decoder.isa revision 4027
16691Stjones1@inf.ed.ac.uk// -*- mode:c++ -*-
26691Stjones1@inf.ed.ac.uk
36691Stjones1@inf.ed.ac.uk// Copyright (c) 2003-2006 The Regents of The University of Michigan
46691Stjones1@inf.ed.ac.uk// All rights reserved.
56691Stjones1@inf.ed.ac.uk//
66691Stjones1@inf.ed.ac.uk// Redistribution and use in source and binary forms, with or without
76691Stjones1@inf.ed.ac.uk// modification, are permitted provided that the following conditions are
86691Stjones1@inf.ed.ac.uk// met: redistributions of source code must retain the above copyright
96691Stjones1@inf.ed.ac.uk// notice, this list of conditions and the following disclaimer;
106691Stjones1@inf.ed.ac.uk// redistributions in binary form must reproduce the above copyright
116691Stjones1@inf.ed.ac.uk// notice, this list of conditions and the following disclaimer in the
126691Stjones1@inf.ed.ac.uk// documentation and/or other materials provided with the distribution;
136691Stjones1@inf.ed.ac.uk// neither the name of the copyright holders nor the names of its
146691Stjones1@inf.ed.ac.uk// contributors may be used to endorse or promote products derived from
156691Stjones1@inf.ed.ac.uk// this software without specific prior written permission.
166691Stjones1@inf.ed.ac.uk//
176691Stjones1@inf.ed.ac.uk// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
186691Stjones1@inf.ed.ac.uk// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
196691Stjones1@inf.ed.ac.uk// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
206691Stjones1@inf.ed.ac.uk// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
216691Stjones1@inf.ed.ac.uk// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
226691Stjones1@inf.ed.ac.uk// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
236691Stjones1@inf.ed.ac.uk// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
246691Stjones1@inf.ed.ac.uk// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
256691Stjones1@inf.ed.ac.uk// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
266691Stjones1@inf.ed.ac.uk// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
276691Stjones1@inf.ed.ac.uk// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
286691Stjones1@inf.ed.ac.uk//
296691Stjones1@inf.ed.ac.uk// Authors: Steve Reinhardt
306691Stjones1@inf.ed.ac.uk
316691Stjones1@inf.ed.ac.uk////////////////////////////////////////////////////////////////////
326691Stjones1@inf.ed.ac.uk//
336691Stjones1@inf.ed.ac.uk// The actual decoder specification
346691Stjones1@inf.ed.ac.uk//
3511793Sbrandon.potter@amd.com
3611793Sbrandon.potter@amd.comdecode OPCODE default Unknown::unknown() {
3711793Sbrandon.potter@amd.com
386691Stjones1@inf.ed.ac.uk    format LoadAddress {
396691Stjones1@inf.ed.ac.uk        0x08: lda({{ Ra = Rb + disp; }});
406691Stjones1@inf.ed.ac.uk        0x09: ldah({{ Ra = Rb + (disp << 16); }});
416691Stjones1@inf.ed.ac.uk    }
426691Stjones1@inf.ed.ac.uk
4311794Sbrandon.potter@amd.com    format LoadOrNop {
446691Stjones1@inf.ed.ac.uk        0x0a: ldbu({{ Ra.uq = Mem.ub; }});
456691Stjones1@inf.ed.ac.uk        0x0c: ldwu({{ Ra.uq = Mem.uw; }});
466691Stjones1@inf.ed.ac.uk        0x0b: ldq_u({{ Ra = Mem.uq; }}, ea_code = {{ EA = (Rb + disp) & ~7; }});
476691Stjones1@inf.ed.ac.uk        0x23: ldt({{ Fa = Mem.df; }});
486691Stjones1@inf.ed.ac.uk        0x2a: ldl_l({{ Ra.sl = Mem.sl; }}, mem_flags = LOCKED);
496691Stjones1@inf.ed.ac.uk        0x2b: ldq_l({{ Ra.uq = Mem.uq; }}, mem_flags = LOCKED);
506691Stjones1@inf.ed.ac.uk#ifdef USE_COPY
516691Stjones1@inf.ed.ac.uk        0x20: MiscPrefetch::copy_load({{ EA = Ra; }},
5211851Sbrandon.potter@amd.com                                      {{ fault = xc->copySrcTranslate(EA); }},
536691Stjones1@inf.ed.ac.uk                                      inst_flags = [IsMemRef, IsLoad, IsCopy]);
546691Stjones1@inf.ed.ac.uk#endif
556701Sgblack@eecs.umich.edu    }
566701Sgblack@eecs.umich.edu
576691Stjones1@inf.ed.ac.uk    format LoadOrPrefetch {
586691Stjones1@inf.ed.ac.uk        0x28: ldl({{ Ra.sl = Mem.sl; }});
599149SAli.Saidi@ARM.com        0x29: ldq({{ Ra.uq = Mem.uq; }}, pf_flags = EVICT_NEXT);
609149SAli.Saidi@ARM.com        // IsFloating flag on lds gets the prefetch to disassemble
616691Stjones1@inf.ed.ac.uk        // using f31 instead of r31... funcitonally it's unnecessary
626691Stjones1@inf.ed.ac.uk        0x22: lds({{ Fa.uq = s_to_t(Mem.ul); }},
636691Stjones1@inf.ed.ac.uk                  pf_flags = PF_EXCLUSIVE, inst_flags = IsFloating);
648706Sandreas.hansson@arm.com    }
656691Stjones1@inf.ed.ac.uk
666691Stjones1@inf.ed.ac.uk    format Store {
676691Stjones1@inf.ed.ac.uk        0x0e: stb({{ Mem.ub = Ra<7:0>; }});
686691Stjones1@inf.ed.ac.uk        0x0d: stw({{ Mem.uw = Ra<15:0>; }});
696691Stjones1@inf.ed.ac.uk        0x2c: stl({{ Mem.ul = Ra<31:0>; }});
706691Stjones1@inf.ed.ac.uk        0x2d: stq({{ Mem.uq = Ra.uq; }});
716691Stjones1@inf.ed.ac.uk        0x0f: stq_u({{ Mem.uq = Ra.uq; }}, {{ EA = (Rb + disp) & ~7; }});
726691Stjones1@inf.ed.ac.uk        0x26: sts({{ Mem.ul = t_to_s(Fa.uq); }});
736691Stjones1@inf.ed.ac.uk        0x27: stt({{ Mem.df = Fa; }});
746691Stjones1@inf.ed.ac.uk#ifdef USE_COPY
756691Stjones1@inf.ed.ac.uk        0x24: MiscPrefetch::copy_store({{ EA = Rb; }},
766691Stjones1@inf.ed.ac.uk                                       {{ fault = xc->copy(EA); }},
776691Stjones1@inf.ed.ac.uk                                       inst_flags = [IsMemRef, IsStore, IsCopy]);
786691Stjones1@inf.ed.ac.uk#endif
796691Stjones1@inf.ed.ac.uk    }
806691Stjones1@inf.ed.ac.uk
816691Stjones1@inf.ed.ac.uk    format StoreCond {
826691Stjones1@inf.ed.ac.uk        0x2e: stl_c({{ Mem.ul = Ra<31:0>; }},
836691Stjones1@inf.ed.ac.uk                    {{
846691Stjones1@inf.ed.ac.uk                        uint64_t tmp = write_result;
856691Stjones1@inf.ed.ac.uk                        // see stq_c
866691Stjones1@inf.ed.ac.uk                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
876691Stjones1@inf.ed.ac.uk                        if (tmp == 1) {
886691Stjones1@inf.ed.ac.uk                            xc->setStCondFailures(0);
896691Stjones1@inf.ed.ac.uk                        }
906691Stjones1@inf.ed.ac.uk                    }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
916691Stjones1@inf.ed.ac.uk        0x2f: stq_c({{ Mem.uq = Ra; }},
926691Stjones1@inf.ed.ac.uk                    {{
936691Stjones1@inf.ed.ac.uk                        uint64_t tmp = write_result;
946691Stjones1@inf.ed.ac.uk                        // If the write operation returns 0 or 1, then
956691Stjones1@inf.ed.ac.uk                        // this was a conventional store conditional,
966691Stjones1@inf.ed.ac.uk                        // and the value indicates the success/failure
976691Stjones1@inf.ed.ac.uk                        // of the operation.  If another value is
986691Stjones1@inf.ed.ac.uk                        // returned, then this was a Turbolaser
996691Stjones1@inf.ed.ac.uk                        // mailbox access, and we don't update the
1006691Stjones1@inf.ed.ac.uk                        // result register at all.
1016691Stjones1@inf.ed.ac.uk                        Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
1026691Stjones1@inf.ed.ac.uk                        if (tmp == 1) {
1036691Stjones1@inf.ed.ac.uk                            // clear failure counter... this is
1046691Stjones1@inf.ed.ac.uk                            // non-architectural and for debugging
1056691Stjones1@inf.ed.ac.uk                            // only.
1066691Stjones1@inf.ed.ac.uk                            xc->setStCondFailures(0);
1076691Stjones1@inf.ed.ac.uk                        }
1086691Stjones1@inf.ed.ac.uk                    }}, mem_flags = LOCKED, inst_flags = IsStoreConditional);
1096691Stjones1@inf.ed.ac.uk    }
1106691Stjones1@inf.ed.ac.uk
1116691Stjones1@inf.ed.ac.uk    format IntegerOperate {
1126691Stjones1@inf.ed.ac.uk
1136691Stjones1@inf.ed.ac.uk        0x10: decode INTFUNC {	// integer arithmetic operations
1146691Stjones1@inf.ed.ac.uk
1156691Stjones1@inf.ed.ac.uk            0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
1166691Stjones1@inf.ed.ac.uk            0x40: addlv({{
1176691Stjones1@inf.ed.ac.uk                uint32_t tmp  = Ra.sl + Rb_or_imm.sl;
1186691Stjones1@inf.ed.ac.uk                // signed overflow occurs when operands have same sign
1196691Stjones1@inf.ed.ac.uk                // and sign of result does not match.
1206691Stjones1@inf.ed.ac.uk                if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1216691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
1226691Stjones1@inf.ed.ac.uk                Rc.sl = tmp;
1236691Stjones1@inf.ed.ac.uk            }});
1246691Stjones1@inf.ed.ac.uk            0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
1256691Stjones1@inf.ed.ac.uk            0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
1266691Stjones1@inf.ed.ac.uk
1276691Stjones1@inf.ed.ac.uk            0x20: addq({{ Rc = Ra + Rb_or_imm; }});
1286691Stjones1@inf.ed.ac.uk            0x60: addqv({{
1296691Stjones1@inf.ed.ac.uk                uint64_t tmp = Ra + Rb_or_imm;
1306691Stjones1@inf.ed.ac.uk                // signed overflow occurs when operands have same sign
1316691Stjones1@inf.ed.ac.uk                // and sign of result does not match.
1326691Stjones1@inf.ed.ac.uk                if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1336691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
1346691Stjones1@inf.ed.ac.uk                Rc = tmp;
1356691Stjones1@inf.ed.ac.uk            }});
1366691Stjones1@inf.ed.ac.uk            0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
1376691Stjones1@inf.ed.ac.uk            0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
1386691Stjones1@inf.ed.ac.uk
1396691Stjones1@inf.ed.ac.uk            0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
1406691Stjones1@inf.ed.ac.uk            0x49: sublv({{
1416691Stjones1@inf.ed.ac.uk                uint32_t tmp  = Ra.sl - Rb_or_imm.sl;
1426691Stjones1@inf.ed.ac.uk                // signed overflow detection is same as for add,
1436691Stjones1@inf.ed.ac.uk                // except we need to look at the *complemented*
1446691Stjones1@inf.ed.ac.uk                // sign bit of the subtrahend (Rb), i.e., if the initial
1456691Stjones1@inf.ed.ac.uk                // signs are the *same* then no overflow can occur
1466691Stjones1@inf.ed.ac.uk                if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
1476691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
1486691Stjones1@inf.ed.ac.uk                Rc.sl = tmp;
1496691Stjones1@inf.ed.ac.uk            }});
1506691Stjones1@inf.ed.ac.uk            0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
1516691Stjones1@inf.ed.ac.uk            0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
1526691Stjones1@inf.ed.ac.uk
1536691Stjones1@inf.ed.ac.uk            0x29: subq({{ Rc = Ra - Rb_or_imm; }});
1546691Stjones1@inf.ed.ac.uk            0x69: subqv({{
1556691Stjones1@inf.ed.ac.uk                uint64_t tmp  = Ra - Rb_or_imm;
1566691Stjones1@inf.ed.ac.uk                // signed overflow detection is same as for add,
1576691Stjones1@inf.ed.ac.uk                // except we need to look at the *complemented*
1586691Stjones1@inf.ed.ac.uk                // sign bit of the subtrahend (Rb), i.e., if the initial
1596691Stjones1@inf.ed.ac.uk                // signs are the *same* then no overflow can occur
1606691Stjones1@inf.ed.ac.uk                if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
1616691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
1626691Stjones1@inf.ed.ac.uk                Rc = tmp;
1636691Stjones1@inf.ed.ac.uk            }});
1646691Stjones1@inf.ed.ac.uk            0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
1656691Stjones1@inf.ed.ac.uk            0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
1666691Stjones1@inf.ed.ac.uk
1676691Stjones1@inf.ed.ac.uk            0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
1686691Stjones1@inf.ed.ac.uk            0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
1696691Stjones1@inf.ed.ac.uk            0x4d: cmplt({{ Rc = (Ra.sq <  Rb_or_imm.sq); }});
1706691Stjones1@inf.ed.ac.uk            0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
1716691Stjones1@inf.ed.ac.uk            0x1d: cmpult({{ Rc = (Ra.uq <  Rb_or_imm.uq); }});
1726691Stjones1@inf.ed.ac.uk
1736691Stjones1@inf.ed.ac.uk            0x0f: cmpbge({{
1746691Stjones1@inf.ed.ac.uk                int hi = 7;
1756691Stjones1@inf.ed.ac.uk                int lo = 0;
1766691Stjones1@inf.ed.ac.uk                uint64_t tmp = 0;
1776691Stjones1@inf.ed.ac.uk                for (int i = 0; i < 8; ++i) {
1786691Stjones1@inf.ed.ac.uk                    tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
1796691Stjones1@inf.ed.ac.uk                    hi += 8;
1806691Stjones1@inf.ed.ac.uk                    lo += 8;
1816691Stjones1@inf.ed.ac.uk                }
1826691Stjones1@inf.ed.ac.uk                Rc = tmp;
1836691Stjones1@inf.ed.ac.uk            }});
1846691Stjones1@inf.ed.ac.uk        }
1856691Stjones1@inf.ed.ac.uk
1866691Stjones1@inf.ed.ac.uk        0x11: decode INTFUNC {	// integer logical operations
1876691Stjones1@inf.ed.ac.uk
1886691Stjones1@inf.ed.ac.uk            0x00: and({{ Rc = Ra & Rb_or_imm; }});
1896691Stjones1@inf.ed.ac.uk            0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
1906691Stjones1@inf.ed.ac.uk            0x20: bis({{ Rc = Ra | Rb_or_imm; }});
1916691Stjones1@inf.ed.ac.uk            0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
1926691Stjones1@inf.ed.ac.uk            0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
1936691Stjones1@inf.ed.ac.uk            0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
1946691Stjones1@inf.ed.ac.uk
1956691Stjones1@inf.ed.ac.uk            // conditional moves
1966691Stjones1@inf.ed.ac.uk            0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
1976691Stjones1@inf.ed.ac.uk            0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
1986691Stjones1@inf.ed.ac.uk            0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
1996691Stjones1@inf.ed.ac.uk            0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
2006691Stjones1@inf.ed.ac.uk            0x44: cmovlt({{ Rc = (Ra.sq <  0) ? Rb_or_imm : Rc; }});
2016691Stjones1@inf.ed.ac.uk            0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
2026691Stjones1@inf.ed.ac.uk            0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
2036691Stjones1@inf.ed.ac.uk            0x66: cmovgt({{ Rc = (Ra.sq >  0) ? Rb_or_imm : Rc; }});
2046691Stjones1@inf.ed.ac.uk
2056691Stjones1@inf.ed.ac.uk            // For AMASK, RA must be R31.
2066691Stjones1@inf.ed.ac.uk            0x61: decode RA {
2076691Stjones1@inf.ed.ac.uk                31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
2086691Stjones1@inf.ed.ac.uk            }
2096691Stjones1@inf.ed.ac.uk
21010495Snilay@cs.wisc.edu            // For IMPLVER, RA must be R31 and the B operand
2116691Stjones1@inf.ed.ac.uk            // must be the immediate value 1.
2126691Stjones1@inf.ed.ac.uk            0x6c: decode RA {
2136691Stjones1@inf.ed.ac.uk                31: decode IMM {
2146691Stjones1@inf.ed.ac.uk                    1: decode INTIMM {
2156691Stjones1@inf.ed.ac.uk                        // return EV5 for FULL_SYSTEM and EV6 otherwise
2166691Stjones1@inf.ed.ac.uk                        1: implver({{
2176691Stjones1@inf.ed.ac.uk#if FULL_SYSTEM
2186691Stjones1@inf.ed.ac.uk                             Rc = 1;
2196691Stjones1@inf.ed.ac.uk#else
2206691Stjones1@inf.ed.ac.uk                             Rc = 2;
2216691Stjones1@inf.ed.ac.uk#endif
2226691Stjones1@inf.ed.ac.uk                        }});
2236691Stjones1@inf.ed.ac.uk                    }
2246691Stjones1@inf.ed.ac.uk                }
2256691Stjones1@inf.ed.ac.uk            }
2266691Stjones1@inf.ed.ac.uk
2276691Stjones1@inf.ed.ac.uk#if FULL_SYSTEM
2286691Stjones1@inf.ed.ac.uk            // The mysterious 11.25...
2296691Stjones1@inf.ed.ac.uk            0x25: WarnUnimpl::eleven25();
2306691Stjones1@inf.ed.ac.uk#endif
2316691Stjones1@inf.ed.ac.uk        }
2326691Stjones1@inf.ed.ac.uk
2336691Stjones1@inf.ed.ac.uk        0x12: decode INTFUNC {
2346691Stjones1@inf.ed.ac.uk            0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
2356691Stjones1@inf.ed.ac.uk            0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
2366691Stjones1@inf.ed.ac.uk            0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
2376691Stjones1@inf.ed.ac.uk
2386691Stjones1@inf.ed.ac.uk            0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
2396691Stjones1@inf.ed.ac.uk            0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
2406691Stjones1@inf.ed.ac.uk            0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
2416691Stjones1@inf.ed.ac.uk            0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
2426691Stjones1@inf.ed.ac.uk
2436691Stjones1@inf.ed.ac.uk            0x52: mskwh({{
2446691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2456691Stjones1@inf.ed.ac.uk                Rc =  bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
2466691Stjones1@inf.ed.ac.uk            }});
2476691Stjones1@inf.ed.ac.uk            0x62: msklh({{
2486691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2496691Stjones1@inf.ed.ac.uk                Rc =  bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
2506691Stjones1@inf.ed.ac.uk            }});
2516691Stjones1@inf.ed.ac.uk            0x72: mskqh({{
2526691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2536691Stjones1@inf.ed.ac.uk                Rc =  bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
2546691Stjones1@inf.ed.ac.uk            }});
2556691Stjones1@inf.ed.ac.uk
2566691Stjones1@inf.ed.ac.uk            0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
2576691Stjones1@inf.ed.ac.uk            0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
2586691Stjones1@inf.ed.ac.uk            0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
2596691Stjones1@inf.ed.ac.uk            0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
2606691Stjones1@inf.ed.ac.uk
2616691Stjones1@inf.ed.ac.uk            0x5a: extwh({{
2626691Stjones1@inf.ed.ac.uk                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
2636691Stjones1@inf.ed.ac.uk            0x6a: extlh({{
2646691Stjones1@inf.ed.ac.uk                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
2656691Stjones1@inf.ed.ac.uk            0x7a: extqh({{
2666691Stjones1@inf.ed.ac.uk                Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
2676691Stjones1@inf.ed.ac.uk
2686691Stjones1@inf.ed.ac.uk            0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
2696691Stjones1@inf.ed.ac.uk            0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
2706691Stjones1@inf.ed.ac.uk            0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
2716691Stjones1@inf.ed.ac.uk            0x3b: insql({{ Rc = Ra       << (Rb_or_imm<2:0> * 8); }});
2726691Stjones1@inf.ed.ac.uk
2736691Stjones1@inf.ed.ac.uk            0x57: inswh({{
2746691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2756691Stjones1@inf.ed.ac.uk                Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
2766691Stjones1@inf.ed.ac.uk            }});
2776691Stjones1@inf.ed.ac.uk            0x67: inslh({{
2786691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2796691Stjones1@inf.ed.ac.uk                Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
2806691Stjones1@inf.ed.ac.uk            }});
2816691Stjones1@inf.ed.ac.uk            0x77: insqh({{
2826691Stjones1@inf.ed.ac.uk                int bv = Rb_or_imm<2:0>;
2836691Stjones1@inf.ed.ac.uk                Rc = bv ? (Ra.uq       >> (64 - 8 * bv)) : 0;
2846691Stjones1@inf.ed.ac.uk            }});
2856691Stjones1@inf.ed.ac.uk
28610495Snilay@cs.wisc.edu            0x30: zap({{
2876691Stjones1@inf.ed.ac.uk                uint64_t zapmask = 0;
2886691Stjones1@inf.ed.ac.uk                for (int i = 0; i < 8; ++i) {
2896691Stjones1@inf.ed.ac.uk                    if (Rb_or_imm<i:>)
2906691Stjones1@inf.ed.ac.uk                        zapmask |= (mask(8) << (i * 8));
2916691Stjones1@inf.ed.ac.uk                }
2926691Stjones1@inf.ed.ac.uk                Rc = Ra & ~zapmask;
2936691Stjones1@inf.ed.ac.uk            }});
2946691Stjones1@inf.ed.ac.uk            0x31: zapnot({{
2956691Stjones1@inf.ed.ac.uk                uint64_t zapmask = 0;
2966691Stjones1@inf.ed.ac.uk                for (int i = 0; i < 8; ++i) {
2976691Stjones1@inf.ed.ac.uk                    if (!Rb_or_imm<i:>)
2986691Stjones1@inf.ed.ac.uk                        zapmask |= (mask(8) << (i * 8));
2996691Stjones1@inf.ed.ac.uk                }
3006691Stjones1@inf.ed.ac.uk                Rc = Ra & ~zapmask;
3016691Stjones1@inf.ed.ac.uk            }});
3026691Stjones1@inf.ed.ac.uk        }
3036691Stjones1@inf.ed.ac.uk
3046691Stjones1@inf.ed.ac.uk        0x13: decode INTFUNC {	// integer multiplies
3056691Stjones1@inf.ed.ac.uk            0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
3066691Stjones1@inf.ed.ac.uk            0x20: mulq({{ Rc    = Ra    * Rb_or_imm;    }}, IntMultOp);
3076691Stjones1@inf.ed.ac.uk            0x30: umulh({{
3086691Stjones1@inf.ed.ac.uk                uint64_t hi, lo;
3096691Stjones1@inf.ed.ac.uk                mul128(Ra, Rb_or_imm, hi, lo);
3106691Stjones1@inf.ed.ac.uk                Rc = hi;
3116691Stjones1@inf.ed.ac.uk            }}, IntMultOp);
3126691Stjones1@inf.ed.ac.uk            0x40: mullv({{
3136691Stjones1@inf.ed.ac.uk                // 32-bit multiply with trap on overflow
3146691Stjones1@inf.ed.ac.uk                int64_t Rax = Ra.sl;	// sign extended version of Ra.sl
3156691Stjones1@inf.ed.ac.uk                int64_t Rbx = Rb_or_imm.sl;
3166691Stjones1@inf.ed.ac.uk                int64_t tmp = Rax * Rbx;
3176691Stjones1@inf.ed.ac.uk                // To avoid overflow, all the upper 32 bits must match
3186691Stjones1@inf.ed.ac.uk                // the sign bit of the lower 32.  We code this as
3196691Stjones1@inf.ed.ac.uk                // checking the upper 33 bits for all 0s or all 1s.
3206691Stjones1@inf.ed.ac.uk                uint64_t sign_bits = tmp<63:31>;
3216691Stjones1@inf.ed.ac.uk                if (sign_bits != 0 && sign_bits != mask(33))
3226691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
3236691Stjones1@inf.ed.ac.uk                Rc.sl = tmp<31:0>;
3246691Stjones1@inf.ed.ac.uk            }}, IntMultOp);
3256691Stjones1@inf.ed.ac.uk            0x60: mulqv({{
3266691Stjones1@inf.ed.ac.uk                // 64-bit multiply with trap on overflow
3276691Stjones1@inf.ed.ac.uk                uint64_t hi, lo;
3286691Stjones1@inf.ed.ac.uk                mul128(Ra, Rb_or_imm, hi, lo);
3296691Stjones1@inf.ed.ac.uk                // all the upper 64 bits must match the sign bit of
3306691Stjones1@inf.ed.ac.uk                // the lower 64
3316691Stjones1@inf.ed.ac.uk                if (!((hi == 0 && lo<63:> == 0) ||
3326691Stjones1@inf.ed.ac.uk                      (hi == mask(64) && lo<63:> == 1)))
3336691Stjones1@inf.ed.ac.uk                    fault = new IntegerOverflowFault;
3346691Stjones1@inf.ed.ac.uk                Rc = lo;
3356691Stjones1@inf.ed.ac.uk            }}, IntMultOp);
3366691Stjones1@inf.ed.ac.uk        }
3376691Stjones1@inf.ed.ac.uk
3386691Stjones1@inf.ed.ac.uk        0x1c: decode INTFUNC {
3396691Stjones1@inf.ed.ac.uk            0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
3406691Stjones1@inf.ed.ac.uk            0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
3416691Stjones1@inf.ed.ac.uk            0x32: ctlz({{
3426691Stjones1@inf.ed.ac.uk                             uint64_t count = 0;
3436691Stjones1@inf.ed.ac.uk                             uint64_t temp = Rb;
3446691Stjones1@inf.ed.ac.uk                             if (temp<63:32>) temp >>= 32; else count += 32;
3456691Stjones1@inf.ed.ac.uk                             if (temp<31:16>) temp >>= 16; else count += 16;
3466691Stjones1@inf.ed.ac.uk                             if (temp<15:8>) temp >>= 8; else count += 8;
3476691Stjones1@inf.ed.ac.uk                             if (temp<7:4>) temp >>= 4; else count += 4;
3486691Stjones1@inf.ed.ac.uk                             if (temp<3:2>) temp >>= 2; else count += 2;
3496691Stjones1@inf.ed.ac.uk                             if (temp<1:1>) temp >>= 1; else count += 1;
3506691Stjones1@inf.ed.ac.uk                             if ((temp<0:0>) != 0x1) count += 1;
3516691Stjones1@inf.ed.ac.uk                             Rc = count;
3526691Stjones1@inf.ed.ac.uk                           }}, IntAluOp);
3536691Stjones1@inf.ed.ac.uk
3546691Stjones1@inf.ed.ac.uk            0x33: cttz({{
3556691Stjones1@inf.ed.ac.uk                             uint64_t count = 0;
3566691Stjones1@inf.ed.ac.uk                             uint64_t temp = Rb;
3576691Stjones1@inf.ed.ac.uk                             if (!(temp<31:0>)) { temp >>= 32; count += 32; }
3586691Stjones1@inf.ed.ac.uk                             if (!(temp<15:0>)) { temp >>= 16; count += 16; }
3596691Stjones1@inf.ed.ac.uk                             if (!(temp<7:0>)) { temp >>= 8; count += 8; }
3606691Stjones1@inf.ed.ac.uk                             if (!(temp<3:0>)) { temp >>= 4; count += 4; }
3616691Stjones1@inf.ed.ac.uk                             if (!(temp<1:0>)) { temp >>= 2; count += 2; }
3626691Stjones1@inf.ed.ac.uk                             if (!(temp<0:0> & ULL(0x1))) count += 1;
3636691Stjones1@inf.ed.ac.uk                             Rc = count;
3646691Stjones1@inf.ed.ac.uk                           }}, IntAluOp);
3656691Stjones1@inf.ed.ac.uk
3666691Stjones1@inf.ed.ac.uk            format FailUnimpl {
3676691Stjones1@inf.ed.ac.uk                0x30: ctpop();
3686691Stjones1@inf.ed.ac.uk                0x31: perr();
3696691Stjones1@inf.ed.ac.uk                0x34: unpkbw();
3706691Stjones1@inf.ed.ac.uk                0x35: unpkbl();
3716691Stjones1@inf.ed.ac.uk                0x36: pkwb();
3726691Stjones1@inf.ed.ac.uk                0x37: pklb();
3736691Stjones1@inf.ed.ac.uk                0x38: minsb8();
3746691Stjones1@inf.ed.ac.uk                0x39: minsw4();
3756691Stjones1@inf.ed.ac.uk                0x3a: minub8();
3766691Stjones1@inf.ed.ac.uk                0x3b: minuw4();
3776691Stjones1@inf.ed.ac.uk                0x3c: maxub8();
3786691Stjones1@inf.ed.ac.uk                0x3d: maxuw4();
3796691Stjones1@inf.ed.ac.uk                0x3e: maxsb8();
3806691Stjones1@inf.ed.ac.uk                0x3f: maxsw4();
3816691Stjones1@inf.ed.ac.uk            }
3826691Stjones1@inf.ed.ac.uk
3836691Stjones1@inf.ed.ac.uk            format BasicOperateWithNopCheck {
3846691Stjones1@inf.ed.ac.uk                0x70: decode RB {
3856691Stjones1@inf.ed.ac.uk                    31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
3866691Stjones1@inf.ed.ac.uk                }
3876691Stjones1@inf.ed.ac.uk                0x78: decode RB {
3886691Stjones1@inf.ed.ac.uk                    31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
3896691Stjones1@inf.ed.ac.uk                              FloatCvtOp);
3906691Stjones1@inf.ed.ac.uk                }
3916691Stjones1@inf.ed.ac.uk            }
3926691Stjones1@inf.ed.ac.uk        }
3936691Stjones1@inf.ed.ac.uk    }
3946691Stjones1@inf.ed.ac.uk
3956691Stjones1@inf.ed.ac.uk    // Conditional branches.
3966691Stjones1@inf.ed.ac.uk    format CondBranch {
3976691Stjones1@inf.ed.ac.uk        0x39: beq({{ cond = (Ra == 0); }});
3986691Stjones1@inf.ed.ac.uk        0x3d: bne({{ cond = (Ra != 0); }});
3996691Stjones1@inf.ed.ac.uk        0x3e: bge({{ cond = (Ra.sq >= 0); }});
4006691Stjones1@inf.ed.ac.uk        0x3f: bgt({{ cond = (Ra.sq >  0); }});
4016691Stjones1@inf.ed.ac.uk        0x3b: ble({{ cond = (Ra.sq <= 0); }});
4026691Stjones1@inf.ed.ac.uk        0x3a: blt({{ cond = (Ra.sq < 0); }});
4036691Stjones1@inf.ed.ac.uk        0x38: blbc({{ cond = ((Ra & 1) == 0); }});
4046691Stjones1@inf.ed.ac.uk        0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
4056691Stjones1@inf.ed.ac.uk
4066691Stjones1@inf.ed.ac.uk        0x31: fbeq({{ cond = (Fa == 0); }});
4076691Stjones1@inf.ed.ac.uk        0x35: fbne({{ cond = (Fa != 0); }});
4086691Stjones1@inf.ed.ac.uk        0x36: fbge({{ cond = (Fa >= 0); }});
4096691Stjones1@inf.ed.ac.uk        0x37: fbgt({{ cond = (Fa >  0); }});
4106691Stjones1@inf.ed.ac.uk        0x33: fble({{ cond = (Fa <= 0); }});
4116691Stjones1@inf.ed.ac.uk        0x32: fblt({{ cond = (Fa < 0); }});
4126691Stjones1@inf.ed.ac.uk    }
4136691Stjones1@inf.ed.ac.uk
4146691Stjones1@inf.ed.ac.uk    // unconditional branches
4156691Stjones1@inf.ed.ac.uk    format UncondBranch {
4166691Stjones1@inf.ed.ac.uk        0x30: br();
4176691Stjones1@inf.ed.ac.uk        0x34: bsr(IsCall);
41811851Sbrandon.potter@amd.com    }
4196691Stjones1@inf.ed.ac.uk
42011851Sbrandon.potter@amd.com    // indirect branches
42111851Sbrandon.potter@amd.com    0x1a: decode JMPFUNC {
4226691Stjones1@inf.ed.ac.uk        format Jump {
4236691Stjones1@inf.ed.ac.uk            0: jmp();
4246691Stjones1@inf.ed.ac.uk            1: jsr(IsCall);
4256691Stjones1@inf.ed.ac.uk            2: ret(IsReturn);
4266691Stjones1@inf.ed.ac.uk            3: jsr_coroutine(IsCall, IsReturn);
4276691Stjones1@inf.ed.ac.uk        }
4286691Stjones1@inf.ed.ac.uk    }
4296691Stjones1@inf.ed.ac.uk
4306691Stjones1@inf.ed.ac.uk    // Square root and integer-to-FP moves
4316691Stjones1@inf.ed.ac.uk    0x14: decode FP_SHORTFUNC {
4326691Stjones1@inf.ed.ac.uk        // Integer to FP register moves must have RB == 31
4336691Stjones1@inf.ed.ac.uk        0x4: decode RB {
4346691Stjones1@inf.ed.ac.uk            31: decode FP_FULLFUNC {
4357532Ssteve.reinhardt@amd.com                format BasicOperateWithNopCheck {
4366691Stjones1@inf.ed.ac.uk                    0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
43711851Sbrandon.potter@amd.com                    0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
4386691Stjones1@inf.ed.ac.uk                    0x014: FailUnimpl::itoff();	// VAX-format conversion
4396691Stjones1@inf.ed.ac.uk                }
4406691Stjones1@inf.ed.ac.uk            }
4416701Sgblack@eecs.umich.edu        }
4426691Stjones1@inf.ed.ac.uk
4436691Stjones1@inf.ed.ac.uk        // Square root instructions must have FA == 31
4446691Stjones1@inf.ed.ac.uk        0xb: decode FA {
4456691Stjones1@inf.ed.ac.uk            31: decode FP_TYPEFUNC {
4466701Sgblack@eecs.umich.edu                format FloatingPointOperate {
4476691Stjones1@inf.ed.ac.uk#if SS_COMPATIBLE_FP
4486691Stjones1@inf.ed.ac.uk                    0x0b: sqrts({{
4496691Stjones1@inf.ed.ac.uk                        if (Fb < 0.0)
4506691Stjones1@inf.ed.ac.uk                            fault = new ArithmeticFault;
4516691Stjones1@inf.ed.ac.uk                        Fc = sqrt(Fb);
4526691Stjones1@inf.ed.ac.uk                    }}, FloatSqrtOp);
4536691Stjones1@inf.ed.ac.uk#else
4546691Stjones1@inf.ed.ac.uk                    0x0b: sqrts({{
4556691Stjones1@inf.ed.ac.uk                        if (Fb.sf < 0.0)
4566691Stjones1@inf.ed.ac.uk                            fault = new ArithmeticFault;
457                        Fc.sf = sqrt(Fb.sf);
458                    }}, FloatSqrtOp);
459#endif
460                    0x2b: sqrtt({{
461                        if (Fb < 0.0)
462                            fault = new ArithmeticFault;
463                        Fc = sqrt(Fb);
464                    }}, FloatSqrtOp);
465                }
466            }
467        }
468
469        // VAX-format sqrtf and sqrtg are not implemented
470        0xa: FailUnimpl::sqrtfg();
471    }
472
473    // IEEE floating point
474    0x16: decode FP_SHORTFUNC_TOP2 {
475        // The top two bits of the short function code break this
476        // space into four groups: binary ops, compares, reserved, and
477        // conversions.  See Table 4-12 of AHB.  There are different
478        // special cases in these different groups, so we decode on
479        // these top two bits first just to select a decode strategy.
480        // Most of these instructions may have various trapping and
481        // rounding mode flags set; these are decoded in the
482        // FloatingPointDecode template used by the
483        // FloatingPointOperate format.
484
485        // add/sub/mul/div: just decode on the short function code
486        // and source type.  All valid trapping and rounding modes apply.
487        0: decode FP_TRAPMODE {
488            // check for valid trapping modes here
489            0,1,5,7: decode FP_TYPEFUNC {
490                   format FloatingPointOperate {
491#if SS_COMPATIBLE_FP
492                       0x00: adds({{ Fc = Fa + Fb; }});
493                       0x01: subs({{ Fc = Fa - Fb; }});
494                       0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
495                       0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
496#else
497                       0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
498                       0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
499                       0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
500                       0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
501#endif
502
503                       0x20: addt({{ Fc = Fa + Fb; }});
504                       0x21: subt({{ Fc = Fa - Fb; }});
505                       0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
506                       0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
507                   }
508             }
509        }
510
511        // Floating-point compare instructions must have the default
512        // rounding mode, and may use the default trapping mode or
513        // /SU.  Both trapping modes are treated the same by M5; the
514        // only difference on the real hardware (as far a I can tell)
515        // is that without /SU you'd get an imprecise trap if you
516        // tried to compare a NaN with something else (instead of an
517        // "unordered" result).
518        1: decode FP_FULLFUNC {
519            format BasicOperateWithNopCheck {
520                0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
521                                     FloatCmpOp);
522                0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
523                                     FloatCmpOp);
524                0x0a6, 0x5a6: cmptlt({{ Fc = (Fa <  Fb) ? 2.0 : 0.0; }},
525                                     FloatCmpOp);
526                0x0a4, 0x5a4: cmptun({{ // unordered
527                    Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
528                }}, FloatCmpOp);
529            }
530        }
531
532        // The FP-to-integer and integer-to-FP conversion insts
533        // require that FA be 31.
534        3: decode FA {
535            31: decode FP_TYPEFUNC {
536                format FloatingPointOperate {
537                    0x2f: decode FP_ROUNDMODE {
538                        format FPFixedRounding {
539                            // "chopped" i.e. round toward zero
540                            0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
541                                     Chopped);
542                            // round to minus infinity
543                            1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
544                                     MinusInfinity);
545                        }
546                      default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
547                    }
548
549                    // The cvtts opcode is overloaded to be cvtst if the trap
550                    // mode is 2 or 6 (which are not valid otherwise)
551                    0x2c: decode FP_FULLFUNC {
552                        format BasicOperateWithNopCheck {
553                            // trap on denorm version "cvtst/s" is
554                            // simulated same as cvtst
555                            0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
556                        }
557                      default: cvtts({{ Fc.sf = Fb; }});
558                    }
559
560                    // The trapping mode for integer-to-FP conversions
561                    // must be /SUI or nothing; /U and /SU are not
562                    // allowed.  The full set of rounding modes are
563                    // supported though.
564                    0x3c: decode FP_TRAPMODE {
565                        0,7: cvtqs({{ Fc.sf = Fb.sq; }});
566                    }
567                    0x3e: decode FP_TRAPMODE {
568                        0,7: cvtqt({{ Fc    = Fb.sq; }});
569                    }
570                }
571            }
572        }
573    }
574
575    // misc FP operate
576    0x17: decode FP_FULLFUNC {
577        format BasicOperateWithNopCheck {
578            0x010: cvtlq({{
579                Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
580            }});
581            0x030: cvtql({{
582                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
583            }});
584
585            // We treat the precise & imprecise trapping versions of
586            // cvtql identically.
587            0x130, 0x530: cvtqlv({{
588                // To avoid overflow, all the upper 32 bits must match
589                // the sign bit of the lower 32.  We code this as
590                // checking the upper 33 bits for all 0s or all 1s.
591                uint64_t sign_bits = Fb.uq<63:31>;
592                if (sign_bits != 0 && sign_bits != mask(33))
593                    fault = new IntegerOverflowFault;
594                Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
595            }});
596
597            0x020: cpys({{  // copy sign
598                Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
599            }});
600            0x021: cpysn({{ // copy sign negated
601                Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
602            }});
603            0x022: cpyse({{ // copy sign and exponent
604                Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
605            }});
606
607            0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
608            0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
609            0x02c: fcmovlt({{ Fc = (Fa <  0) ? Fb : Fc; }});
610            0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
611            0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
612            0x02f: fcmovgt({{ Fc = (Fa >  0) ? Fb : Fc; }});
613
614            0x024: mt_fpcr({{ FPCR = Fa.uq; }}, IsIprAccess);
615            0x025: mf_fpcr({{ Fa.uq = FPCR; }}, IsIprAccess);
616        }
617    }
618
619    // miscellaneous mem-format ops
620    0x18: decode MEMFUNC {
621        format WarnUnimpl {
622            0x8000: fetch();
623            0xa000: fetch_m();
624            0xe800: ecb();
625        }
626
627        format MiscPrefetch {
628            0xf800: wh64({{ EA = Rb & ~ULL(63); }},
629                         {{ xc->writeHint(EA, 64, memAccessFlags); }},
630                         mem_flags = NO_FAULT,
631                         inst_flags = [IsMemRef, IsDataPrefetch,
632                                       IsStore, MemWriteOp]);
633        }
634
635        format BasicOperate {
636            0xc000: rpcc({{
637#if FULL_SYSTEM
638        /* Rb is a fake dependency so here is a fun way to get
639         * the parser to understand that.
640         */
641                Ra = xc->readMiscRegWithEffect(AlphaISA::IPR_CC) + (Rb & 0);
642
643#else
644                Ra = curTick;
645#endif
646            }}, IsUnverifiable);
647
648            // All of the barrier instructions below do nothing in
649            // their execute() methods (hence the empty code blocks).
650            // All of their functionality is hard-coded in the
651            // pipeline based on the flags IsSerializing,
652            // IsMemBarrier, and IsWriteBarrier.  In the current
653            // detailed CPU model, the execute() function only gets
654            // called at fetch, so there's no way to generate pipeline
655            // behavior at any other stage.  Once we go to an
656            // exec-in-exec CPU model we should be able to get rid of
657            // these flags and implement this behavior via the
658            // execute() methods.
659
660            // trapb is just a barrier on integer traps, where excb is
661            // a barrier on integer and FP traps.  "EXCB is thus a
662            // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
663            // them the same though.
664            0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
665            0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
666            0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
667            0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
668        }
669
670#if FULL_SYSTEM
671        format BasicOperate {
672            0xe000: rc({{
673                Ra = IntrFlag;
674                IntrFlag = 0;
675            }}, IsNonSpeculative, IsUnverifiable);
676            0xf000: rs({{
677                Ra = IntrFlag;
678                IntrFlag = 1;
679            }}, IsNonSpeculative, IsUnverifiable);
680        }
681#else
682        format FailUnimpl {
683            0xe000: rc();
684            0xf000: rs();
685        }
686#endif
687    }
688
689#if FULL_SYSTEM
690    0x00: CallPal::call_pal({{
691        if (!palValid ||
692            (palPriv
693             && xc->readMiscRegWithEffect(AlphaISA::IPR_ICM) != AlphaISA::mode_kernel)) {
694            // invalid pal function code, or attempt to do privileged
695            // PAL call in non-kernel mode
696            fault = new UnimplementedOpcodeFault;
697        }
698        else {
699            // check to see if simulator wants to do something special
700            // on this PAL call (including maybe suppress it)
701            bool dopal = xc->simPalCheck(palFunc);
702
703            if (dopal) {
704                xc->setMiscRegWithEffect(AlphaISA::IPR_EXC_ADDR, NPC);
705                NPC = xc->readMiscRegWithEffect(AlphaISA::IPR_PAL_BASE) + palOffset;
706            }
707        }
708    }}, IsNonSpeculative);
709#else
710    0x00: decode PALFUNC {
711        format EmulatedCallPal {
712            0x00: halt ({{
713                exitSimLoop("halt instruction encountered");
714            }}, IsNonSpeculative);
715            0x83: callsys({{
716                xc->syscall(R0);
717            }}, IsSerializeAfter, IsNonSpeculative);
718            // Read uniq reg into ABI return value register (r0)
719            0x9e: rduniq({{ R0 = Runiq; }}, IsIprAccess);
720            // Write uniq reg with value from ABI arg register (r16)
721            0x9f: wruniq({{ Runiq = R16; }}, IsIprAccess);
722        }
723    }
724#endif
725
726#if FULL_SYSTEM
727    0x1b: decode PALMODE {
728        0: OpcdecFault::hw_st_quad();
729        1: decode HW_LDST_QUAD {
730            format HwLoad {
731                0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
732                1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
733            }
734        }
735    }
736
737    0x1f: decode PALMODE {
738        0: OpcdecFault::hw_st_cond();
739        format HwStore {
740            1: decode HW_LDST_COND {
741                0: decode HW_LDST_QUAD {
742                    0: hw_st({{ EA = (Rb + disp) & ~3; }},
743                {{ Mem.ul = Ra<31:0>; }}, L);
744                    1: hw_st({{ EA = (Rb + disp) & ~7; }},
745                {{ Mem.uq = Ra.uq; }}, Q);
746                }
747
748                1: FailUnimpl::hw_st_cond();
749            }
750        }
751    }
752
753    0x19: decode PALMODE {
754        0: OpcdecFault::hw_mfpr();
755        format HwMoveIPR {
756            1: hw_mfpr({{
757                int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
758                        IprToMiscRegIndex[ipr_index] : -1;
759                if(miscRegIndex < 0 || !IprIsReadable(miscRegIndex) ||
760                    miscRegIndex >= NumInternalProcRegs)
761                        fault = new UnimplementedOpcodeFault;
762                else
763                    Ra = xc->readMiscRegWithEffect(miscRegIndex);
764            }}, IsIprAccess);
765        }
766    }
767
768    0x1d: decode PALMODE {
769        0: OpcdecFault::hw_mtpr();
770        format HwMoveIPR {
771            1: hw_mtpr({{
772                int miscRegIndex = (ipr_index < MaxInternalProcRegs) ?
773                        IprToMiscRegIndex[ipr_index] : -1;
774                if(miscRegIndex < 0 || !IprIsWritable(miscRegIndex) ||
775                    miscRegIndex >= NumInternalProcRegs)
776                        fault = new UnimplementedOpcodeFault;
777                else
778                    xc->setMiscRegWithEffect(miscRegIndex, Ra);
779                if (traceData) { traceData->setData(Ra); }
780            }}, IsIprAccess);
781        }
782    }
783
784    format BasicOperate {
785        0x1e: decode PALMODE {
786            0: OpcdecFault::hw_rei();
787            1:hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
788        }
789
790        // M5 special opcodes use the reserved 0x01 opcode space
791        0x01: decode M5FUNC {
792            0x00: arm({{
793                AlphaPseudo::arm(xc->tcBase());
794            }}, IsNonSpeculative);
795            0x01: quiesce({{
796                AlphaPseudo::quiesce(xc->tcBase());
797            }}, IsNonSpeculative, IsQuiesce);
798            0x02: quiesceNs({{
799                AlphaPseudo::quiesceNs(xc->tcBase(), R16);
800            }}, IsNonSpeculative, IsQuiesce);
801            0x03: quiesceCycles({{
802                AlphaPseudo::quiesceCycles(xc->tcBase(), R16);
803            }}, IsNonSpeculative, IsQuiesce, IsUnverifiable);
804            0x04: quiesceTime({{
805                R0 = AlphaPseudo::quiesceTime(xc->tcBase());
806            }}, IsNonSpeculative, IsUnverifiable);
807            0x10: ivlb({{
808                warn_once("Obsolete M5 instruction ivlb encountered.\n");
809            }});
810            0x11: ivle({{
811                warn_once("Obsolete M5 instruction ivlb encountered.\n");
812            }});
813            0x20: m5exit_old({{
814                AlphaPseudo::m5exit_old(xc->tcBase());
815            }}, No_OpClass, IsNonSpeculative);
816            0x21: m5exit({{
817                AlphaPseudo::m5exit(xc->tcBase(), R16);
818            }}, No_OpClass, IsNonSpeculative);
819            0x31: loadsymbol({{
820                AlphaPseudo::loadsymbol(xc->tcBase());
821            }}, No_OpClass, IsNonSpeculative);
822            0x30: initparam({{ Ra = xc->tcBase()->getCpuPtr()->system->init_param; }});
823            0x40: resetstats({{
824                AlphaPseudo::resetstats(xc->tcBase(), R16, R17);
825            }}, IsNonSpeculative);
826            0x41: dumpstats({{
827                AlphaPseudo::dumpstats(xc->tcBase(), R16, R17);
828            }}, IsNonSpeculative);
829            0x42: dumpresetstats({{
830                AlphaPseudo::dumpresetstats(xc->tcBase(), R16, R17);
831            }}, IsNonSpeculative);
832            0x43: m5checkpoint({{
833                AlphaPseudo::m5checkpoint(xc->tcBase(), R16, R17);
834            }}, IsNonSpeculative);
835            0x50: m5readfile({{
836                R0 = AlphaPseudo::readfile(xc->tcBase(), R16, R17, R18);
837            }}, IsNonSpeculative);
838            0x51: m5break({{
839                AlphaPseudo::debugbreak(xc->tcBase());
840            }}, IsNonSpeculative);
841            0x52: m5switchcpu({{
842                AlphaPseudo::switchcpu(xc->tcBase());
843            }}, IsNonSpeculative);
844            0x53: m5addsymbol({{
845                AlphaPseudo::addsymbol(xc->tcBase(), R16, R17);
846            }}, IsNonSpeculative);
847            0x54: m5panic({{
848                panic("M5 panic instruction called at pc=%#x.", xc->readPC());
849            }}, IsNonSpeculative);
850            0x55: m5anBegin({{
851                AlphaPseudo::anBegin(xc->tcBase(), R16);
852            }}, IsNonSpeculative);
853            0x56: m5anWait({{
854                AlphaPseudo::anWait(xc->tcBase(), R16, R17);
855            }}, IsNonSpeculative);
856        }
857    }
858#endif
859}
860