1# Copyright (c) 2012 Massachusetts Institute of Technology 2# 3# Permission is hereby granted, free of charge, to any person obtaining a copy 4# of this software and associated documentation files (the "Software"), to deal 5# in the Software without restriction, including without limitation the rights 6# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7# copies of the Software, and to permit persons to whom the Software is 8# furnished to do so, subject to the following conditions: 9# 10# The above copyright notice and this permission notice shall be included in 11# all copies or substantial portions of the Software. 12# 13# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19# THE SOFTWARE. 20 21# WARNING: Most commercial fabs will not be happy if you release their exact 22# process information! If you derive these numbers through SPICE models, 23# the process design kit, or any other confidential material, please round-off 24# the values and leave the process name unidentifiable by fab (i.e. call it 25# Bulk90LVT instead of TSMC90LVT) if you release parameters publicly. This 26# rule may not apply for open processes, but you may want to check. 27 28# All units are in SI, (volts, meters, kelvin, farads, ohms, amps, etc.) 29 30# This file contains the model for a bulk 22nm LVT process 31Name = Bulk22LVT 32 33# Supply voltage used in the circuit and for characterizations (V) 34Vdd = 0.8 35# Temperature (K) 36Temperature = 340 37 38# ============================================================================= 39# Parameters for transistors 40# ============================================================================= 41 42# Contacted gate pitch (m) 43Gate->PitchContacted = 0.120e-6 44 45# Min gate width (m) 46Gate->MinWidth = 0.100e-6 47 48# Gate cap per unit width (F/m) 49Gate->CapPerWidth = 0.900e-9 50# Source/Drain cap per unit width (F/m) 51Drain->CapPerWidth = 0.620e-9 52 53# Parameters characterization temperature (K) 54Nmos->CharacterizedTemperature = 300.0 55Pmos->CharacterizedTemperature = 300.0 56 57#------------------------------------------------------------------------------ 58# I_Eff definition in Na, IEDM 2002 59# I_EFF = (I(VG = 0.5, VD = 1.0) + I(VG = 1.0, VD = 0.5))/2 60# R_EFF = VDD / I_EFF * 1 / (2 ln(2)) 61# This is generally accurate for when input and output transition times 62# are similar, which is a reasonable case after timing optimization 63#------------------------------------------------------------------------------ 64# Effective resistance (Ohm-m) 65Nmos->EffResWidth = 0.700e-3 66Pmos->EffResWidth = 0.930e-3 67 68#------------------------------------------------------------------------------ 69# The ratio of extra effective resistance with each additional stacked 70# transistor 71# EffResStackRatio = (R_EFF_NAND2 - R_EFF_INV) / R_EFF_INV) 72# For example, inverter has an normalized effective drive resistance of 1.0. 73# A NAND2 (2-stack) will have an effective drive of 1.0 + 0.7, a NAND3 (3-stack) 74# will have an effective drive of 1.0 + 2 * 0.7. Use NORs for Pmos. This fit 75# works relatively well up to 4 stacks. This value will change depending on the 76# VDD used. 77#------------------------------------------------------------------------------ 78# Effective resistance stack ratio 79Nmos->EffResStackRatio = 0.800 80Pmos->EffResStackRatio = 0.680 81 82#------------------------------------------------------------------------------ 83# I_OFF defined as |I_DS| for |V_DS| = V_DD and |V_GS| = 0.0 84# Minimum off current is used in technologies where I_OFF stops scaling 85# with transistor width below some threshold 86#------------------------------------------------------------------------------ 87# Off current per width (A/m) 88Nmos->OffCurrent = 100.0e-3 89Pmos->OffCurrent = 100.0e-3 90# Minimum off current (A) 91Nmos->MinOffCurrent = 60e-9 92Pmos->MinOffCurrent = 60e-9 93 94# Subthreshold swing (V/dec) 95Nmos->SubthresholdSwing = 0.100 96Pmos->SubthresholdSwing = 0.100 97# DIBL factor (V/V) 98Nmos->DIBL = 0.150 99Pmos->DIBL = 0.150 100# Subthreshold temperature swing (K/dec) 101Nmos->SubthresholdTempSwing = 100.0 102Pmos->SubthresholdTempSwing = 100.0 103#------------------------------------------------------------------------------ 104 105# ============================================================================= 106# Parameters for interconnect 107# ============================================================================= 108 109Wire->AvailableLayers = [Metal1,Local,Intermediate,Semiglobal,Global] 110 111# Metal 1 Wire (used for std cell routing only) 112# Min width (m) 113Wire->Metal1->MinWidth = 32e-9 114# Min spacing (m) 115Wire->Metal1->MinSpacing = 32e-9 116# Resistivity (Ohm-m) 117Wire->Metal1->Resistivity = 5.00e-8 118# Metal thickness (m) 119Wire->Metal1->MetalThickness = 60.0e-9 120# Dielectric thickness (m) 121Wire->Metal1->DielectricThickness = 60.0e-9 122# Dielectric constant 123Wire->Metal1->DielectricConstant = 3.00 124 125# Local wire, 1.0X of the M1 pitch 126# Min width (m) 127Wire->Local->MinWidth = 32e-9 128# Min spacing (m) 129Wire->Local->MinSpacing = 32e-9 130# Resistivity (Ohm-m) 131Wire->Local->Resistivity = 5.00e-8 132# Metal thickness (m) 133Wire->Local->MetalThickness = 60.0e-9 134# Dielectric thickness (m) 135Wire->Local->DielectricThickness = 60.0e-9 136# Dielectric constant 137Wire->Local->DielectricConstant = 3.00 138 139# Intermediate wire, 2.0X the M1 pitch 140# Min width (m) 141Wire->Intermediate->MinWidth = 55e-9 142# Min spacing (m) 143Wire->Intermediate->MinSpacing = 55e-9 144# Resistivity (Ohm-m) 145Wire->Intermediate->Resistivity = 4.00e-8 146# Metal thickness (m) 147Wire->Intermediate->MetalThickness = 100.0e-9 148# Dielectric thickness (m) 149Wire->Intermediate->DielectricThickness = 100.0e-9 150# Dielectric constant 151Wire->Intermediate->DielectricConstant = 2.8 152 153# Semiglobal wire, 4.0X the M1 pitch 154# Min width (m) 155Wire->Semiglobal->MinWidth = 110e-9 156# Min spacing (m) 157Wire->Semiglobal->MinSpacing = 110e-9 158# Resistivity (Ohm-m) 159Wire->Semiglobal->Resistivity = 2.60e-8 160# Metal thickness (m) 161Wire->Semiglobal->MetalThickness = 200e-9 162# Dielectric thickness (m) 163Wire->Semiglobal->DielectricThickness = 170e-9 164# Dielectric constant 165Wire->Semiglobal->DielectricConstant = 2.80 166 167# Global wire, 6.0X the M1 pitch 168# Min width (m) 169Wire->Global->MinWidth = 160e-9 170# Min spacing (m) 171Wire->Global->MinSpacing = 160e-9 172# Resistivity (Ohm-m) 173Wire->Global->Resistivity = 2.30e-8 174# Metal thickness (m) 175Wire->Global->MetalThickness = 280e-9 176# Dielectric thickness (m) 177Wire->Global->DielectricThickness = 250e-9 178# Dielectric constant 179Wire->Global->DielectricConstant = 2.60 180 181# ============================================================================= 182# Parameters for Standard Cells 183# ============================================================================= 184 185# The height of the standard cell is usually a multiple of the vertical 186# M1 pitch (tracks). By definition, an X1 size cell has transistors 187# that fit exactly in the given cell height without folding, or leaving 188# any wasted vertical area 189 190# Reasonable values for the number of M1 tracks that we have seen are 8-14 191StdCell->Tracks = 11 192# Height overhead due to supply rails, well spacing, etc. Note that this will grow 193# if the height of the standard cell decreases! 194StdCell->HeightOverheadFactor = 1.400 195 196# Sets the available sizes of each standard cell. Keep in mind that 197# 1.0 is the biggest cell without any transistor folding 198StdCell->AvailableSizes = [1.0, 1.4, 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 12.0, 16.0] 199 200