1# Copyright (c) 2012 Massachusetts Institute of Technology
2#
3# Permission is hereby granted, free of charge, to any person obtaining a copy
4# of this software and associated documentation files (the "Software"), to deal
5# in the Software without restriction, including without limitation the rights
6# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7# copies of the Software, and to permit persons to whom the Software is
8# furnished to do so, subject to the following conditions:
9# 
10# The above copyright notice and this permission notice shall be included in
11# all copies or substantial portions of the Software.
12# 
13# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
16# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19# THE SOFTWARE.
20
21# WARNING: Most commercial fabs will not be happy if you release their exact
22# process information! If you derive these numbers through SPICE models,
23# the process design kit, or any other confidential material, please round-off
24# the values and leave the process name unidentifiable by fab (i.e. call it
25# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This
26# rule may not apply for open processes, but you may want to check.
27
28# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.)
29
30# This file contains the model for a Tri-Gate (Multi-Gate) 11nm LVT process
31Name = TG11LVT
32
33# Supply voltage used in the circuit and for characterizations (V)
34Vdd = 0.6
35# Temperature (K)
36Temperature = 340
37
38# =============================================================================
39# Parameters for transistors
40# =============================================================================
41
42# Contacted gate pitch (m)
43Gate->PitchContacted = 0.080e-6
44
45# Min gate width (m)
46Gate->MinWidth = 0.080e-6
47
48# Gate cap per unit width (F/m)
49Gate->CapPerWidth = 0.61e-9
50# Source/Drain cap per unit width (F/m)
51Drain->CapPerWidth = 0.56e-9
52
53# Parameters characterization temperature (K)
54Nmos->CharacterizedTemperature = 300.0
55Pmos->CharacterizedTemperature = 300.0
56
57#------------------------------------------------------------------------------
58# I_Eff definition in Na, IEDM 2002
59#       I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2
60#       R_EFF = VDD / I_EFF * 1 / (2 ln(2))
61# This is generally more accurate for when the delay is input transition time
62# limited
63#------------------------------------------------------------------------------
64# Effective resistance (Ohm-m)
65Nmos->EffResWidth = 1.16e-3
66Pmos->EffResWidth = 1.28e-3
67
68#------------------------------------------------------------------------------
69# The ratio of extra effective resistance with each additional stacked
70# transistor
71#       EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV)
72# For example, inverter has an normalized effective drive resistance of 1.0.
73# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack)
74# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit
75# works relatively well up to 4 stacks. This value will change depending on the
76# VDD used. 
77#------------------------------------------------------------------------------
78# Effective resistance stack ratio
79Nmos->EffResStackRatio = 0.89
80Pmos->EffResStackRatio = 0.86
81
82#------------------------------------------------------------------------------
83# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0
84#       Minimum off current is used in technologies where I_OFF stops scaling
85#       with transistor width below some threshold
86#------------------------------------------------------------------------------
87# Off current per width (A/m)
88Nmos->OffCurrent = 100.0e-3
89Pmos->OffCurrent = 100.0e-3
90# Minimum off current (A)
91Nmos->MinOffCurrent = 40e-9
92Pmos->MinOffCurrent = 4e-9
93
94# Subthreshold swing (V/dec)        
95Nmos->SubthresholdSwing = 0.080
96Pmos->SubthresholdSwing = 0.080
97# DIBL factor (V/V)
98Nmos->DIBL = 0.125
99Pmos->DIBL = 0.125
100# Subthreshold temperature swing (K/dec)
101Nmos->SubthresholdTempSwing = 100.0
102Pmos->SubthresholdTempSwing = 100.0
103#------------------------------------------------------------------------------
104
105# =============================================================================
106# Parameters for interconnect
107# =============================================================================
108
109Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global]
110
111# Metal 1 Wire (used for std cell routing only)
112# Min width (m)
113Wire->Metal1->MinWidth = 20e-9
114# Min spacing (m)
115Wire->Metal1->MinSpacing = 20e-9
116# Resistivity (Ohm-m)
117Wire->Metal1->Resistivity = 6.8e-8
118# Metal thickness (m)
119Wire->Metal1->MetalThickness = 35.0e-9
120# Dielectric thickness (m)
121Wire->Metal1->DielectricThickness = 35.0e-9
122# Dielectric constant
123Wire->Metal1->DielectricConstant = 3.00
124
125# Local wire, 1.0X of the M1 pitch
126# Min width (m)
127Wire->Local->MinWidth = 20e-9
128# Min spacing (m)
129Wire->Local->MinSpacing = 20e-9
130# Resistivity (Ohm-m)
131Wire->Local->Resistivity = 6.8e-8
132# Metal thickness (m)
133Wire->Local->MetalThickness = 35.0e-9
134# Dielectric thickness (m)
135Wire->Local->DielectricThickness = 35.0e-9
136# Dielectric constant
137Wire->Local->DielectricConstant = 3.00
138
139# Intermediate wire, 2.0X the M1 pitch
140# Min width (m)
141Wire->Intermediate->MinWidth = 40e-9
142# Min spacing (m)
143Wire->Intermediate->MinSpacing = 40e-9
144# Resistivity (Ohm-m)
145Wire->Intermediate->Resistivity = 4.50e-8
146# Metal thickness (m)
147Wire->Intermediate->MetalThickness = 70.0e-9
148# Dielectric thickness (m)
149Wire->Intermediate->DielectricThickness = 70.0e-9
150# Dielectric constant
151Wire->Intermediate->DielectricConstant = 2.80
152
153# Semiglobal wire, 4.0X the M1 pitch
154# Min width (m)
155Wire->Semiglobal->MinWidth = 80e-9
156# Min spacing (m)
157Wire->Semiglobal->MinSpacing = 80e-9
158# Resistivity (Ohm-m)
159Wire->Semiglobal->Resistivity = 2.80e-8
160# Metal thickness (m)
161Wire->Semiglobal->MetalThickness = 150.0e-9
162# Dielectric thickness (m)
163Wire->Semiglobal->DielectricThickness = 150.0e-9
164# Dielectric constant
165Wire->Semiglobal->DielectricConstant = 2.60      
166
167# Global wire, 8.0X the M1 pitch
168# Min width (m)
169Wire->Global->MinWidth = 160e-9
170# Min spacing (m)
171Wire->Global->MinSpacing = 160e-9
172# Resistivity (Ohm-m)
173Wire->Global->Resistivity = 2.30e-8
174# Metal thickness (m)
175Wire->Global->MetalThickness = 280e-9
176# Dielectric thickness (m)
177Wire->Global->DielectricThickness = 250e-9
178# Dielectric constant
179Wire->Global->DielectricConstant = 2.60
180
181# =============================================================================
182# Parameters for Standard Cells
183# =============================================================================
184
185# The height of the standard cell is usually a multiple of the vertical
186# M1 pitch (tracks). By definition, an X1 size cell has transistors
187# that fit exactly in the given cell height without folding, or leaving
188# any wasted vertical area
189
190# Reasonable values for the number of M1 tracks that we have seen are 8-14
191StdCell->Tracks = 11
192# Height overhead due to supply rails, well spacing, etc. Note that this will grow
193# if the height of the standard cell decreases!
194StdCell->HeightOverheadFactor = 1.400
195
196# Sets the available sizes of each standard cell. Keep in mind that
197# 1.0 is the biggest cell without any transistor folding
198StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0]
199
200
201
202