU are not 553 // allowed. The full set of rounding modes are 554 // supported though. 555 0x3c: decode FP_TRAPMODE { 556 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 557 } 558 0x3e: decode FP_TRAPMODE { 559 0,7: cvtqt({{ Fc = Fb.sq; }}); 560 } 561 } 562 } 563 } 564 } 565 566 // misc FP operate 567 0x17: decode FP_FULLFUNC { 568 format BasicOperateWithNopCheck { 569 0x010: cvtlq({{ 570 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 571 }}); 572 0x030: cvtql({{ 573 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 574 }}); 575 576 // We treat the precise & imprecise trapping versions of 577 // cvtql identically. 578 0x130, 0x530: cvtqlv({{ 579 // To avoid overflow, all the upper 32 bits must match 580 // the sign bit of the lower 32. We code this as 581 // checking the upper 33 bits for all 0s or all 1s. 582 uint64_t sign_bits = Fb.uq<63:31>; 583 if (sign_bits != 0 && sign_bits != mask(33)) 584 fault = new IntegerOverflowFault; 585 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 586 }}); 587 588 0x020: cpys({{ // copy sign 589 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 590 }}); 591 0x021: cpysn({{ // copy sign negated 592 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 593 }}); 594 0x022: cpyse({{ // copy sign and exponent 595 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 596 }}); 597 598 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 599 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 600 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 601 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 602 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 603 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 604 605 0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess); 606 0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess); 607 } 608 } 609 610 // miscellaneous mem-format ops 611 0x18: decode MEMFUNC { 612 format WarnUnimpl { 613 0x8000: fetch(); 614 0xa000: fetch_m(); 615 0xe800: ecb(); 616 } 617 618 format MiscPrefetch { 619 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 620 {{ xc->writeHint(EA, 64, memAccessFlags); }}, 621 mem_flags = NO_FAULT, 622 inst_flags = [IsMemRef, IsDataPrefetch, 623 IsStore, MemWriteOp]); 624 } 625 626 format BasicOperate { 627 0xc000: rpcc({{ 628#if FULL_SYSTEM 629 /* Rb is a fake dependency so here is a fun way to get 630 * the parser to understand that. 631 */ 632 Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0); 633 634#else 635 Ra = curTick; 636#endif 637 }}, IsUnverifiable); 638 639 // All of the barrier instructions below do nothing in 640 // their execute() methods (hence the empty code blocks). 641 // All of their functionality is hard-coded in the 642 // pipeline based on the flags IsSerializing, 643 // IsMemBarrier, and IsWriteBarrier. In the current 644 // detailed CPU model, the execute() function only gets 645 // called at fetch, so there's no way to generate pipeline 646 // behavior at any other stage. Once we go to an 647 // exec-in-exec CPU model we should be able to get rid of 648 // these flags and implement this behavior via the 649 // execute() methods. 650 651 // trapb is just a barrier on integer traps, where excb is 652 // a barrier on integer and FP traps. "EXCB is thus a 653 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 654 // them the same though. 655 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 656 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); 657 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 658 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 659 } 660 661#if FULL_SYSTEM 662 format BasicOperate { 663 0xe000: rc({{ 664 Ra = IntrFlag; 665 IntrFlag = 0; 666 }}, IsNonSpeculative, IsUnverifiable); 667 0xf000: rs({{ 668 Ra = IntrFlag; 669 IntrFlag = 1; 670 }}, IsNonSpeculative, IsUnverifiable); 671 } 672#else 673 format FailUnimpl { 674 0xe000: rc(); 675 0xf000: rs(); 676 } 677#endif 678 } 679 680#if FULL_SYSTEM 681 0x00: CallPal::call_pal({{ 682 if (!palValid || 683 (palPriv 684 && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { 685 // invalid pal function code, or attempt to do privileged 686 // PAL call in non-kernel mode 687 fault = new UnimplementedOpcodeFault; 688 } 689 else { 690 // check to see if simulator wants to do something special 691 // on this PAL call (including maybe suppress it) 692 bool dopal = xc->simPalCheck(palFunc); 693 694 if (dopal) { 695 xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC); 696 NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset; 697 } 698 } 699 }}, IsNonSpeculative); 700#else 701 0x00: decode PALFUNC { 702 format EmulatedCallPal { 703 0x00: halt ({{ 704 exitSimLoop("halt instruction encountered"); 705 }}, IsNonSpeculative); 706 0x83: callsys({{ 707 xc->syscall(R0); 708 }}, IsSerializeAfter, IsNonSpeculative); 709 // Read uniq reg into ABI return value register (r0) 710 0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess); 711 // Write uniq reg with value from ABI arg register (r16) 712 0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess); 713 } 714 } 715#endif 716 717#if FULL_SYSTEM 718 0x1b: decode PALMODE { 719 0: OpcdecFault::hw_st_quad(); 720 1: decode HW_LDST_QUAD { 721 format HwLoad { 722 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 723 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); 724 } 725 } 726 } 727 728 0x1f: decode PALMODE { 729 0: OpcdecFault::hw_st_cond(); 730 format HwStore { 731 1: decode HW_LDST_COND { 732 0: decode HW_LDST_QUAD { 733 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 734 {{ Mem.ul = Ra<31:0>; }}, L); 735 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 736 {{ Mem.uq = Ra.uq; }}, Q); 737 } 738 739 1: FailUnimpl::hw_st_cond(); 740 } 741 } 742 } 743 744 0x19: decode PALMODE { 745 0: OpcdecFault::hw_mfpr(); 746 format HwMoveIPR { 747 1: hw_mfpr({{ 748 int miscRegIndex = IprToMiscRegIndex[ipr_index]; 749 if(miscRegIndex < 0 || 750 (miscRegIndex >= MinWriteOnlyIpr && 751 miscRegIndex <= MaxWriteOnlyIpr)) 752 fault = new UnimplementedOpcodeFault; 753 else 754 Ra = xc->readMiscRegWithEffect(miscRegIndex, fault); 755 }}, IsIprAccess); 756 } 757 } 758 759 0x1d: decode PALMODE { 760 0: OpcdecFault::hw_mtpr(); 761 format HwMoveIPR { 762 1: hw_mtpr({{ 763 int miscRegIndex = IprToMiscRegIndex[ipr_index]; 764 if(miscRegIndex < 0 || 765 (miscRegIndex >= MinReadOnlyIpr && 766 miscRegIndex <= MaxWriteOnlyIpr)) 767 fault = new UnimplementedOpcodeFault; 768 else 769 xc->setMiscRegWithEffect(miscRegIndex, Ra); 770 if (traceData) { traceData->setData(Ra); } 771 }}, IsIprAccess); 772 } 773 } 774 775 format BasicOperate { 776 0x1e: decode PALMODE { 777 0: OpcdecFault::hw_rei(); 778 1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); 779 } 780 781 // M5 special opcodes use the reserved 0x01 opcode space 782 0x01: decode M5FUNC { 783 0x00: arm({{ 784 AlphaPseudo::arm(xc->tcBase()); 785 }}, IsNonSpeculative); 786 0x01: quiesce({{ 787 AlphaPseudo::quiesce(xc->tcBase()); 788 }}, IsNonSpeculative, IsQuiesce); 789 0x02: quiesceNs({{ 790 AlphaPseudo::quiesceNs(xc->tcBase(), R16); 791 }}, IsNonSpeculative, IsQuiesce); 792 0x03: quiesceCycles({{ 793 AlphaPseudo::quiesceCycles(xc->tcBase(), R16); 794 }}, IsNonSpeculative, IsQuiesce, IsUnverifiable); 795 0x04: quiesceTime({{ 796 R0 = AlphaPseudo::quiesceTime(xc->tcBase()); 797 }}, IsNonSpeculative, IsUnverifiable); 798 0x10: ivlb({{ 799 AlphaPseudo::ivlb(xc->tcBase()); 800 }}, No_OpClass, IsNonSpeculative); 801 0x11: ivle({{ 802 AlphaPseudo::ivle(xc->tcBase()); 803 }}, No_OpClass, IsNonSpeculative); 804 0x20: m5exit_old({{ 805 AlphaPseudo::m5exit_old(xc->tcBase()); 806 }}, No_OpClass, IsNonSpeculative); 807 0x21: m5exit({{ 808 AlphaPseudo::m5exit(xc->tcBase(), R16); 809 }}, No_OpClass, IsNonSpeculative); 810 0x31: loadsymbol({{ 811 AlphaPseudo::loadsymbol(xc->tcBase()); 812 }}, No_OpClass, IsNonSpeculative); 813 0x30: initparam({{ Ra = xc->tcBase()->getCpuPtr()->system->init_param; }}); 814 0x40: resetstats({{ 815 AlphaPseudo::resetstats(xc->tcBase(), R16, R17); 816 }}, IsNonSpeculative); 817 0x41: dumpstats({{ 818 AlphaPseudo::dumpstats(xc->tcBase(), R16, R17); 819 }}, IsNonSpeculative); 820 0x42: dumpresetstats({{ 821 AlphaPseudo::dumpresetstats(xc->tcBase(), R16, R17); 822 }}, IsNonSpeculative); 823 0x43: m5checkpoint({{ 824 AlphaPseudo::m5checkpoint(xc->tcBase(), R16, R17); 825 }}, IsNonSpeculative); 826 0x50: m5readfile({{ 827 R0 = AlphaPseudo::readfile(xc->tcBase(), R16, R17, R18); 828 }}, IsNonSpeculative); 829 0x51: m5break({{ 830 AlphaPseudo::debugbreak(xc->tcBase()); 831 }}, IsNonSpeculative); 832 0x52: m5switchcpu({{ 833 AlphaPseudo::switchcpu(xc->tcBase()); 834 }}, IsNonSpeculative); 835 0x53: m5addsymbol({{ 836 AlphaPseudo::addsymbol(xc->tcBase(), R16, R17); 837 }}, IsNonSpeculative); 838 0x54: m5panic({{ 839 panic("M5 panic instruction called at pc=%#x.", xc->readPC()); 840 }}, IsNonSpeculative); 841 0x55: m5anBegin({{ 842 AlphaPseudo::anBegin(xc->tcBase(), R16); 843 }}, IsNonSpeculative); 844 0x56: m5anWait({{ 845 AlphaPseudo::anWait(xc->tcBase(), R16, R17); 846 }}, IsNonSpeculative); 847 } 848 } 849#endif 850} 851