decoder.isa revision 2667:fe64b8353b1c
12SN/A// -*- mode:c++ -*-
29428SAndreas.Sandberg@ARM.com
39920Syasuko.eckert@amd.com// Copyright (c) 2003-2006 The Regents of The University of Michigan
48733Sgeoffrey.blake@arm.com// All rights reserved.
58733Sgeoffrey.blake@arm.com//
68733Sgeoffrey.blake@arm.com// Redistribution and use in source and binary forms, with or without
78733Sgeoffrey.blake@arm.com// modification, are permitted provided that the following conditions are
88733Sgeoffrey.blake@arm.com// met: redistributions of source code must retain the above copyright
98733Sgeoffrey.blake@arm.com// notice, this list of conditions and the following disclaimer;
108733Sgeoffrey.blake@arm.com// redistributions in binary form must reproduce the above copyright
118733Sgeoffrey.blake@arm.com// notice, this list of conditions and the following disclaimer in the
128733Sgeoffrey.blake@arm.com// documentation and/or other materials provided with the distribution;
138733Sgeoffrey.blake@arm.com// neither the name of the copyright holders nor the names of its
148733Sgeoffrey.blake@arm.com// contributors may be used to endorse or promote products derived from
152190SN/A// this software without specific prior written permission.
162SN/A//
172SN/A// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
182SN/A// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
192SN/A// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
202SN/A// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
212SN/A// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
222SN/A// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
232SN/A// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
242SN/A// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
252SN/A// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
262SN/A// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
272SN/A// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
282SN/A//
292SN/A// Authors: Steve Reinhardt
302SN/A
312SN/A////////////////////////////////////////////////////////////////////
322SN/A//
332SN/A// The actual decoder specification
342SN/A//
352SN/A
362SN/Adecode OPCODE default Unknown::unknown() {
372SN/A
382SN/A    format LoadAddress {
392SN/A        0x08: lda({{ Ra = Rb + disp; }});
402665SN/A        0x09: ldah({{ Ra = Rb + (disp << 16); }});
412665SN/A    }
422SN/A
432SN/A    format LoadOrNop {
442680Sktlim@umich.edu        0x0a: ldbu({{ Ra.uq = Mem.ub; }});
452680Sktlim@umich.edu        0x0c: ldwu({{ Ra.uq = Mem.uw; }});
462SN/A        0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
478229Snate@binkert.org        0x23: ldt({{ Fa = Mem.df; }});
487680Sgblack@eecs.umich.edu        0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
497680Sgblack@eecs.umich.edu        0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
506329Sgblack@eecs.umich.edu        0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
513453Sgblack@eecs.umich.edu                                      {{ fault = xc->copySrcTranslate(EA); }},
526216Snate@binkert.org                                      inst_flags = [IsMemRef, IsLoad, IsCopy]);
536658Snate@binkert.org    }
542SN/A
552190SN/A    format LoadOrPrefetch {
562190SN/A        0x28: ldl({{ Ra.sl = Mem.sl; }});
573453Sgblack@eecs.umich.edu        0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
583453Sgblack@eecs.umich.edu        // IsFloating flag on lds gets the prefetch to disassemble
599020Sgblack@eecs.umich.edu        // using f31 instead of r31... funcitonally it's unnecessary
606022Sgblack@eecs.umich.edu        0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
613453Sgblack@eecs.umich.edu                  pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
622190SN/A    }
638887Sgeoffrey.blake@arm.com
647680Sgblack@eecs.umich.edu    format Store {
652313SN/A        0x0e: stb({{ Mem.ub = Ra<7:0>; }});
668706Sandreas.hansson@arm.com        0x0d: stw({{ Mem.uw = Ra<15:0>; }});
678706Sandreas.hansson@arm.com        0x2c: stl({{ Mem.ul = Ra<31:0>; }});
688706Sandreas.hansson@arm.com        0x2d: stq({{ Mem.uq = Ra.uq; }});
692190SN/A        0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
702190SN/A        0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
713548Sgblack@eecs.umich.edu        0x27: stt({{ Mem.df = Fa; }});
723548Sgblack@eecs.umich.edu        0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
733548Sgblack@eecs.umich.edu                                       {{ fault = xc->copy(EA); }},
748902Sandreas.hansson@arm.com                                       inst_flags = [IsMemRef, IsStore, IsCopy]);
758902Sandreas.hansson@arm.com    }
762SN/A
772680Sktlim@umich.edu    format StoreCond {
782680Sktlim@umich.edu        0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
792680Sktlim@umich.edu                    {{
802680Sktlim@umich.edu                        uint64_t tmp = write_result;
812680Sktlim@umich.edu                        // see stq_c
822680Sktlim@umich.edu                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
832680Sktlim@umich.edu                    }}, mem_flags = LOCKED);
842680Sktlim@umich.edu        0x2f: stq_c({{ Mem.uq = Ra; }},
852680Sktlim@umich.edu                    {{
862680Sktlim@umich.edu                        uint64_t tmp = write_result;
872680Sktlim@umich.edu                        // If the write operation returns 0 or 1, then
882682Sktlim@umich.edu                        // this was a conventional store conditional,
892680Sktlim@umich.edu                        // and the value indicates the success/failure
902680Sktlim@umich.edu                        // of the operation.  If another value is
912680Sktlim@umich.edu                        // returned, then this was a Turbolaser
922680Sktlim@umich.edu                        // mailbox access, and we don't update the
932680Sktlim@umich.edu                        // result register at all.
942SN/A                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
952107SN/A                    }}, mem_flags = LOCKED);
962107SN/A    }
972190SN/A
982455SN/A    format IntegerOperate {
992455SN/A
1009920Syasuko.eckert@amd.com        0x10: decode INTFUNC {	// integer arithmetic operations
1012159SN/A
1022SN/A            0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
1036029Ssteve.reinhardt@amd.com            0x40: addlv({{
104246SN/A                uint32_t tmp  = Ra.sl + Rb_or_imm.sl;
105246SN/A                // signed overflow occurs when operands have same sign
106246SN/A                // and sign of result does not match.
107246SN/A                if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
108246SN/A                    fault = new IntegerOverflowFault;
109246SN/A                Rc.sl = tmp;
110246SN/A            }});
1112190SN/A            0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
112246SN/A            0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
113246SN/A
114246SN/A            0x20: addq({{ Rc = Ra + Rb_or_imm; }});
115246SN/A            0x60: addqv({{
116246SN/A                uint64_t tmp = Ra + Rb_or_imm;
117246SN/A                // signed overflow occurs when operands have same sign
118246SN/A                // and sign of result does not match.
1192SN/A                if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1202680Sktlim@umich.edu                    fault = new IntegerOverflowFault;
1212423SN/A                Rc = tmp;
1222190SN/A            }});
123180SN/A            0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
12410110Sandreas.hansson@arm.com            0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
1252190SN/A
12610190Sakash.bagdia@arm.com            0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
12710190Sakash.bagdia@arm.com            0x49: sublv({{
12810110Sandreas.hansson@arm.com                uint32_t tmp  = Ra.sl - Rb_or_imm.sl;
1295715Shsul@eecs.umich.edu                // signed overflow detection is same as for add,
1305715Shsul@eecs.umich.edu                // except we need to look at the *complemented*
1315714Shsul@eecs.umich.edu                // sign bit of the subtrahend (Rb), i.e., if the initial
13210110Sandreas.hansson@arm.com                // signs are the *same* then no overflow can occur
1335714Shsul@eecs.umich.edu                if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1345714Shsul@eecs.umich.edu                    fault = new IntegerOverflowFault;
1355714Shsul@eecs.umich.edu                Rc.sl = tmp;
1366022Sgblack@eecs.umich.edu            }});
1372190SN/A            0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
1386022Sgblack@eecs.umich.edu            0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
1392521SN/A
1408887Sgeoffrey.blake@arm.com            0x29: subq({{ Rc = Ra - Rb_or_imm; }});
1418733Sgeoffrey.blake@arm.com            0x69: subqv({{
1429020Sgblack@eecs.umich.edu                uint64_t tmp  = Ra - Rb_or_imm;
1438541Sgblack@eecs.umich.edu                // signed overflow detection is same as for add,
1444997Sgblack@eecs.umich.edu                // except we need to look at the *complemented*
1454997Sgblack@eecs.umich.edu                // sign bit of the subtrahend (Rb), i.e., if the initial
1463548Sgblack@eecs.umich.edu                // signs are the *same* then no overflow can occur
1472654SN/A                if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1488852Sandreas.hansson@arm.com                    fault = new IntegerOverflowFault;
1492521SN/A                Rc = tmp;
1508852Sandreas.hansson@arm.com            }});
1513673Srdreslin@umich.edu            0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
1528706Sandreas.hansson@arm.com            0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
1538706Sandreas.hansson@arm.com
1548706Sandreas.hansson@arm.com            0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
1558706Sandreas.hansson@arm.com            0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
1568706Sandreas.hansson@arm.com            0x4d: cmplt({{ Rc = (Ra.sq <  Rb_or_imm.sq); }});
1578706Sandreas.hansson@arm.com            0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
1588706Sandreas.hansson@arm.com            0x1d: cmpult({{ Rc = (Ra.uq <  Rb_or_imm.uq); }});
1598799Sgblack@eecs.umich.edu
1608852Sandreas.hansson@arm.com            0x0f: cmpbge({{
1612518SN/A                int hi = 7;
1622190SN/A                int lo = 0;
1632190SN/A                uint64_t tmp = 0;
1642190SN/A                for (int i = 0; i < 8; ++i) {
1652159SN/A                    tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
1662235SN/A                    hi += 8;
1672103SN/A                    lo += 8;
168393SN/A                }
169393SN/A                Rc = tmp;
1709180Sandreas.hansson@arm.com            }});
171393SN/A        }
172393SN/A
1739180Sandreas.hansson@arm.com        0x11: decode INTFUNC {	// integer logical operations
174393SN/A
175393SN/A            0x00: and({{ Rc = Ra & Rb_or_imm; }});
1769180Sandreas.hansson@arm.com            0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
1772159SN/A            0x20: bis({{ Rc = Ra | Rb_or_imm; }});
1782190SN/A            0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
1792159SN/A            0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
1802680Sktlim@umich.edu            0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
1812159SN/A
1822190SN/A            // conditional moves
1832159SN/A            0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
1842313SN/A            0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
1852235SN/A            0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
1862235SN/A            0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
1872235SN/A            0x44: cmovlt({{ Rc = (Ra.sq <  0) ? Rb_or_imm : Rc; }});
1882235SN/A            0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
1892235SN/A            0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
1902254SN/A            0x66: cmovgt({{ Rc = (Ra.sq >  0) ? Rb_or_imm : Rc; }});
1912254SN/A
1922254SN/A            // For AMASK, RA must be R31.
1932235SN/A            0x61: decode RA {
1942680Sktlim@umich.edu                31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
1952159SN/A            }
1962190SN/A
1972159SN/A            // For IMPLVER, RA must be R31 and the B operand
1982159SN/A            // must be the immediate value 1.
1992159SN/A            0x6c: decode RA {
2002159SN/A                31: decode IMM {
2012190SN/A                    1: decode INTIMM {
2022159SN/A                        // return EV5 for FULL_SYSTEM and EV6 otherwise
2032455SN/A                        1: implver({{
2042159SN/A#if FULL_SYSTEM
2052455SN/A                             Rc = 1;
2062159SN/A#else
2079920Syasuko.eckert@amd.com                             Rc = 2;
2089920Syasuko.eckert@amd.com#endif
2092190SN/A                        }});
2102159SN/A                    }
2112455SN/A                }
2122159SN/A            }
2132455SN/A
2142455SN/A#if FULL_SYSTEM
2159920Syasuko.eckert@amd.com            // The mysterious 11.25...
2169920Syasuko.eckert@amd.com            0x25: WarnUnimpl::eleven25();
2177720Sgblack@eecs.umich.edu#endif
2182159SN/A        }
2197720Sgblack@eecs.umich.edu
2202159SN/A        0x12: decode INTFUNC {
2218733Sgeoffrey.blake@arm.com            0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
2228733Sgeoffrey.blake@arm.com            0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
2237720Sgblack@eecs.umich.edu            0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
2242159SN/A
2257720Sgblack@eecs.umich.edu            0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
2262159SN/A            0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
2277720Sgblack@eecs.umich.edu            0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
2285260Sksewell@umich.edu            0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
2294172Ssaidi@eecs.umich.edu
2304172Ssaidi@eecs.umich.edu            0x52: mskwh({{
2312190SN/A                int bv = Rb_or_imm<2:0>;
2322159SN/A                Rc =  bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
2334172Ssaidi@eecs.umich.edu            }});
2342190SN/A            0x62: msklh({{
2353468Sgblack@eecs.umich.edu                int bv = Rb_or_imm<2:0>;
2362190SN/A                Rc =  bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
2376313Sgblack@eecs.umich.edu            }});
2386313Sgblack@eecs.umich.edu            0x72: mskqh({{
2399920Syasuko.eckert@amd.com                int bv = Rb_or_imm<2:0>;
24010033SAli.Saidi@ARM.com                Rc =  bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
2416313Sgblack@eecs.umich.edu            }});
2426221Snate@binkert.org
2436221Snate@binkert.org            0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
2446221Snate@binkert.org            0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
2456221Snate@binkert.org            0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
2466221Snate@binkert.org            0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
2474661Sksewell@umich.edu
2486221Snate@binkert.org            0x5a: extwh({{
2496221Snate@binkert.org                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
2506221Snate@binkert.org            0x6a: extlh({{
2516221Snate@binkert.org                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
2524661Sksewell@umich.edu            0x7a: extqh({{
2532235SN/A                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
2542235SN/A
2552190SN/A            0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
2562190SN/A            0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
2572190SN/A            0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
2582159SN/A            0x3b: insql({{ Rc = Ra       << (Rb_or_imm<2:0> * 8); }});
2592235SN/A
2602190SN/A            0x57: inswh({{
2612190SN/A                int bv = Rb_or_imm<2:0>;
2622235SN/A                Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
2632190SN/A            }});
2642834Sksewell@umich.edu            0x67: inslh({{
2654111Sgblack@eecs.umich.edu                int bv = Rb_or_imm<2:0>;
2664111Sgblack@eecs.umich.edu                Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
2672834Sksewell@umich.edu            }});
2682834Sksewell@umich.edu            0x77: insqh({{
2692834Sksewell@umich.edu                int bv = Rb_or_imm<2:0>;
2702834Sksewell@umich.edu                Rc = bv ? (Ra.uq       >> (64 - 8 * bv)) : 0;
2712525SN/A            }});
2725217Ssaidi@eecs.umich.edu
2735217Ssaidi@eecs.umich.edu            0x30: zap({{
2749426SAndreas.Sandberg@ARM.com                uint64_t zapmask = 0;
2759426SAndreas.Sandberg@ARM.com                for (int i = 0; i < 8; ++i) {
2769426SAndreas.Sandberg@ARM.com                    if (Rb_or_imm<i:>)
2779426SAndreas.Sandberg@ARM.com                        zapmask |= (mask(8) << (i * 8));
2789426SAndreas.Sandberg@ARM.com                }
2799426SAndreas.Sandberg@ARM.com                Rc = Ra & ~zapmask;
2809426SAndreas.Sandberg@ARM.com            }});
2819426SAndreas.Sandberg@ARM.com            0x31: zapnot({{
2829426SAndreas.Sandberg@ARM.com                uint64_t zapmask = 0;
2839426SAndreas.Sandberg@ARM.com                for (int i = 0; i < 8; ++i) {
2849426SAndreas.Sandberg@ARM.com                    if (!Rb_or_imm<i:>)
2859426SAndreas.Sandberg@ARM.com                        zapmask |= (mask(8) << (i * 8));
2869426SAndreas.Sandberg@ARM.com                }
2879426SAndreas.Sandberg@ARM.com                Rc = Ra & ~zapmask;
2889426SAndreas.Sandberg@ARM.com            }});
2899426SAndreas.Sandberg@ARM.com        }
2909426SAndreas.Sandberg@ARM.com
2919426SAndreas.Sandberg@ARM.com        0x13: decode INTFUNC {	// integer multiplies
2929426SAndreas.Sandberg@ARM.com            0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
2939426SAndreas.Sandberg@ARM.com            0x20: mulq({{ Rc    = Ra    * Rb_or_imm;    }}, IntMultOp);
2949426SAndreas.Sandberg@ARM.com            0x30: umulh({{
2959426SAndreas.Sandberg@ARM.com                uint64_t hi, lo;
2969920Syasuko.eckert@amd.com                mul128(Ra, Rb_or_imm, hi, lo);
2979920Syasuko.eckert@amd.com                Rc = hi;
2989426SAndreas.Sandberg@ARM.com            }}, IntMultOp);
2999426SAndreas.Sandberg@ARM.com            0x40: mullv({{
3002159SN/A                // 32-bit multiply with trap on overflow
3012159SN/A                int64_t Rax = Ra.sl;	// sign extended version of Ra.sl
3022682Sktlim@umich.edu                int64_t Rbx = Rb_or_imm.sl;
3032682Sktlim@umich.edu                int64_t tmp = Rax * Rbx;
3042682Sktlim@umich.edu                // To avoid overflow, all the upper 32 bits must match
3052682Sktlim@umich.edu                // the sign bit of the lower 32.  We code this as
3062682Sktlim@umich.edu                // checking the upper 33 bits for all 0s or all 1s.
3072682Sktlim@umich.edu                uint64_t sign_bits = tmp<63:31>;
3082682Sktlim@umich.edu                if (sign_bits != 0 && sign_bits != mask(33))
3092682Sktlim@umich.edu                    fault = new IntegerOverflowFault;
3102682Sktlim@umich.edu                Rc.sl = tmp<31:0>;
3112682Sktlim@umich.edu            }}, IntMultOp);
3122680Sktlim@umich.edu            0x60: mulqv({{
3132680Sktlim@umich.edu                // 64-bit multiply with trap on overflow
3142190SN/A                uint64_t hi, lo;
3152190SN/A                mul128(Ra, Rb_or_imm, hi, lo);
3162680Sktlim@umich.edu                // all the upper 64 bits must match the sign bit of
3172680Sktlim@umich.edu                // the lower 64
3182159SN/A                if (!((hi == 0 && lo<63:> == 0) ||
3192190SN/A                      (hi == mask(64) && lo<63:> == 1)))
3202680Sktlim@umich.edu                    fault = new IntegerOverflowFault;
3212SN/A                Rc = lo;
3222SN/A            }}, IntMultOp);
3232SN/A        }
3242680Sktlim@umich.edu
3252SN/A        0x1c: decode INTFUNC {
32610110Sandreas.hansson@arm.com            0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
3272SN/A            0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
32810190Sakash.bagdia@arm.com            0x32: ctlz({{
32910190Sakash.bagdia@arm.com                             uint64_t count = 0;
33010110Sandreas.hansson@arm.com                             uint64_t temp = Rb;
3315715Shsul@eecs.umich.edu                             if (temp<63:32>) temp >>= 32; else count += 32;
33210110Sandreas.hansson@arm.com                             if (temp<31:16>) temp >>= 16; else count += 16;
3335714Shsul@eecs.umich.edu                             if (temp<15:8>) temp >>= 8; else count += 8;
33410110Sandreas.hansson@arm.com                             if (temp<7:4>) temp >>= 4; else count += 4;
3355714Shsul@eecs.umich.edu                             if (temp<3:2>) temp >>= 2; else count += 2;
3365714Shsul@eecs.umich.edu                             if (temp<1:1>) temp >>= 1; else count += 1;
3375714Shsul@eecs.umich.edu                             if ((temp<0:0>) != 0x1) count += 1;
3386022Sgblack@eecs.umich.edu                             Rc = count;
3391917SN/A                           }}, IntAluOp);
3406022Sgblack@eecs.umich.edu
3412521SN/A            0x33: cttz({{
3428887Sgeoffrey.blake@arm.com                             uint64_t count = 0;
3438733Sgeoffrey.blake@arm.com                             uint64_t temp = Rb;
3449020Sgblack@eecs.umich.edu                             if (!(temp<31:0>)) { temp >>= 32; count += 32; }
3458541Sgblack@eecs.umich.edu                             if (!(temp<15:0>)) { temp >>= 16; count += 16; }
3464997Sgblack@eecs.umich.edu                             if (!(temp<7:0>)) { temp >>= 8; count += 8; }
3474997Sgblack@eecs.umich.edu                             if (!(temp<3:0>)) { temp >>= 4; count += 4; }
3483548Sgblack@eecs.umich.edu                             if (!(temp<1:0>)) { temp >>= 2; count += 2; }
3493548Sgblack@eecs.umich.edu                             if (!(temp<0:0> & ULL(0x1))) count += 1;
3502654SN/A                             Rc = count;
3518852Sandreas.hansson@arm.com                           }}, IntAluOp);
3522521SN/A
3538852Sandreas.hansson@arm.com            format FailUnimpl {
3543673Srdreslin@umich.edu                0x30: ctpop();
3558706Sandreas.hansson@arm.com                0x31: perr();
3568799Sgblack@eecs.umich.edu                0x34: unpkbw();
3578852Sandreas.hansson@arm.com                0x35: unpkbl();
3582518SN/A                0x36: pkwb();
3592680Sktlim@umich.edu                0x37: pklb();
3602SN/A                0x38: minsb8();
3612680Sktlim@umich.edu                0x39: minsw4();
362595SN/A                0x3a: minub8();
3632680Sktlim@umich.edu                0x3b: minuw4();
3642SN/A                0x3c: maxub8();
3652190SN/A                0x3d: maxuw4();
3662190SN/A                0x3e: maxsb8();
3679180Sandreas.hansson@arm.com                0x3f: maxsw4();
3689180Sandreas.hansson@arm.com            }
3692SN/A
3702190SN/A            format BasicOperateWithNopCheck {
3719180Sandreas.hansson@arm.com                0x70: decode RB {
3722SN/A                    31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
3732190SN/A                }
3749180Sandreas.hansson@arm.com                0x78: decode RB {
375217SN/A                    31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
3762680Sktlim@umich.edu                              FloatCvtOp);
3772190SN/A                }
3782680Sktlim@umich.edu            }
3792680Sktlim@umich.edu        }
3802190SN/A    }
3812680Sktlim@umich.edu
3822190SN/A    // Conditional branches.
3832680Sktlim@umich.edu    format CondBranch {
3842235SN/A        0x39: beq({{ cond = (Ra == 0); }});
3852680Sktlim@umich.edu        0x3d: bne({{ cond = (Ra != 0); }});
3862680Sktlim@umich.edu        0x3e: bge({{ cond = (Ra.sq >= 0); }});
3872254SN/A        0x3f: bgt({{ cond = (Ra.sq >  0); }});
3882680Sktlim@umich.edu        0x3b: ble({{ cond = (Ra.sq <= 0); }});
3892680Sktlim@umich.edu        0x3a: blt({{ cond = (Ra.sq < 0); }});
3902SN/A        0x38: blbc({{ cond = ((Ra & 1) == 0); }});
3912190SN/A        0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
3922680Sktlim@umich.edu
3932SN/A        0x31: fbeq({{ cond = (Fa == 0); }});
3942680Sktlim@umich.edu        0x35: fbne({{ cond = (Fa != 0); }});
395716SN/A        0x36: fbge({{ cond = (Fa >= 0); }});
3962SN/A        0x37: fbgt({{ cond = (Fa >  0); }});
3972SN/A        0x33: fble({{ cond = (Fa <= 0); }});
3982SN/A        0x32: fblt({{ cond = (Fa < 0); }});
3992SN/A    }
4002680Sktlim@umich.edu
4012SN/A    // unconditional branches
4022455SN/A    format UncondBranch {
4032680Sktlim@umich.edu        0x30: br();
4042SN/A        0x34: bsr(IsCall);
4052455SN/A    }
4062680Sktlim@umich.edu
4072SN/A    // indirect branches
4089920Syasuko.eckert@amd.com    0x1a: decode JMPFUNC {
4099920Syasuko.eckert@amd.com        format Jump {
4109920Syasuko.eckert@amd.com            0: jmp();
4112SN/A            1: jsr(IsCall);
4122680Sktlim@umich.edu            2: ret(IsReturn);
4132SN/A            3: jsr_coroutine(IsCall, IsReturn);
4142455SN/A        }
4152680Sktlim@umich.edu    }
4162SN/A
4172455SN/A    // Square root and integer-to-FP moves
4182680Sktlim@umich.edu    0x14: decode FP_SHORTFUNC {
4192SN/A        // Integer to FP register moves must have RB == 31
4209920Syasuko.eckert@amd.com        0x4: decode RB {
4219920Syasuko.eckert@amd.com            31: decode FP_FULLFUNC {
4229920Syasuko.eckert@amd.com                format BasicOperateWithNopCheck {
4237720Sgblack@eecs.umich.edu                    0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
4242SN/A                    0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
4257720Sgblack@eecs.umich.edu                    0x014: FailUnimpl::itoff();	// VAX-format conversion
4262206SN/A                }
4278733Sgeoffrey.blake@arm.com            }
4288733Sgeoffrey.blake@arm.com        }
4297720Sgblack@eecs.umich.edu
4307720Sgblack@eecs.umich.edu        // Square root instructions must have FA == 31
4317720Sgblack@eecs.umich.edu        0xb: decode FA {
4325260Sksewell@umich.edu            31: decode FP_TYPEFUNC {
4337597Sminkyu.jeong@arm.com                format FloatingPointOperate {
4347597Sminkyu.jeong@arm.com#if SS_COMPATIBLE_FP
4357597Sminkyu.jeong@arm.com                    0x0b: sqrts({{
4367597Sminkyu.jeong@arm.com                        if (Fb < 0.0)
4377597Sminkyu.jeong@arm.com                            fault = new ArithmeticFault;
4384172Ssaidi@eecs.umich.edu                        Fc = sqrt(Fb);
4394172Ssaidi@eecs.umich.edu                    }}, FloatSqrtOp);
4404172Ssaidi@eecs.umich.edu#else
4412159SN/A                    0x0b: sqrts({{
4422680Sktlim@umich.edu                        if (Fb.sf < 0.0)
4432SN/A                            fault = new ArithmeticFault;
4444172Ssaidi@eecs.umich.edu                        Fc.sf = sqrt(Fb.sf);
4454172Ssaidi@eecs.umich.edu                    }}, FloatSqrtOp);
4462SN/A#endif
4473468Sgblack@eecs.umich.edu                    0x2b: sqrtt({{
4482680Sktlim@umich.edu                        if (Fb < 0.0)
4492SN/A                            fault = new ArithmeticFault;
4506313Sgblack@eecs.umich.edu                        Fc = sqrt(Fb);
4516313Sgblack@eecs.umich.edu                    }}, FloatSqrtOp);
4526313Sgblack@eecs.umich.edu                }
4536313Sgblack@eecs.umich.edu            }
4546313Sgblack@eecs.umich.edu        }
4556313Sgblack@eecs.umich.edu
4569920Syasuko.eckert@amd.com        // VAX-format sqrtf and sqrtg are not implemented
4579920Syasuko.eckert@amd.com        0xa: FailUnimpl::sqrtfg();
4589920Syasuko.eckert@amd.com    }
45910033SAli.Saidi@ARM.com
46010033SAli.Saidi@ARM.com    // IEEE floating point
46110033SAli.Saidi@ARM.com    0x16: decode FP_SHORTFUNC_TOP2 {
4622190SN/A        // The top two bits of the short function code break this
4632680Sktlim@umich.edu        // space into four groups: binary ops, compares, reserved, and
4642190SN/A        // conversions.  See Table 4-12 of AHB.  There are different
4652190SN/A        // special cases in these different groups, so we decode on
4662680Sktlim@umich.edu        // these top two bits first just to select a decode strategy.
4672SN/A        // Most of these instructions may have various trapping and
4682190SN/A        // rounding mode flags set; these are decoded in the
4692680Sktlim@umich.edu        // FloatingPointDecode template used by the
4702190SN/A        // FloatingPointOperate format.
4714111Sgblack@eecs.umich.edu
4724111Sgblack@eecs.umich.edu        // add/sub/mul/div: just decode on the short function code
4734111Sgblack@eecs.umich.edu        // and source type.  All valid trapping and rounding modes apply.
4742680Sktlim@umich.edu        0: decode FP_TRAPMODE {
4759426SAndreas.Sandberg@ARM.com            // check for valid trapping modes here
4769426SAndreas.Sandberg@ARM.com            0,1,5,7: decode FP_TYPEFUNC {
4779426SAndreas.Sandberg@ARM.com                   format FloatingPointOperate {
4789426SAndreas.Sandberg@ARM.com#if SS_COMPATIBLE_FP
4799426SAndreas.Sandberg@ARM.com                       0x00: adds({{ Fc = Fa + Fb; }});
4809426SAndreas.Sandberg@ARM.com                       0x01: subs({{ Fc = Fa - Fb; }});
4819426SAndreas.Sandberg@ARM.com                       0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
4829426SAndreas.Sandberg@ARM.com                       0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
4839426SAndreas.Sandberg@ARM.com#else
4849426SAndreas.Sandberg@ARM.com                       0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
4859426SAndreas.Sandberg@ARM.com                       0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
4869426SAndreas.Sandberg@ARM.com                       0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
4879426SAndreas.Sandberg@ARM.com                       0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
4889426SAndreas.Sandberg@ARM.com#endif
4899426SAndreas.Sandberg@ARM.com
4909426SAndreas.Sandberg@ARM.com                       0x20: addt({{ Fc = Fa + Fb; }});
4919426SAndreas.Sandberg@ARM.com                       0x21: subt({{ Fc = Fa - Fb; }});
4929426SAndreas.Sandberg@ARM.com                       0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
4939920Syasuko.eckert@amd.com                       0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
4949920Syasuko.eckert@amd.com                   }
4959920Syasuko.eckert@amd.com             }
4969920Syasuko.eckert@amd.com        }
4979920Syasuko.eckert@amd.com
4989920Syasuko.eckert@amd.com        // Floating-point compare instructions must have the default
4992SN/A        // rounding mode, and may use the default trapping mode or
5002SN/A        // /SU.  Both trapping modes are treated the same by M5; the
5019428SAndreas.Sandberg@ARM.com        // only difference on the real hardware (as far a I can tell)
5029428SAndreas.Sandberg@ARM.com        // is that without /SU you'd get an imprecise trap if you
5039428SAndreas.Sandberg@ARM.com        // tried to compare a NaN with something else (instead of an
5049428SAndreas.Sandberg@ARM.com        // "unordered" result).
5059428SAndreas.Sandberg@ARM.com        1: decode FP_FULLFUNC {
5069428SAndreas.Sandberg@ARM.com            format BasicOperateWithNopCheck {
5079428SAndreas.Sandberg@ARM.com                0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
5089428SAndreas.Sandberg@ARM.com                                     FloatCmpOp);
5099428SAndreas.Sandberg@ARM.com                0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
5109428SAndreas.Sandberg@ARM.com                                     FloatCmpOp);
5119428SAndreas.Sandberg@ARM.com                0x0a6, 0x5a6: cmptlt({{ Fc = (Fa <  Fb) ? 2.0 : 0.0; }},
5129428SAndreas.Sandberg@ARM.com                                     FloatCmpOp);
5139428SAndreas.Sandberg@ARM.com                0x0a4, 0x5a4: cmptun({{ // unordered
5149428SAndreas.Sandberg@ARM.com                    Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
5159428SAndreas.Sandberg@ARM.com                }}, FloatCmpOp);
5169441SAndreas.Sandberg@ARM.com            }
5179441SAndreas.Sandberg@ARM.com        }
5189441SAndreas.Sandberg@ARM.com
5199441SAndreas.Sandberg@ARM.com        // The FP-to-integer and integer-to-FP conversion insts
5209441SAndreas.Sandberg@ARM.com        // require that FA be 31.
5219441SAndreas.Sandberg@ARM.com        3: decode FA {
5229441SAndreas.Sandberg@ARM.com            31: decode FP_TYPEFUNC {
5239441SAndreas.Sandberg@ARM.com                format FloatingPointOperate {
5249441SAndreas.Sandberg@ARM.com                    0x2f: decode FP_ROUNDMODE {
5259441SAndreas.Sandberg@ARM.com                        format FPFixedRounding {
5269441SAndreas.Sandberg@ARM.com                            // "chopped" i.e. round toward zero
5279441SAndreas.Sandberg@ARM.com                            0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
5289441SAndreas.Sandberg@ARM.com                                     Chopped);
5292190SN/A                            // round to minus infinity
530                            1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
531                                     MinusInfinity);
532                        }
533                      default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
534                    }
535
536                    // The cvtts opcode is overloaded to be cvtst if the trap
537                    // mode is 2 or 6 (which are not valid otherwise)
538                    0x2c: decode FP_FULLFUNC {
539                        format BasicOperateWithNopCheck {
540                            // trap on denorm version "cvtst/s" is
541                            // simulated same as cvtst
542                            0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
543                        }
544                      default: cvtts({{ Fc.sf = Fb; }});
545                    }
546
547                    // The trapping mode for integer-to-FP conversions
548                    // must be /SUI or nothing; /U and /SU are not
549                    // allowed.  The full set of rounding modes are
550                    // supported though.
551                    0x3c: decode FP_TRAPMODE {
552                        0,7: cvtqs({{ Fc.sf = Fb.sq; }});
553                    }
554                    0x3e: decode FP_TRAPMODE {
555                        0,7: cvtqt({{ Fc    = Fb.sq; }});
556                    }
557                }
558            }
559        }
560    }
561
562    // misc FP operate
563    0x17: decode FP_FULLFUNC {
564        format BasicOperateWithNopCheck {
565            0x010: cvtlq({{
566                Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
567            }});
568            0x030: cvtql({{
569                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
570            }});
571
572            // We treat the precise & imprecise trapping versions of
573            // cvtql identically.
574            0x130, 0x530: cvtqlv({{
575                // To avoid overflow, all the upper 32 bits must match
576                // the sign bit of the lower 32.  We code this as
577                // checking the upper 33 bits for all 0s or all 1s.
578                uint64_t sign_bits = Fb.uq<63:31>;
579                if (sign_bits != 0 && sign_bits != mask(33))
580                    fault = new IntegerOverflowFault;
581                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
582            }});
583
584            0x020: cpys({{  // copy sign
585                Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
586            }});
587            0x021: cpysn({{ // copy sign negated
588                Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
589            }});
590            0x022: cpyse({{ // copy sign and exponent
591                Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
592            }});
593
594            0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
595            0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
596            0x02c: fcmovlt({{ Fc = (Fa <  0) ? Fb : Fc; }});
597            0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
598            0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
599            0x02f: fcmovgt({{ Fc = (Fa >  0) ? Fb : Fc; }});
600
601            0x024: mt_fpcr({{ FPCR = Fa.uq; }});
602            0x025: mf_fpcr({{ Fa.uq = FPCR; }});
603        }
604    }
605
606    // miscellaneous mem-format ops
607    0x18: decode MEMFUNC {
608        format WarnUnimpl {
609            0x8000: fetch();
610            0xa000: fetch_m();
611            0xe800: ecb();
612        }
613
614        format MiscPrefetch {
615            0xf800: wh64({{ EA = Rb & ~ULL(63); }},
616                         {{ xc->writeHint(EA, 64, memAccessFlags); }},
617                         mem_flags = NO_FAULT,
618                         inst_flags = [IsMemRef, IsDataPrefetch,
619                                       IsStore, MemWriteOp]);
620        }
621
622        format BasicOperate {
623            0xc000: rpcc({{
624#if FULL_SYSTEM
625        /* Rb is a fake dependency so here is a fun way to get
626         * the parser to understand that.
627         */
628                Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC, fault) + (Rb & 0);
629
630#else
631                Ra = curTick;
632#endif
633            }});
634
635            // All of the barrier instructions below do nothing in
636            // their execute() methods (hence the empty code blocks).
637            // All of their functionality is hard-coded in the
638            // pipeline based on the flags IsSerializing,
639            // IsMemBarrier, and IsWriteBarrier.  In the current
640            // detailed CPU model, the execute() function only gets
641            // called at fetch, so there's no way to generate pipeline
642            // behavior at any other stage.  Once we go to an
643            // exec-in-exec CPU model we should be able to get rid of
644            // these flags and implement this behavior via the
645            // execute() methods.
646
647            // trapb is just a barrier on integer traps, where excb is
648            // a barrier on integer and FP traps.  "EXCB is thus a
649            // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
650            // them the same though.
651            0x0000: trapb({{ }}, IsSerializing, No_OpClass);
652            0x0400: excb({{ }}, IsSerializing, No_OpClass);
653            0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
654            0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
655        }
656
657#if FULL_SYSTEM
658        format BasicOperate {
659            0xe000: rc({{
660                Ra = xc->readIntrFlag();
661                xc->setIntrFlag(0);
662            }}, IsNonSpeculative);
663            0xf000: rs({{
664                Ra = xc->readIntrFlag();
665                xc->setIntrFlag(1);
666            }}, IsNonSpeculative);
667        }
668#else
669        format FailUnimpl {
670            0xe000: rc();
671            0xf000: rs();
672        }
673#endif
674    }
675
676#if FULL_SYSTEM
677    0x00: CallPal::call_pal({{
678        if (!palValid ||
679            (palPriv
680             && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
681            // invalid pal function code, or attempt to do privileged
682            // PAL call in non-kernel mode
683            fault = new UnimplementedOpcodeFault;
684        }
685        else {
686            // check to see if simulator wants to do something special
687            // on this PAL call (including maybe suppress it)
688            bool dopal = xc->simPalCheck(palFunc);
689
690            if (dopal) {
691                xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
692                NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
693            }
694        }
695    }}, IsNonSpeculative);
696#else
697    0x00: decode PALFUNC {
698        format EmulatedCallPal {
699            0x00: halt ({{
700                exitSimLoop(curTick, "halt instruction encountered");
701            }}, IsNonSpeculative);
702            0x83: callsys({{
703                xc->syscall(R0);
704            }}, IsNonSpeculative);
705            // Read uniq reg into ABI return value register (r0)
706            0x9e: rduniq({{ R0 = Runiq; }});
707            // Write uniq reg with value from ABI arg register (r16)
708            0x9f: wruniq({{ Runiq = R16; }});
709        }
710    }
711#endif
712
713#if FULL_SYSTEM
714    0x1b: decode PALMODE {
715        0: OpcdecFault::hw_st_quad();
716        1: decode HW_LDST_QUAD {
717            format HwLoad {
718                0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
719                1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
720            }
721        }
722    }
723
724    0x1f: decode PALMODE {
725        0: OpcdecFault::hw_st_cond();
726        format HwStore {
727            1: decode HW_LDST_COND {
728                0: decode HW_LDST_QUAD {
729                    0: hw_st({{ EA = (Rb + disp) & ~3; }},
730                {{ Mem.ul = Ra<31:0>; }}, L);
731                    1: hw_st({{ EA = (Rb + disp) & ~7; }},
732                {{ Mem.uq = Ra.uq; }}, Q);
733                }
734
735                1: FailUnimpl::hw_st_cond();
736            }
737        }
738    }
739
740    0x19: decode PALMODE {
741        0: OpcdecFault::hw_mfpr();
742        format HwMoveIPR {
743            1: hw_mfpr({{
744                Ra = xc->readMiscRegWithEffect(ipr_index, fault);
745            }});
746        }
747    }
748
749    0x1d: decode PALMODE {
750        0: OpcdecFault::hw_mtpr();
751        format HwMoveIPR {
752            1: hw_mtpr({{
753                xc->setMiscRegWithEffect(ipr_index, Ra);
754                if (traceData) { traceData->setData(Ra); }
755            }});
756        }
757    }
758
759    format BasicOperate {
760        0x1e: decode PALMODE {
761            0: OpcdecFault::hw_rei();
762            1:hw_rei({{ xc->hwrei(); }}, IsSerializing);
763        }
764
765        // M5 special opcodes use the reserved 0x01 opcode space
766        0x01: decode M5FUNC {
767            0x00: arm({{
768                AlphaPseudo::arm(xc->xcBase());
769            }}, IsNonSpeculative);
770            0x01: quiesce({{
771                AlphaPseudo::quiesce(xc->xcBase());
772            }}, IsNonSpeculative);
773            0x02: quiesceNs({{
774                AlphaPseudo::quiesceNs(xc->xcBase(), R16);
775            }}, IsNonSpeculative);
776            0x03: quiesceCycles({{
777                AlphaPseudo::quiesceCycles(xc->xcBase(), R16);
778            }}, IsNonSpeculative);
779            0x04: quiesceTime({{
780                R0 = AlphaPseudo::quiesceTime(xc->xcBase());
781            }}, IsNonSpeculative);
782            0x10: ivlb({{
783                AlphaPseudo::ivlb(xc->xcBase());
784            }}, No_OpClass, IsNonSpeculative);
785            0x11: ivle({{
786                AlphaPseudo::ivle(xc->xcBase());
787            }}, No_OpClass, IsNonSpeculative);
788            0x20: m5exit_old({{
789                AlphaPseudo::m5exit_old(xc->xcBase());
790            }}, No_OpClass, IsNonSpeculative);
791            0x21: m5exit({{
792                AlphaPseudo::m5exit(xc->xcBase(), R16);
793            }}, No_OpClass, IsNonSpeculative);
794            0x30: initparam({{ Ra = xc->xcBase()->getCpuPtr()->system->init_param; }});
795            0x40: resetstats({{
796                AlphaPseudo::resetstats(xc->xcBase(), R16, R17);
797            }}, IsNonSpeculative);
798            0x41: dumpstats({{
799                AlphaPseudo::dumpstats(xc->xcBase(), R16, R17);
800            }}, IsNonSpeculative);
801            0x42: dumpresetstats({{
802                AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17);
803            }}, IsNonSpeculative);
804            0x43: m5checkpoint({{
805                AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17);
806            }}, IsNonSpeculative);
807            0x50: m5readfile({{
808                R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18);
809            }}, IsNonSpeculative);
810            0x51: m5break({{
811                AlphaPseudo::debugbreak(xc->xcBase());
812            }}, IsNonSpeculative);
813            0x52: m5switchcpu({{
814                AlphaPseudo::switchcpu(xc->xcBase());
815            }}, IsNonSpeculative);
816            0x53: m5addsymbol({{
817                AlphaPseudo::addsymbol(xc->xcBase(), R16, R17);
818            }}, IsNonSpeculative);
819            0x54: m5panic({{
820                panic("M5 panic instruction called at pc=%#x.", xc->readPC());
821            }}, IsNonSpeculative);
822
823        }
824    }
825#endif
826}
827