decoder.isa revision 2147
1// -*- mode:c++ -*- 2 3// Copyright (c) 2003-2005 The Regents of The University of Michigan 4// All rights reserved. 5// 6// Redistribution and use in source and binary forms, with or without 7// modification, are permitted provided that the following conditions are 8// met: redistributions of source code must retain the above copyright 9// notice, this list of conditions and the following disclaimer; 10// redistributions in binary form must reproduce the above copyright 11// notice, this list of conditions and the following disclaimer in the 12// documentation and/or other materials provided with the distribution; 13// neither the name of the copyright holders nor the names of its 14// contributors may be used to endorse or promote products derived from 15// this software without specific prior written permission. 16// 17// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 18// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 19// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 20// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 21// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 22// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 23// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 27// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 29decode OPCODE default Unknown::unknown() { 30 31 format LoadAddress { 32 0x08: lda({{ Ra = Rb + disp; }}); 33 0x09: ldah({{ Ra = Rb + (disp << 16); }}); 34 } 35 36 format LoadOrNop { 37 0x0a: ldbu({{ Ra.uq = Mem.ub; }}); 38 0x0c: ldwu({{ Ra.uq = Mem.uw; }}); 39 0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }}); 40 0x23: ldt({{ Fa = Mem.df; }}); 41 0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED); 42 0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED); 43 0x20: MiscPrefetch::copy_load({{ EA = Ra; }}, 44 {{ fault = xc->copySrcTranslate(EA); }}, 45 inst_flags = [IsMemRef, IsLoad, IsCopy]); 46 } 47 48 format LoadOrPrefetch { 49 0x28: ldl({{ Ra.sl = Mem.sl; }}); 50 0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT); 51 // IsFloating flag on lds gets the prefetch to disassemble 52 // using f31 instead of r31... funcitonally it's unnecessary 53 0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }}, 54 pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating); 55 } 56 57 format Store { 58 0x0e: stb({{ Mem.ub = Ra<7:0>; }}); 59 0x0d: stw({{ Mem.uw = Ra<15:0>; }}); 60 0x2c: stl({{ Mem.ul = Ra<31:0>; }}); 61 0x2d: stq({{ Mem.uq = Ra.uq; }}); 62 0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }}); 63 0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }}); 64 0x27: stt({{ Mem.df = Fa; }}); 65 0x24: MiscPrefetch::copy_store({{ EA = Rb; }}, 66 {{ fault = xc->copy(EA); }}, 67 inst_flags = [IsMemRef, IsStore, IsCopy]); 68 } 69 70 format StoreCond { 71 0x2e: stl_c({{ Mem.ul = Ra<31:0>; }}, 72 {{ 73 uint64_t tmp = write_result; 74 // see stq_c 75 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 76 }}, mem_flags = LOCKED); 77 0x2f: stq_c({{ Mem.uq = Ra; }}, 78 {{ 79 uint64_t tmp = write_result; 80 // If the write operation returns 0 or 1, then 81 // this was a conventional store conditional, 82 // and the value indicates the success/failure 83 // of the operation. If another value is 84 // returned, then this was a Turbolaser 85 // mailbox access, and we don't update the 86 // result register at all. 87 Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; 88 }}, mem_flags = LOCKED); 89 } 90 91 format IntegerOperate { 92 93 0x10: decode INTFUNC { // integer arithmetic operations 94 95 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); 96 0x40: addlv({{ 97 uint32_t tmp = Ra.sl + Rb_or_imm.sl; 98 // signed overflow occurs when operands have same sign 99 // and sign of result does not match. 100 if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 101 fault = new IntegerOverflowFault; 102 Rc.sl = tmp; 103 }}); 104 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); 105 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); 106 107 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); 108 0x60: addqv({{ 109 uint64_t tmp = Ra + Rb_or_imm; 110 // signed overflow occurs when operands have same sign 111 // and sign of result does not match. 112 if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 113 fault = new IntegerOverflowFault; 114 Rc = tmp; 115 }}); 116 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); 117 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); 118 119 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); 120 0x49: sublv({{ 121 uint32_t tmp = Ra.sl - Rb_or_imm.sl; 122 // signed overflow detection is same as for add, 123 // except we need to look at the *complemented* 124 // sign bit of the subtrahend (Rb), i.e., if the initial 125 // signs are the *same* then no overflow can occur 126 if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) 127 fault = new IntegerOverflowFault; 128 Rc.sl = tmp; 129 }}); 130 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); 131 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); 132 133 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); 134 0x69: subqv({{ 135 uint64_t tmp = Ra - Rb_or_imm; 136 // signed overflow detection is same as for add, 137 // except we need to look at the *complemented* 138 // sign bit of the subtrahend (Rb), i.e., if the initial 139 // signs are the *same* then no overflow can occur 140 if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) 141 fault = new IntegerOverflowFault; 142 Rc = tmp; 143 }}); 144 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); 145 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); 146 147 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); 148 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); 149 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); 150 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); 151 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); 152 153 0x0f: cmpbge({{ 154 int hi = 7; 155 int lo = 0; 156 uint64_t tmp = 0; 157 for (int i = 0; i < 8; ++i) { 158 tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; 159 hi += 8; 160 lo += 8; 161 } 162 Rc = tmp; 163 }}); 164 } 165 166 0x11: decode INTFUNC { // integer logical operations 167 168 0x00: and({{ Rc = Ra & Rb_or_imm; }}); 169 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); 170 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); 171 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); 172 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); 173 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); 174 175 // conditional moves 176 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); 177 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); 178 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); 179 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); 180 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); 181 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); 182 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); 183 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); 184 185 // For AMASK, RA must be R31. 186 0x61: decode RA { 187 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); 188 } 189 190 // For IMPLVER, RA must be R31 and the B operand 191 // must be the immediate value 1. 192 0x6c: decode RA { 193 31: decode IMM { 194 1: decode INTIMM { 195 // return EV5 for FULL_SYSTEM and EV6 otherwise 196 1: implver({{ 197#if FULL_SYSTEM 198 Rc = 1; 199#else 200 Rc = 2; 201#endif 202 }}); 203 } 204 } 205 } 206 207#if FULL_SYSTEM 208 // The mysterious 11.25... 209 0x25: WarnUnimpl::eleven25(); 210#endif 211 } 212 213 0x12: decode INTFUNC { 214 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); 215 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); 216 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); 217 218 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); 219 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); 220 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); 221 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); 222 223 0x52: mskwh({{ 224 int bv = Rb_or_imm<2:0>; 225 Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; 226 }}); 227 0x62: msklh({{ 228 int bv = Rb_or_imm<2:0>; 229 Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; 230 }}); 231 0x72: mskqh({{ 232 int bv = Rb_or_imm<2:0>; 233 Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; 234 }}); 235 236 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); 237 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); 238 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); 239 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); 240 241 0x5a: extwh({{ 242 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); 243 0x6a: extlh({{ 244 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); 245 0x7a: extqh({{ 246 Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); 247 248 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); 249 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); 250 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); 251 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); 252 253 0x57: inswh({{ 254 int bv = Rb_or_imm<2:0>; 255 Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; 256 }}); 257 0x67: inslh({{ 258 int bv = Rb_or_imm<2:0>; 259 Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; 260 }}); 261 0x77: insqh({{ 262 int bv = Rb_or_imm<2:0>; 263 Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; 264 }}); 265 266 0x30: zap({{ 267 uint64_t zapmask = 0; 268 for (int i = 0; i < 8; ++i) { 269 if (Rb_or_imm<i:>) 270 zapmask |= (mask(8) << (i * 8)); 271 } 272 Rc = Ra & ~zapmask; 273 }}); 274 0x31: zapnot({{ 275 uint64_t zapmask = 0; 276 for (int i = 0; i < 8; ++i) { 277 if (!Rb_or_imm<i:>) 278 zapmask |= (mask(8) << (i * 8)); 279 } 280 Rc = Ra & ~zapmask; 281 }}); 282 } 283 284 0x13: decode INTFUNC { // integer multiplies 285 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); 286 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); 287 0x30: umulh({{ 288 uint64_t hi, lo; 289 mul128(Ra, Rb_or_imm, hi, lo); 290 Rc = hi; 291 }}, IntMultOp); 292 0x40: mullv({{ 293 // 32-bit multiply with trap on overflow 294 int64_t Rax = Ra.sl; // sign extended version of Ra.sl 295 int64_t Rbx = Rb_or_imm.sl; 296 int64_t tmp = Rax * Rbx; 297 // To avoid overflow, all the upper 32 bits must match 298 // the sign bit of the lower 32. We code this as 299 // checking the upper 33 bits for all 0s or all 1s. 300 uint64_t sign_bits = tmp<63:31>; 301 if (sign_bits != 0 && sign_bits != mask(33)) 302 fault = new IntegerOverflowFault; 303 Rc.sl = tmp<31:0>; 304 }}, IntMultOp); 305 0x60: mulqv({{ 306 // 64-bit multiply with trap on overflow 307 uint64_t hi, lo; 308 mul128(Ra, Rb_or_imm, hi, lo); 309 // all the upper 64 bits must match the sign bit of 310 // the lower 64 311 if (!((hi == 0 && lo<63:> == 0) || 312 (hi == mask(64) && lo<63:> == 1))) 313 fault = new IntegerOverflowFault; 314 Rc = lo; 315 }}, IntMultOp); 316 } 317 318 0x1c: decode INTFUNC { 319 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } 320 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } 321 0x32: ctlz({{ 322 uint64_t count = 0; 323 uint64_t temp = Rb; 324 if (temp<63:32>) temp >>= 32; else count += 32; 325 if (temp<31:16>) temp >>= 16; else count += 16; 326 if (temp<15:8>) temp >>= 8; else count += 8; 327 if (temp<7:4>) temp >>= 4; else count += 4; 328 if (temp<3:2>) temp >>= 2; else count += 2; 329 if (temp<1:1>) temp >>= 1; else count += 1; 330 if ((temp<0:0>) != 0x1) count += 1; 331 Rc = count; 332 }}, IntAluOp); 333 334 0x33: cttz({{ 335 uint64_t count = 0; 336 uint64_t temp = Rb; 337 if (!(temp<31:0>)) { temp >>= 32; count += 32; } 338 if (!(temp<15:0>)) { temp >>= 16; count += 16; } 339 if (!(temp<7:0>)) { temp >>= 8; count += 8; } 340 if (!(temp<3:0>)) { temp >>= 4; count += 4; } 341 if (!(temp<1:0>)) { temp >>= 2; count += 2; } 342 if (!(temp<0:0> & ULL(0x1))) count += 1; 343 Rc = count; 344 }}, IntAluOp); 345 346 format FailUnimpl { 347 0x30: ctpop(); 348 0x31: perr(); 349 0x34: unpkbw(); 350 0x35: unpkbl(); 351 0x36: pkwb(); 352 0x37: pklb(); 353 0x38: minsb8(); 354 0x39: minsw4(); 355 0x3a: minub8(); 356 0x3b: minuw4(); 357 0x3c: maxub8(); 358 0x3d: maxuw4(); 359 0x3e: maxsb8(); 360 0x3f: maxsw4(); 361 } 362 363 format BasicOperateWithNopCheck { 364 0x70: decode RB { 365 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); 366 } 367 0x78: decode RB { 368 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, 369 FloatCvtOp); 370 } 371 } 372 } 373 } 374 375 // Conditional branches. 376 format CondBranch { 377 0x39: beq({{ cond = (Ra == 0); }}); 378 0x3d: bne({{ cond = (Ra != 0); }}); 379 0x3e: bge({{ cond = (Ra.sq >= 0); }}); 380 0x3f: bgt({{ cond = (Ra.sq > 0); }}); 381 0x3b: ble({{ cond = (Ra.sq <= 0); }}); 382 0x3a: blt({{ cond = (Ra.sq < 0); }}); 383 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); 384 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); 385 386 0x31: fbeq({{ cond = (Fa == 0); }}); 387 0x35: fbne({{ cond = (Fa != 0); }}); 388 0x36: fbge({{ cond = (Fa >= 0); }}); 389 0x37: fbgt({{ cond = (Fa > 0); }}); 390 0x33: fble({{ cond = (Fa <= 0); }}); 391 0x32: fblt({{ cond = (Fa < 0); }}); 392 } 393 394 // unconditional branches 395 format UncondBranch { 396 0x30: br(); 397 0x34: bsr(IsCall); 398 } 399 400 // indirect branches 401 0x1a: decode JMPFUNC { 402 format Jump { 403 0: jmp(); 404 1: jsr(IsCall); 405 2: ret(IsReturn); 406 3: jsr_coroutine(IsCall, IsReturn); 407 } 408 } 409 410 // Square root and integer-to-FP moves 411 0x14: decode FP_SHORTFUNC { 412 // Integer to FP register moves must have RB == 31 413 0x4: decode RB { 414 31: decode FP_FULLFUNC { 415 format BasicOperateWithNopCheck { 416 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); 417 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); 418 0x014: FailUnimpl::itoff(); // VAX-format conversion 419 } 420 } 421 } 422 423 // Square root instructions must have FA == 31 424 0xb: decode FA { 425 31: decode FP_TYPEFUNC { 426 format FloatingPointOperate { 427#if SS_COMPATIBLE_FP 428 0x0b: sqrts({{ 429 if (Fb < 0.0) 430 fault = new ArithmeticFault; 431 Fc = sqrt(Fb); 432 }}, FloatSqrtOp); 433#else 434 0x0b: sqrts({{ 435 if (Fb.sf < 0.0) 436 fault = new ArithmeticFault; 437 Fc.sf = sqrt(Fb.sf); 438 }}, FloatSqrtOp); 439#endif 440 0x2b: sqrtt({{ 441 if (Fb < 0.0) 442 fault = new ArithmeticFault; 443 Fc = sqrt(Fb); 444 }}, FloatSqrtOp); 445 } 446 } 447 } 448 449 // VAX-format sqrtf and sqrtg are not implemented 450 0xa: FailUnimpl::sqrtfg(); 451 } 452 453 // IEEE floating point 454 0x16: decode FP_SHORTFUNC_TOP2 { 455 // The top two bits of the short function code break this 456 // space into four groups: binary ops, compares, reserved, and 457 // conversions. See Table 4-12 of AHB. There are different 458 // special cases in these different groups, so we decode on 459 // these top two bits first just to select a decode strategy. 460 // Most of these instructions may have various trapping and 461 // rounding mode flags set; these are decoded in the 462 // FloatingPointDecode template used by the 463 // FloatingPointOperate format. 464 465 // add/sub/mul/div: just decode on the short function code 466 // and source type. All valid trapping and rounding modes apply. 467 0: decode FP_TRAPMODE { 468 // check for valid trapping modes here 469 0,1,5,7: decode FP_TYPEFUNC { 470 format FloatingPointOperate { 471#if SS_COMPATIBLE_FP 472 0x00: adds({{ Fc = Fa + Fb; }}); 473 0x01: subs({{ Fc = Fa - Fb; }}); 474 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); 475 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); 476#else 477 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); 478 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); 479 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); 480 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); 481#endif 482 483 0x20: addt({{ Fc = Fa + Fb; }}); 484 0x21: subt({{ Fc = Fa - Fb; }}); 485 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); 486 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); 487 } 488 } 489 } 490 491 // Floating-point compare instructions must have the default 492 // rounding mode, and may use the default trapping mode or 493 // /SU. Both trapping modes are treated the same by M5; the 494 // only difference on the real hardware (as far a I can tell) 495 // is that without /SU you'd get an imprecise trap if you 496 // tried to compare a NaN with something else (instead of an 497 // "unordered" result). 498 1: decode FP_FULLFUNC { 499 format BasicOperateWithNopCheck { 500 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, 501 FloatCmpOp); 502 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, 503 FloatCmpOp); 504 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, 505 FloatCmpOp); 506 0x0a4, 0x5a4: cmptun({{ // unordered 507 Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; 508 }}, FloatCmpOp); 509 } 510 } 511 512 // The FP-to-integer and integer-to-FP conversion insts 513 // require that FA be 31. 514 3: decode FA { 515 31: decode FP_TYPEFUNC { 516 format FloatingPointOperate { 517 0x2f: decode FP_ROUNDMODE { 518 format FPFixedRounding { 519 // "chopped" i.e. round toward zero 520 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, 521 Chopped); 522 // round to minus infinity 523 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, 524 MinusInfinity); 525 } 526 default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); 527 } 528 529 // The cvtts opcode is overloaded to be cvtst if the trap 530 // mode is 2 or 6 (which are not valid otherwise) 531 0x2c: decode FP_FULLFUNC { 532 format BasicOperateWithNopCheck { 533 // trap on denorm version "cvtst/s" is 534 // simulated same as cvtst 535 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); 536 } 537 default: cvtts({{ Fc.sf = Fb; }}); 538 } 539 540 // The trapping mode for integer-to-FP conversions 541 // must be /SUI or nothing; /U and /SU are not 542 // allowed. The full set of rounding modes are 543 // supported though. 544 0x3c: decode FP_TRAPMODE { 545 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); 546 } 547 0x3e: decode FP_TRAPMODE { 548 0,7: cvtqt({{ Fc = Fb.sq; }}); 549 } 550 } 551 } 552 } 553 } 554 555 // misc FP operate 556 0x17: decode FP_FULLFUNC { 557 format BasicOperateWithNopCheck { 558 0x010: cvtlq({{ 559 Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; 560 }}); 561 0x030: cvtql({{ 562 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 563 }}); 564 565 // We treat the precise & imprecise trapping versions of 566 // cvtql identically. 567 0x130, 0x530: cvtqlv({{ 568 // To avoid overflow, all the upper 32 bits must match 569 // the sign bit of the lower 32. We code this as 570 // checking the upper 33 bits for all 0s or all 1s. 571 uint64_t sign_bits = Fb.uq<63:31>; 572 if (sign_bits != 0 && sign_bits != mask(33)) 573 fault = new IntegerOverflowFault; 574 Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); 575 }}); 576 577 0x020: cpys({{ // copy sign 578 Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; 579 }}); 580 0x021: cpysn({{ // copy sign negated 581 Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; 582 }}); 583 0x022: cpyse({{ // copy sign and exponent 584 Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; 585 }}); 586 587 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); 588 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); 589 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); 590 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); 591 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); 592 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); 593 594 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); 595 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); 596 } 597 } 598 599 // miscellaneous mem-format ops 600 0x18: decode MEMFUNC { 601 format WarnUnimpl { 602 0x8000: fetch(); 603 0xa000: fetch_m(); 604 0xe800: ecb(); 605 } 606 607 format MiscPrefetch { 608 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, 609 {{ xc->writeHint(EA, 64, memAccessFlags); }}, 610 mem_flags = NO_FAULT, 611 inst_flags = [IsMemRef, IsDataPrefetch, 612 IsStore, MemWriteOp]); 613 } 614 615 format BasicOperate { 616 0xc000: rpcc({{ 617#if FULL_SYSTEM 618 /* Rb is a fake dependency so here is a fun way to get 619 * the parser to understand that. 620 */ 621 Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0); 622 623#else 624 Ra = curTick; 625#endif 626 }}); 627 628 // All of the barrier instructions below do nothing in 629 // their execute() methods (hence the empty code blocks). 630 // All of their functionality is hard-coded in the 631 // pipeline based on the flags IsSerializing, 632 // IsMemBarrier, and IsWriteBarrier. In the current 633 // detailed CPU model, the execute() function only gets 634 // called at fetch, so there's no way to generate pipeline 635 // behavior at any other stage. Once we go to an 636 // exec-in-exec CPU model we should be able to get rid of 637 // these flags and implement this behavior via the 638 // execute() methods. 639 640 // trapb is just a barrier on integer traps, where excb is 641 // a barrier on integer and FP traps. "EXCB is thus a 642 // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat 643 // them the same though. 644 0x0000: trapb({{ }}, IsSerializing, No_OpClass); 645 0x0400: excb({{ }}, IsSerializing, No_OpClass); 646 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); 647 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); 648 } 649 650#if FULL_SYSTEM 651 format BasicOperate { 652 0xe000: rc({{ 653 Ra = xc->readIntrFlag(); 654 xc->setIntrFlag(0); 655 }}, IsNonSpeculative); 656 0xf000: rs({{ 657 Ra = xc->readIntrFlag(); 658 xc->setIntrFlag(1); 659 }}, IsNonSpeculative); 660 } 661#else 662 format FailUnimpl { 663 0xe000: rc(); 664 0xf000: rs(); 665 } 666#endif 667 } 668 669#if FULL_SYSTEM 670 0x00: CallPal::call_pal({{ 671 if (!palValid || 672 (palPriv 673 && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { 674 // invalid pal function code, or attempt to do privileged 675 // PAL call in non-kernel mode 676 fault = new UnimplementedOpcodeFault; 677 } 678 else { 679 // check to see if simulator wants to do something special 680 // on this PAL call (including maybe suppress it) 681 bool dopal = xc->simPalCheck(palFunc); 682 683 if (dopal) { 684 AlphaISA::swap_palshadow(&xc->xcBase()->regs, true); 685 xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); 686 NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; 687 } 688 } 689 }}, IsNonSpeculative); 690#else 691 0x00: decode PALFUNC { 692 format EmulatedCallPal { 693 0x00: halt ({{ 694 SimExit(curTick, "halt instruction encountered"); 695 }}, IsNonSpeculative); 696 0x83: callsys({{ 697 xc->syscall(); 698 }}, IsNonSpeculative); 699 // Read uniq reg into ABI return value register (r0) 700 0x9e: rduniq({{ R0 = Runiq; }}); 701 // Write uniq reg with value from ABI arg register (r16) 702 0x9f: wruniq({{ Runiq = R16; }}); 703 } 704 } 705#endif 706 707#if FULL_SYSTEM 708 format HwLoad { 709 0x1b: decode HW_LDST_QUAD { 710 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); 711 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); 712 } 713 } 714 715 format HwStore { 716 0x1f: decode HW_LDST_COND { 717 0: decode HW_LDST_QUAD { 718 0: hw_st({{ EA = (Rb + disp) & ~3; }}, 719 {{ Mem.ul = Ra<31:0>; }}, L); 720 1: hw_st({{ EA = (Rb + disp) & ~7; }}, 721 {{ Mem.uq = Ra.uq; }}, Q); 722 } 723 724 1: FailUnimpl::hw_st_cond(); 725 } 726 } 727 728 format HwMoveIPR { 729 0x19: hw_mfpr({{ 730 // this instruction is only valid in PAL mode 731 if (!xc->inPalMode()) { 732 fault = new UnimplementedOpcodeFault; 733 } 734 else { 735 Ra = xc->readIpr(ipr_index, fault); 736 } 737 }}); 738 0x1d: hw_mtpr({{ 739 // this instruction is only valid in PAL mode 740 if (!xc->inPalMode()) { 741 fault = new UnimplementedOpcodeFault; 742 } 743 else { 744 xc->setIpr(ipr_index, Ra); 745 if (traceData) { traceData->setData(Ra); } 746 } 747 }}); 748 } 749 750 format BasicOperate { 751 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing); 752 753 // M5 special opcodes use the reserved 0x01 opcode space 754 0x01: decode M5FUNC { 755 0x00: arm({{ 756 AlphaPseudo::arm(xc->xcBase()); 757 }}, IsNonSpeculative); 758 0x01: quiesce({{ 759 AlphaPseudo::quiesce(xc->xcBase()); 760 }}, IsNonSpeculative); 761 0x10: ivlb({{ 762 AlphaPseudo::ivlb(xc->xcBase()); 763 }}, No_OpClass, IsNonSpeculative); 764 0x11: ivle({{ 765 AlphaPseudo::ivle(xc->xcBase()); 766 }}, No_OpClass, IsNonSpeculative); 767 0x20: m5exit_old({{ 768 AlphaPseudo::m5exit_old(xc->xcBase()); 769 }}, No_OpClass, IsNonSpeculative); 770 0x21: m5exit({{ 771 AlphaPseudo::m5exit(xc->xcBase(), R16); 772 }}, No_OpClass, IsNonSpeculative); 773 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); 774 0x40: resetstats({{ 775 AlphaPseudo::resetstats(xc->xcBase(), R16, R17); 776 }}, IsNonSpeculative); 777 0x41: dumpstats({{ 778 AlphaPseudo::dumpstats(xc->xcBase(), R16, R17); 779 }}, IsNonSpeculative); 780 0x42: dumpresetstats({{ 781 AlphaPseudo::dumpresetstats(xc->xcBase(), R16, R17); 782 }}, IsNonSpeculative); 783 0x43: m5checkpoint({{ 784 AlphaPseudo::m5checkpoint(xc->xcBase(), R16, R17); 785 }}, IsNonSpeculative); 786 0x50: m5readfile({{ 787 R0 = AlphaPseudo::readfile(xc->xcBase(), R16, R17, R18); 788 }}, IsNonSpeculative); 789 0x51: m5break({{ 790 AlphaPseudo::debugbreak(xc->xcBase()); 791 }}, IsNonSpeculative); 792 0x52: m5switchcpu({{ 793 AlphaPseudo::switchcpu(xc->xcBase()); 794 }}, IsNonSpeculative); 795 0x53: m5addsymbol({{ 796 AlphaPseudo::addsymbol(xc->xcBase(), R16, R17); 797 }}, IsNonSpeculative); 798 799 } 800 } 801#endif 802} 803