1/* 2 tests/eigen.cpp -- automatic conversion of Eigen types 3 4 Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch> 5 6 All rights reserved. Use of this source code is governed by a 7 BSD-style license that can be found in the LICENSE file. 8*/ 9 10#include "pybind11_tests.h" 11#include "constructor_stats.h" 12#include <pybind11/eigen.h> 13#include <pybind11/stl.h> 14 15#if defined(_MSC_VER) 16# pragma warning(disable: 4996) // C4996: std::unary_negation is deprecated 17#endif 18 19#include <Eigen/Cholesky> 20 21using MatrixXdR = Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; 22 23 24 25// Sets/resets a testing reference matrix to have values of 10*r + c, where r and c are the 26// (1-based) row/column number. 27template <typename M> void reset_ref(M &x) { 28 for (int i = 0; i < x.rows(); i++) for (int j = 0; j < x.cols(); j++) 29 x(i, j) = 11 + 10*i + j; 30} 31 32// Returns a static, column-major matrix 33Eigen::MatrixXd &get_cm() { 34 static Eigen::MatrixXd *x; 35 if (!x) { 36 x = new Eigen::MatrixXd(3, 3); 37 reset_ref(*x); 38 } 39 return *x; 40} 41// Likewise, but row-major 42MatrixXdR &get_rm() { 43 static MatrixXdR *x; 44 if (!x) { 45 x = new MatrixXdR(3, 3); 46 reset_ref(*x); 47 } 48 return *x; 49} 50// Resets the values of the static matrices returned by get_cm()/get_rm() 51void reset_refs() { 52 reset_ref(get_cm()); 53 reset_ref(get_rm()); 54} 55 56// Returns element 2,1 from a matrix (used to test copy/nocopy) 57double get_elem(Eigen::Ref<const Eigen::MatrixXd> m) { return m(2, 1); }; 58 59 60// Returns a matrix with 10*r + 100*c added to each matrix element (to help test that the matrix 61// reference is referencing rows/columns correctly). 62template <typename MatrixArgType> Eigen::MatrixXd adjust_matrix(MatrixArgType m) { 63 Eigen::MatrixXd ret(m); 64 for (int c = 0; c < m.cols(); c++) for (int r = 0; r < m.rows(); r++) 65 ret(r, c) += 10*r + 100*c; 66 return ret; 67} 68 69struct CustomOperatorNew { 70 CustomOperatorNew() = default; 71 72 Eigen::Matrix4d a = Eigen::Matrix4d::Zero(); 73 Eigen::Matrix4d b = Eigen::Matrix4d::Identity(); 74 75 EIGEN_MAKE_ALIGNED_OPERATOR_NEW; 76}; 77 78TEST_SUBMODULE(eigen, m) { 79 using FixedMatrixR = Eigen::Matrix<float, 5, 6, Eigen::RowMajor>; 80 using FixedMatrixC = Eigen::Matrix<float, 5, 6>; 81 using DenseMatrixR = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>; 82 using DenseMatrixC = Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic>; 83 using FourRowMatrixC = Eigen::Matrix<float, 4, Eigen::Dynamic>; 84 using FourColMatrixC = Eigen::Matrix<float, Eigen::Dynamic, 4>; 85 using FourRowMatrixR = Eigen::Matrix<float, 4, Eigen::Dynamic>; 86 using FourColMatrixR = Eigen::Matrix<float, Eigen::Dynamic, 4>; 87 using SparseMatrixR = Eigen::SparseMatrix<float, Eigen::RowMajor>; 88 using SparseMatrixC = Eigen::SparseMatrix<float>; 89 90 m.attr("have_eigen") = true; 91 92 // various tests 93 m.def("double_col", [](const Eigen::VectorXf &x) -> Eigen::VectorXf { return 2.0f * x; }); 94 m.def("double_row", [](const Eigen::RowVectorXf &x) -> Eigen::RowVectorXf { return 2.0f * x; }); 95 m.def("double_complex", [](const Eigen::VectorXcf &x) -> Eigen::VectorXcf { return 2.0f * x; }); 96 m.def("double_threec", [](py::EigenDRef<Eigen::Vector3f> x) { x *= 2; }); 97 m.def("double_threer", [](py::EigenDRef<Eigen::RowVector3f> x) { x *= 2; }); 98 m.def("double_mat_cm", [](Eigen::MatrixXf x) -> Eigen::MatrixXf { return 2.0f * x; }); 99 m.def("double_mat_rm", [](DenseMatrixR x) -> DenseMatrixR { return 2.0f * x; }); 100 101 // test_eigen_ref_to_python 102 // Different ways of passing via Eigen::Ref; the first and second are the Eigen-recommended 103 m.def("cholesky1", [](Eigen::Ref<MatrixXdR> x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 104 m.def("cholesky2", [](const Eigen::Ref<const MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 105 m.def("cholesky3", [](const Eigen::Ref<MatrixXdR> &x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 106 m.def("cholesky4", [](Eigen::Ref<const MatrixXdR> x) -> Eigen::MatrixXd { return x.llt().matrixL(); }); 107 108 // test_eigen_ref_mutators 109 // Mutators: these add some value to the given element using Eigen, but Eigen should be mapping into 110 // the numpy array data and so the result should show up there. There are three versions: one that 111 // works on a contiguous-row matrix (numpy's default), one for a contiguous-column matrix, and one 112 // for any matrix. 113 auto add_rm = [](Eigen::Ref<MatrixXdR> x, int r, int c, double v) { x(r,c) += v; }; 114 auto add_cm = [](Eigen::Ref<Eigen::MatrixXd> x, int r, int c, double v) { x(r,c) += v; }; 115 116 // Mutators (Eigen maps into numpy variables): 117 m.def("add_rm", add_rm); // Only takes row-contiguous 118 m.def("add_cm", add_cm); // Only takes column-contiguous 119 // Overloaded versions that will accept either row or column contiguous: 120 m.def("add1", add_rm); 121 m.def("add1", add_cm); 122 m.def("add2", add_cm); 123 m.def("add2", add_rm); 124 // This one accepts a matrix of any stride: 125 m.def("add_any", [](py::EigenDRef<Eigen::MatrixXd> x, int r, int c, double v) { x(r,c) += v; }); 126 127 // Return mutable references (numpy maps into eigen variables) 128 m.def("get_cm_ref", []() { return Eigen::Ref<Eigen::MatrixXd>(get_cm()); }); 129 m.def("get_rm_ref", []() { return Eigen::Ref<MatrixXdR>(get_rm()); }); 130 // The same references, but non-mutable (numpy maps into eigen variables, but is !writeable) 131 m.def("get_cm_const_ref", []() { return Eigen::Ref<const Eigen::MatrixXd>(get_cm()); }); 132 m.def("get_rm_const_ref", []() { return Eigen::Ref<const MatrixXdR>(get_rm()); }); 133 134 m.def("reset_refs", reset_refs); // Restores get_{cm,rm}_ref to original values 135 136 // Increments and returns ref to (same) matrix 137 m.def("incr_matrix", [](Eigen::Ref<Eigen::MatrixXd> m, double v) { 138 m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); 139 return m; 140 }, py::return_value_policy::reference); 141 142 // Same, but accepts a matrix of any strides 143 m.def("incr_matrix_any", [](py::EigenDRef<Eigen::MatrixXd> m, double v) { 144 m += Eigen::MatrixXd::Constant(m.rows(), m.cols(), v); 145 return m; 146 }, py::return_value_policy::reference); 147 148 // Returns an eigen slice of even rows 149 m.def("even_rows", [](py::EigenDRef<Eigen::MatrixXd> m) { 150 return py::EigenDMap<Eigen::MatrixXd>( 151 m.data(), (m.rows() + 1) / 2, m.cols(), 152 py::EigenDStride(m.outerStride(), 2 * m.innerStride())); 153 }, py::return_value_policy::reference); 154 155 // Returns an eigen slice of even columns 156 m.def("even_cols", [](py::EigenDRef<Eigen::MatrixXd> m) { 157 return py::EigenDMap<Eigen::MatrixXd>( 158 m.data(), m.rows(), (m.cols() + 1) / 2, 159 py::EigenDStride(2 * m.outerStride(), m.innerStride())); 160 }, py::return_value_policy::reference); 161 162 // Returns diagonals: a vector-like object with an inner stride != 1 163 m.def("diagonal", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal(); }); 164 m.def("diagonal_1", [](const Eigen::Ref<const Eigen::MatrixXd> &x) { return x.diagonal<1>(); }); 165 m.def("diagonal_n", [](const Eigen::Ref<const Eigen::MatrixXd> &x, int index) { return x.diagonal(index); }); 166 167 // Return a block of a matrix (gives non-standard strides) 168 m.def("block", [](const Eigen::Ref<const Eigen::MatrixXd> &x, int start_row, int start_col, int block_rows, int block_cols) { 169 return x.block(start_row, start_col, block_rows, block_cols); 170 }); 171 172 // test_eigen_return_references, test_eigen_keepalive 173 // return value referencing/copying tests: 174 class ReturnTester { 175 Eigen::MatrixXd mat = create(); 176 public: 177 ReturnTester() { print_created(this); } 178 ~ReturnTester() { print_destroyed(this); } 179 static Eigen::MatrixXd create() { return Eigen::MatrixXd::Ones(10, 10); } 180 static const Eigen::MatrixXd createConst() { return Eigen::MatrixXd::Ones(10, 10); } 181 Eigen::MatrixXd &get() { return mat; } 182 Eigen::MatrixXd *getPtr() { return &mat; } 183 const Eigen::MatrixXd &view() { return mat; } 184 const Eigen::MatrixXd *viewPtr() { return &mat; } 185 Eigen::Ref<Eigen::MatrixXd> ref() { return mat; } 186 Eigen::Ref<const Eigen::MatrixXd> refConst() { return mat; } 187 Eigen::Block<Eigen::MatrixXd> block(int r, int c, int nrow, int ncol) { return mat.block(r, c, nrow, ncol); } 188 Eigen::Block<const Eigen::MatrixXd> blockConst(int r, int c, int nrow, int ncol) const { return mat.block(r, c, nrow, ncol); } 189 py::EigenDMap<Eigen::Matrix2d> corners() { return py::EigenDMap<Eigen::Matrix2d>(mat.data(), 190 py::EigenDStride(mat.outerStride() * (mat.outerSize()-1), mat.innerStride() * (mat.innerSize()-1))); } 191 py::EigenDMap<const Eigen::Matrix2d> cornersConst() const { return py::EigenDMap<const Eigen::Matrix2d>(mat.data(), 192 py::EigenDStride(mat.outerStride() * (mat.outerSize()-1), mat.innerStride() * (mat.innerSize()-1))); } 193 }; 194 using rvp = py::return_value_policy; 195 py::class_<ReturnTester>(m, "ReturnTester") 196 .def(py::init<>()) 197 .def_static("create", &ReturnTester::create) 198 .def_static("create_const", &ReturnTester::createConst) 199 .def("get", &ReturnTester::get, rvp::reference_internal) 200 .def("get_ptr", &ReturnTester::getPtr, rvp::reference_internal) 201 .def("view", &ReturnTester::view, rvp::reference_internal) 202 .def("view_ptr", &ReturnTester::view, rvp::reference_internal) 203 .def("copy_get", &ReturnTester::get) // Default rvp: copy 204 .def("copy_view", &ReturnTester::view) // " 205 .def("ref", &ReturnTester::ref) // Default for Ref is to reference 206 .def("ref_const", &ReturnTester::refConst) // Likewise, but const 207 .def("ref_safe", &ReturnTester::ref, rvp::reference_internal) 208 .def("ref_const_safe", &ReturnTester::refConst, rvp::reference_internal) 209 .def("copy_ref", &ReturnTester::ref, rvp::copy) 210 .def("copy_ref_const", &ReturnTester::refConst, rvp::copy) 211 .def("block", &ReturnTester::block) 212 .def("block_safe", &ReturnTester::block, rvp::reference_internal) 213 .def("block_const", &ReturnTester::blockConst, rvp::reference_internal) 214 .def("copy_block", &ReturnTester::block, rvp::copy) 215 .def("corners", &ReturnTester::corners, rvp::reference_internal) 216 .def("corners_const", &ReturnTester::cornersConst, rvp::reference_internal) 217 ; 218 219 // test_special_matrix_objects 220 // Returns a DiagonalMatrix with diagonal (1,2,3,...) 221 m.def("incr_diag", [](int k) { 222 Eigen::DiagonalMatrix<int, Eigen::Dynamic> m(k); 223 for (int i = 0; i < k; i++) m.diagonal()[i] = i+1; 224 return m; 225 }); 226 227 // Returns a SelfAdjointView referencing the lower triangle of m 228 m.def("symmetric_lower", [](const Eigen::MatrixXi &m) { 229 return m.selfadjointView<Eigen::Lower>(); 230 }); 231 // Returns a SelfAdjointView referencing the lower triangle of m 232 m.def("symmetric_upper", [](const Eigen::MatrixXi &m) { 233 return m.selfadjointView<Eigen::Upper>(); 234 }); 235 236 // Test matrix for various functions below. 237 Eigen::MatrixXf mat(5, 6); 238 mat << 0, 3, 0, 0, 0, 11, 239 22, 0, 0, 0, 17, 11, 240 7, 5, 0, 1, 0, 11, 241 0, 0, 0, 0, 0, 11, 242 0, 0, 14, 0, 8, 11; 243 244 // test_fixed, and various other tests 245 m.def("fixed_r", [mat]() -> FixedMatrixR { return FixedMatrixR(mat); }); 246 m.def("fixed_r_const", [mat]() -> const FixedMatrixR { return FixedMatrixR(mat); }); 247 m.def("fixed_c", [mat]() -> FixedMatrixC { return FixedMatrixC(mat); }); 248 m.def("fixed_copy_r", [](const FixedMatrixR &m) -> FixedMatrixR { return m; }); 249 m.def("fixed_copy_c", [](const FixedMatrixC &m) -> FixedMatrixC { return m; }); 250 // test_mutator_descriptors 251 m.def("fixed_mutator_r", [](Eigen::Ref<FixedMatrixR>) {}); 252 m.def("fixed_mutator_c", [](Eigen::Ref<FixedMatrixC>) {}); 253 m.def("fixed_mutator_a", [](py::EigenDRef<FixedMatrixC>) {}); 254 // test_dense 255 m.def("dense_r", [mat]() -> DenseMatrixR { return DenseMatrixR(mat); }); 256 m.def("dense_c", [mat]() -> DenseMatrixC { return DenseMatrixC(mat); }); 257 m.def("dense_copy_r", [](const DenseMatrixR &m) -> DenseMatrixR { return m; }); 258 m.def("dense_copy_c", [](const DenseMatrixC &m) -> DenseMatrixC { return m; }); 259 // test_sparse, test_sparse_signature 260 m.def("sparse_r", [mat]() -> SparseMatrixR { return Eigen::SparseView<Eigen::MatrixXf>(mat); }); 261 m.def("sparse_c", [mat]() -> SparseMatrixC { return Eigen::SparseView<Eigen::MatrixXf>(mat); }); 262 m.def("sparse_copy_r", [](const SparseMatrixR &m) -> SparseMatrixR { return m; }); 263 m.def("sparse_copy_c", [](const SparseMatrixC &m) -> SparseMatrixC { return m; }); 264 // test_partially_fixed 265 m.def("partial_copy_four_rm_r", [](const FourRowMatrixR &m) -> FourRowMatrixR { return m; }); 266 m.def("partial_copy_four_rm_c", [](const FourColMatrixR &m) -> FourColMatrixR { return m; }); 267 m.def("partial_copy_four_cm_r", [](const FourRowMatrixC &m) -> FourRowMatrixC { return m; }); 268 m.def("partial_copy_four_cm_c", [](const FourColMatrixC &m) -> FourColMatrixC { return m; }); 269 270 // test_cpp_casting 271 // Test that we can cast a numpy object to a Eigen::MatrixXd explicitly 272 m.def("cpp_copy", [](py::handle m) { return m.cast<Eigen::MatrixXd>()(1, 0); }); 273 m.def("cpp_ref_c", [](py::handle m) { return m.cast<Eigen::Ref<Eigen::MatrixXd>>()(1, 0); }); 274 m.def("cpp_ref_r", [](py::handle m) { return m.cast<Eigen::Ref<MatrixXdR>>()(1, 0); }); 275 m.def("cpp_ref_any", [](py::handle m) { return m.cast<py::EigenDRef<Eigen::MatrixXd>>()(1, 0); }); 276 277 278 // test_nocopy_wrapper 279 // Test that we can prevent copying into an argument that would normally copy: First a version 280 // that would allow copying (if types or strides don't match) for comparison: 281 m.def("get_elem", &get_elem); 282 // Now this alternative that calls the tells pybind to fail rather than copy: 283 m.def("get_elem_nocopy", [](Eigen::Ref<const Eigen::MatrixXd> m) -> double { return get_elem(m); }, 284 py::arg().noconvert()); 285 // Also test a row-major-only no-copy const ref: 286 m.def("get_elem_rm_nocopy", [](Eigen::Ref<const Eigen::Matrix<long, -1, -1, Eigen::RowMajor>> &m) -> long { return m(2, 1); }, 287 py::arg().noconvert()); 288 289 // test_issue738 290 // Issue #738: 1xN or Nx1 2D matrices were neither accepted nor properly copied with an 291 // incompatible stride value on the length-1 dimension--but that should be allowed (without 292 // requiring a copy!) because the stride value can be safely ignored on a size-1 dimension. 293 m.def("iss738_f1", &adjust_matrix<const Eigen::Ref<const Eigen::MatrixXd> &>, py::arg().noconvert()); 294 m.def("iss738_f2", &adjust_matrix<const Eigen::Ref<const Eigen::Matrix<double, -1, -1, Eigen::RowMajor>> &>, py::arg().noconvert()); 295 296 // test_issue1105 297 // Issue #1105: when converting from a numpy two-dimensional (Nx1) or (1xN) value into a dense 298 // eigen Vector or RowVector, the argument would fail to load because the numpy copy would fail: 299 // numpy won't broadcast a Nx1 into a 1-dimensional vector. 300 m.def("iss1105_col", [](Eigen::VectorXd) { return true; }); 301 m.def("iss1105_row", [](Eigen::RowVectorXd) { return true; }); 302 303 // test_named_arguments 304 // Make sure named arguments are working properly: 305 m.def("matrix_multiply", [](const py::EigenDRef<const Eigen::MatrixXd> A, const py::EigenDRef<const Eigen::MatrixXd> B) 306 -> Eigen::MatrixXd { 307 if (A.cols() != B.rows()) throw std::domain_error("Nonconformable matrices!"); 308 return A * B; 309 }, py::arg("A"), py::arg("B")); 310 311 // test_custom_operator_new 312 py::class_<CustomOperatorNew>(m, "CustomOperatorNew") 313 .def(py::init<>()) 314 .def_readonly("a", &CustomOperatorNew::a) 315 .def_readonly("b", &CustomOperatorNew::b); 316 317 // test_eigen_ref_life_support 318 // In case of a failure (the caster's temp array does not live long enough), creating 319 // a new array (np.ones(10)) increases the chances that the temp array will be garbage 320 // collected and/or that its memory will be overridden with different values. 321 m.def("get_elem_direct", [](Eigen::Ref<const Eigen::VectorXd> v) { 322 py::module::import("numpy").attr("ones")(10); 323 return v(5); 324 }); 325 m.def("get_elem_indirect", [](std::vector<Eigen::Ref<const Eigen::VectorXd>> v) { 326 py::module::import("numpy").attr("ones")(10); 327 return v[0](5); 328 }); 329} 330