1/* 2 tests/test_numpy_vectorize.cpp -- auto-vectorize functions over NumPy array 3 arguments 4 5 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 6 7 All rights reserved. Use of this source code is governed by a 8 BSD-style license that can be found in the LICENSE file. 9*/ 10 11#include "pybind11_tests.h" 12#include <pybind11/numpy.h> 13 14double my_func(int x, float y, double z) { 15 py::print("my_func(x:int={}, y:float={:.0f}, z:float={:.0f})"_s.format(x, y, z)); 16 return (float) x*y*z; 17} 18 19TEST_SUBMODULE(numpy_vectorize, m) { 20 try { py::module::import("numpy"); } 21 catch (...) { return; } 22 23 // test_vectorize, test_docs, test_array_collapse 24 // Vectorize all arguments of a function (though non-vector arguments are also allowed) 25 m.def("vectorized_func", py::vectorize(my_func)); 26 27 // Vectorize a lambda function with a capture object (e.g. to exclude some arguments from the vectorization) 28 m.def("vectorized_func2", 29 [](py::array_t<int> x, py::array_t<float> y, float z) { 30 return py::vectorize([z](int x, float y) { return my_func(x, y, z); })(x, y); 31 } 32 ); 33 34 // Vectorize a complex-valued function 35 m.def("vectorized_func3", py::vectorize( 36 [](std::complex<double> c) { return c * std::complex<double>(2.f); } 37 )); 38 39 // test_type_selection 40 // Numpy function which only accepts specific data types 41 m.def("selective_func", [](py::array_t<int, py::array::c_style>) { return "Int branch taken."; }); 42 m.def("selective_func", [](py::array_t<float, py::array::c_style>) { return "Float branch taken."; }); 43 m.def("selective_func", [](py::array_t<std::complex<float>, py::array::c_style>) { return "Complex float branch taken."; }); 44 45 46 // test_passthrough_arguments 47 // Passthrough test: references and non-pod types should be automatically passed through (in the 48 // function definition below, only `b`, `d`, and `g` are vectorized): 49 struct NonPODClass { 50 NonPODClass(int v) : value{v} {} 51 int value; 52 }; 53 py::class_<NonPODClass>(m, "NonPODClass").def(py::init<int>()); 54 m.def("vec_passthrough", py::vectorize( 55 [](double *a, double b, py::array_t<double> c, const int &d, int &e, NonPODClass f, const double g) { 56 return *a + b + c.at(0) + d + e + f.value + g; 57 } 58 )); 59 60 // test_method_vectorization 61 struct VectorizeTestClass { 62 VectorizeTestClass(int v) : value{v} {}; 63 float method(int x, float y) { return y + (float) (x + value); } 64 int value = 0; 65 }; 66 py::class_<VectorizeTestClass> vtc(m, "VectorizeTestClass"); 67 vtc .def(py::init<int>()) 68 .def_readwrite("value", &VectorizeTestClass::value); 69 70 // Automatic vectorizing of methods 71 vtc.def("method", py::vectorize(&VectorizeTestClass::method)); 72 73 // test_trivial_broadcasting 74 // Internal optimization test for whether the input is trivially broadcastable: 75 py::enum_<py::detail::broadcast_trivial>(m, "trivial") 76 .value("f_trivial", py::detail::broadcast_trivial::f_trivial) 77 .value("c_trivial", py::detail::broadcast_trivial::c_trivial) 78 .value("non_trivial", py::detail::broadcast_trivial::non_trivial); 79 m.def("vectorized_is_trivial", []( 80 py::array_t<int, py::array::forcecast> arg1, 81 py::array_t<float, py::array::forcecast> arg2, 82 py::array_t<double, py::array::forcecast> arg3 83 ) { 84 ssize_t ndim; 85 std::vector<ssize_t> shape; 86 std::array<py::buffer_info, 3> buffers {{ arg1.request(), arg2.request(), arg3.request() }}; 87 return py::detail::broadcast(buffers, ndim, shape); 88 }); 89} 90