1/* Copyright (c) 2012 Massachusetts Institute of Technology
2 *
3 * Permission is hereby granted, free of charge, to any person obtaining a copy
4 * of this software and associated documentation files (the "Software"), to deal
5 * in the Software without restriction, including without limitation the rights
6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7 * copies of the Software, and to permit persons to whom the Software is
8 * furnished to do so, subject to the following conditions:
9 *
10 * The above copyright notice and this permission notice shall be included in
11 * all copies or substantial portions of the Software.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19 * THE SOFTWARE.
20 */
21
22#include "model/std_cells/MUX2.h"
23
24#include <cmath>
25
26#include "model/PortInfo.h"
27#include "model/TransitionInfo.h"
28#include "model/EventInfo.h"
29#include "model/std_cells/StdCellLib.h"
30#include "model/std_cells/CellMacros.h"
31#include "model/timing_graph/ElectricalNet.h"
32#include "model/timing_graph/ElectricalDriver.h"
33#include "model/timing_graph/ElectricalLoad.h"
34#include "model/timing_graph/ElectricalDelay.h"
35
36namespace DSENT
37{
38    using std::ceil;
39    using std::max;
40
41    MUX2::MUX2(const String& instance_name_, const TechModel* tech_model_)
42        : StdCell(instance_name_, tech_model_)
43    {
44        initProperties();
45    }
46
47    MUX2::~MUX2()
48    {}
49
50    void MUX2::initProperties()
51    {
52        return;
53    }
54
55    void MUX2::constructModel()
56    {
57        // All constructModel should do is create Area/NDDPower/Energy Results as
58        // well as instantiate any sub-instances using only the hard parameters
59
60        createInputPort("A");
61        createInputPort("B");
62        createInputPort("S0");
63        createOutputPort("Y");
64
65        createLoad("A_Cap");
66        createLoad("B_Cap");
67        createLoad("S0_Cap");
68        createDelay("A_to_Y_delay");
69        createDelay("B_to_Y_delay");
70        createDelay("S0_to_Y_delay");
71        createDriver("Y_Ron", true);
72
73        ElectricalLoad* a_cap = getLoad("A_Cap");
74        ElectricalLoad* b_cap = getLoad("B_Cap");
75        ElectricalLoad* s0_cap = getLoad("S0_Cap");
76        ElectricalDelay* a_to_y_delay = getDelay("A_to_Y_delay");
77        ElectricalDelay* b_to_y_delay = getDelay("B_to_Y_delay");
78        ElectricalDelay* s0_to_y_delay = getDelay("S0_to_Y_delay");
79        ElectricalDriver* y_ron = getDriver("Y_Ron");
80
81        getNet("A")->addDownstreamNode(a_cap);
82        getNet("B")->addDownstreamNode(b_cap);
83        getNet("S0")->addDownstreamNode(s0_cap);
84        a_cap->addDownstreamNode(a_to_y_delay);
85        b_cap->addDownstreamNode(b_to_y_delay);
86        s0_cap->addDownstreamNode(s0_to_y_delay);
87        a_to_y_delay->addDownstreamNode(y_ron);
88        b_to_y_delay->addDownstreamNode(y_ron);
89        s0_to_y_delay->addDownstreamNode(y_ron);
90        y_ron->addDownstreamNode(getNet("Y"));
91
92        // Create Area result
93        createElectricalAtomicResults();
94        getEventInfo("Idle")->setStaticTransitionInfos();
95        // Create MUX2 Event Energy Result
96        createElectricalEventAtomicResult("MUX2");
97
98
99        return;
100    }
101
102    void MUX2::updateModel()
103    {
104        // Get parameters
105        double drive_strength = getDrivingStrength();
106        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
107
108        // Standard cell cache string
109        String cell_name = "MUX2_X" + (String) drive_strength;
110
111        // Get timing parameters
112        getLoad("A_Cap")->setLoadCap(cache->get(cell_name + "->Cap->A"));
113        getLoad("B_Cap")->setLoadCap(cache->get(cell_name + "->Cap->B"));
114        getLoad("S0_Cap")->setLoadCap(cache->get(cell_name + "->Cap->S0"));
115
116        getDelay("A_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->A_to_Y"));
117        getDelay("B_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->B_to_Y"));
118        getDelay("S0_to_Y_delay")->setDelay(cache->get(cell_name + "->Delay->S0_to_Y"));
119
120        getDriver("Y_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Y"));
121
122        // Set the cell area
123        getAreaResult("Active")->setValue(cache->get(cell_name + "->ActiveArea"));
124        getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->ActiveArea"));
125
126        return;
127    }
128
129    void MUX2::evaluateModel()
130    {
131        return;
132    }
133
134    void MUX2::useModel()
135    {
136        // Get parameters
137        double drive_strength = getDrivingStrength();
138        Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache();
139
140        // Standard cell cache string
141        String cell_name = "MUX2_X" + (String) drive_strength;
142
143        // Propagate the transition and get the 0->1 transition count
144        propagateTransitionInfo();
145        double P_A = getInputPort("A")->getTransitionInfo().getProbability1();
146        double P_B = getInputPort("B")->getTransitionInfo().getProbability1();
147        double P_S0 = getInputPort("S0")->getTransitionInfo().getProbability1();
148        double S0_num_trans_01 = getInputPort("S0")->getTransitionInfo().getNumberTransitions01();
149        double Y_num_trans_01 = getOutputPort("Y")->getTransitionInfo().getNumberTransitions01();
150
151        // Calculate leakage
152        double leakage = 0;
153        leakage += cache->get(cell_name + "->Leakage->!A!B!S0") * (1 - P_A) * (1 - P_B) * (1 - P_S0);
154        leakage += cache->get(cell_name + "->Leakage->!A!BS0") * (1 - P_A) * (1 - P_B) * P_S0;
155        leakage += cache->get(cell_name + "->Leakage->!AB!S0") * (1 - P_A) * P_B * (1 - P_S0);
156        leakage += cache->get(cell_name + "->Leakage->!ABS0") * (1 - P_A) * P_B * P_S0;
157        leakage += cache->get(cell_name + "->Leakage->A!B!S0") * P_A * (1 - P_B) * (1 - P_S0);
158        leakage += cache->get(cell_name + "->Leakage->A!BS0") * P_A * (1 - P_B) * P_S0;
159        leakage += cache->get(cell_name + "->Leakage->AB!S0") * P_A * P_B * (1 - P_S0);
160        leakage += cache->get(cell_name + "->Leakage->ABS0") * P_A * P_B * P_S0;
161        getNddPowerResult("Leakage")->setValue(leakage);
162
163        // Get VDD
164        double vdd = getTechModel()->get("Vdd");
165
166        // Get capacitances
167        double s0_b_cap = cache->get(cell_name + "->Cap->S0_b");
168        double y_bar_cap = cache->get(cell_name + "->Cap->Y_b");
169        double y_cap = cache->get(cell_name + "->Cap->Y");
170        double y_load_cap = getNet("Y")->getTotalDownstreamCap();
171        // Create mux2 event energy
172        double mux2_event_energy = 0.0;
173        mux2_event_energy += (s0_b_cap) * S0_num_trans_01;
174        mux2_event_energy += (y_bar_cap + y_cap + y_load_cap) * Y_num_trans_01;
175        mux2_event_energy *= vdd * vdd;
176        getEventResult("MUX2")->setValue(mux2_event_energy);
177
178        return;
179    }
180
181    void MUX2::propagateTransitionInfo()
182    {
183        // Get input signal transition info
184        const TransitionInfo& trans_A = getInputPort("A")->getTransitionInfo();
185        const TransitionInfo& trans_B = getInputPort("B")->getTransitionInfo();
186        const TransitionInfo& trans_S0 = getInputPort("S0")->getTransitionInfo();
187
188        // Scale all transition information to the highest freq multiplier
189        double max_freq_mult = max(max(trans_A.getFrequencyMultiplier(), trans_B.getFrequencyMultiplier()), trans_S0.getFrequencyMultiplier());
190        const TransitionInfo& scaled_trans_A = trans_A.scaleFrequencyMultiplier(max_freq_mult);
191        const TransitionInfo& scaled_trans_B = trans_B.scaleFrequencyMultiplier(max_freq_mult);
192        const TransitionInfo& scaled_trans_S0 = trans_S0.scaleFrequencyMultiplier(max_freq_mult);
193
194        // Compute the probability of each transition on a given cycle
195        double A_prob_00 = scaled_trans_A.getNumberTransitions00() / max_freq_mult;
196        double A_prob_01 = scaled_trans_A.getNumberTransitions01() / max_freq_mult;
197        double A_prob_10 = A_prob_01;
198        double A_prob_11 = scaled_trans_A.getNumberTransitions11() / max_freq_mult;
199        double B_prob_00 = scaled_trans_B.getNumberTransitions00() / max_freq_mult;
200        double B_prob_01 = scaled_trans_B.getNumberTransitions01() / max_freq_mult;
201        double B_prob_10 = B_prob_01;
202        double B_prob_11 = scaled_trans_B.getNumberTransitions11() / max_freq_mult;
203        double S0_prob_00 = scaled_trans_S0.getNumberTransitions00() / max_freq_mult;
204        double S0_prob_01 = scaled_trans_S0.getNumberTransitions01() / max_freq_mult;
205        double S0_prob_10 = S0_prob_01;
206        double S0_prob_11 = scaled_trans_S0.getNumberTransitions11() / max_freq_mult;
207
208        // Compute output probabilities
209        double Y_prob_00 = S0_prob_00 * A_prob_00 +
210                            S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_00 + B_prob_10) +
211                            S0_prob_10 * (A_prob_00 + A_prob_10) * (B_prob_00 + B_prob_01) +
212                            S0_prob_11 * B_prob_00;
213        double Y_prob_01 = S0_prob_00 * A_prob_01 +
214                            S0_prob_01 * (A_prob_00 + A_prob_01) * (B_prob_01 + B_prob_11) +
215                            S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_00 + B_prob_01) +
216                            S0_prob_11 * B_prob_01;
217        double Y_prob_11 = S0_prob_00 * A_prob_11 +
218                            S0_prob_01 * (A_prob_10 + A_prob_11) * (B_prob_01 + B_prob_11) +
219                            S0_prob_10 * (A_prob_01 + A_prob_11) * (B_prob_10 + B_prob_11) +
220                            S0_prob_11 * B_prob_11;
221
222        // Check that probabilities add up to 1.0 with some finite tolerance
223        ASSERT(LibUtil::Math::isEqual((Y_prob_00 + Y_prob_01 + Y_prob_01 + Y_prob_11), 1.0),
224            "[Error] " + getInstanceName() +  "Output transition probabilities must add up to 1 (" +
225            (String) Y_prob_00 + ", " + (String) Y_prob_01 + ", " + (String) Y_prob_11 + ")!");
226
227        // Turn probability of transitions per cycle into number of transitions per time unit
228        TransitionInfo trans_Y(Y_prob_00 * max_freq_mult, Y_prob_01 * max_freq_mult, Y_prob_11 * max_freq_mult);
229        getOutputPort("Y")->setTransitionInfo(trans_Y);
230
231        return;
232    }
233
234    // Creates the standard cell, characterizes and abstracts away the details
235    void MUX2::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_)
236    {
237        // Get parameters
238        double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted");
239        Map<double>* cache = cell_lib_->getStdCellCache();
240
241        // Standard cell cache string
242        String cell_name = "MUX2_X" + (String) drive_strength_;
243
244        Log::printLine("=== " + cell_name + " ===");
245
246        // Now actually build the full standard cell model
247        createInputPort("A");
248        createInputPort("B");
249        createInputPort("S0");
250        createOutputPort("Y");
251
252        createNet("S0_b");
253        createNet("Y_b");
254
255        // Adds macros
256        CellMacros::addInverter(this, "INV1", false, true, "S0", "S0_b");
257        CellMacros::addInverter(this, "INV2", false, true, "Y_b", "Y");
258        CellMacros::addTristate(this, "INVZ1", true, true, true, true, "A", "S0_b", "S0", "Y_b");
259        CellMacros::addTristate(this, "INVZ2", true, true, true, true, "B", "S0", "S0_b", "Y_b");
260
261        // I have no idea how to size each of the parts haha
262        CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.250);
263        CellMacros::updateInverter(this, "INV2", drive_strength_ * 1.000);
264        CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.500);
265        CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.500);
266
267        // Cache area result
268        double area = 0.0;
269        area += gate_pitch * getTotalHeight() * 1;
270        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble();
271        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble();
272        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble();
273        area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble();
274        cache->set(cell_name + "->ActiveArea", area);
275        Log::printLine(cell_name + "->ActiveArea=" + (String) area);
276
277        // --------------------------------------------------------------------
278        // Cache Leakage Power (for every single signal combination)
279        // --------------------------------------------------------------------
280        double leakage_000 = 0;          //!A, !B, !S0
281        double leakage_001 = 0;          //!A, !B, S0
282        double leakage_010 = 0;          //!A, B, !S0
283        double leakage_011 = 0;          //!A, B, S0
284        double leakage_100 = 0;          //A, !B, !S0
285        double leakage_101 = 0;          //A, !B, S0
286        double leakage_110 = 0;          //A, B, !S0
287        double leakage_111 = 0;          //A, B, S0
288
289        //This is so painful...
290        leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
291        leakage_000 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
292        leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
293        leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble();
294
295        leakage_001 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
296        leakage_001 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
297        leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble();
298        leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
299
300        leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
301        leakage_010 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
302        leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble();
303        leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_1").toDouble();
304
305        leakage_011 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
306        leakage_011 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
307        leakage_011 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble();
308        leakage_011 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
309
310        leakage_100 += getGenProperties()->get("INV1_LeakagePower_0").toDouble();
311        leakage_100 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
312        leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
313        leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_010_0").toDouble();
314
315        leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
316        leakage_101 += getGenProperties()->get("INV2_LeakagePower_0").toDouble();
317        leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble();
318        leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble();
319
320        leakage_110 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
321        leakage_110 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
322        leakage_110 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble();
323        leakage_110 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble();
324
325        leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble();
326        leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble();
327        leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble();
328        leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble();
329
330        cache->set(cell_name + "->Leakage->!A!B!S0", leakage_000);
331        cache->set(cell_name + "->Leakage->!A!BS0", leakage_001);
332        cache->set(cell_name + "->Leakage->!AB!S0", leakage_010);
333        cache->set(cell_name + "->Leakage->!ABS0", leakage_011);
334        cache->set(cell_name + "->Leakage->A!B!S0", leakage_100);
335        cache->set(cell_name + "->Leakage->A!BS0", leakage_101);
336        cache->set(cell_name + "->Leakage->AB!S0", leakage_110);
337        cache->set(cell_name + "->Leakage->ABS0", leakage_111);
338        Log::printLine(cell_name + "->Leakage->!A!B!S0=" + (String) leakage_000);
339        Log::printLine(cell_name + "->Leakage->!A!BS0=" + (String) leakage_001);
340        Log::printLine(cell_name + "->Leakage->!AB!S0=" + (String) leakage_010);
341        Log::printLine(cell_name + "->Leakage->!ABS0=" + (String) leakage_011);
342        Log::printLine(cell_name + "->Leakage->A!B!S0=" + (String) leakage_100);
343        Log::printLine(cell_name + "->Leakage->A!BS0=" + (String) leakage_101);
344        Log::printLine(cell_name + "->Leakage->AB!S0=" + (String) leakage_110);
345        Log::printLine(cell_name + "->Leakage->ABS0=" + (String) leakage_111);
346
347        // Cache event energy results
348        /*
349        double event_a_flip = 0.0;
350        event_a_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
351        cache->set(cell_name + "->Event_A_Flip", event_a_flip);
352        Log::printLine(cell_name + "->Event_A_Flip=" + (String) event_a_flip);
353
354        double event_b_flip = 0.0;
355        event_b_flip += getGenProperties()->get("INVZ1_A_Flip").toDouble();
356        cache->set(cell_name + "->Event_B_Flip", event_b_flip);
357        Log::printLine(cell_name + "->Event_B_Flip=" + (String) event_b_flip);
358
359        double event_s0_flip = 0.0;
360        event_s0_flip += getGenProperties()->get("INV1_A_Flip").toDouble();
361        event_s0_flip += getGenProperties()->get("INV1_ZN_Flip").toDouble();
362        event_s0_flip += getGenProperties()->get("INVZ1_OE_Flip").toDouble() + getGenProperties()->get("INVZ1_OEN_Flip").toDouble();
363        event_s0_flip += getGenProperties()->get("INVZ2_OE_Flip").toDouble() + getGenProperties()->get("INVZ2_OEN_Flip").toDouble();
364        cache->set(cell_name + "->Event_S0_Flip", event_s0_flip);
365        Log::printLine(cell_name + "->Event_S0_Flip=" + (String) event_s0_flip);
366
367        double event_y_flip = 0.0;
368        event_y_flip += getGenProperties()->get("INVZ1_ZN_Flip").toDouble();
369        event_y_flip += getGenProperties()->get("INVZ2_ZN_Flip").toDouble();
370        event_y_flip += getGenProperties()->get("INV2_A_Flip").toDouble();
371        event_y_flip += getGenProperties()->get("INV2_ZN_Flip").toDouble();
372        cache->set(cell_name + "->Event_Y_Flip", event_y_flip);
373        Log::printLine(cell_name + "->Event_Y_Flip=" + (String) event_y_flip);
374
375        double a_cap = getLoad("INVZ1_CgA")->getLoadCap();
376        double b_cap = getLoad("INVZ2_CgA")->getLoadCap();
377        double s0_cap = getLoad("INV1_CgA")->getLoadCap() + getLoad("INVZ1_CgOEN")->getLoadCap() + getLoad("INVZ2_CgOE")->getLoadCap();
378        double y_ron = getDriver("INV2_RonZN")->getOutputRes();
379        */
380        // --------------------------------------------------------------------
381
382        // --------------------------------------------------------------------
383        // Get Node capacitances
384        // --------------------------------------------------------------------
385        double a_cap = getNet("A")->getTotalDownstreamCap();
386        double b_cap = getNet("B")->getTotalDownstreamCap();
387        double s0_cap = getNet("S0")->getTotalDownstreamCap();
388        double s0_b_cap = getNet("S0_b")->getTotalDownstreamCap();
389        double y_b_cap = getNet("Y_b")->getTotalDownstreamCap();
390        double y_cap = getNet("Y")->getTotalDownstreamCap();
391
392        cache->set(cell_name + "->Cap->A", a_cap);
393        cache->set(cell_name + "->Cap->B", b_cap);
394        cache->set(cell_name + "->Cap->S0", s0_cap);
395        cache->set(cell_name + "->Cap->S0_b", s0_b_cap);
396        cache->set(cell_name + "->Cap->Y_b", y_b_cap);
397        cache->set(cell_name + "->Cap->Y", y_cap);
398
399        Log::printLine(cell_name + "->Cap->A=" + (String) a_cap);
400        Log::printLine(cell_name + "->Cap->B=" + (String) b_cap);
401        Log::printLine(cell_name + "->Cap->S0=" + (String) s0_cap);
402        Log::printLine(cell_name + "->Cap->S0_b=" + (String) s0_b_cap);
403        Log::printLine(cell_name + "->Cap->Y_b=" + (String) y_b_cap);
404        Log::printLine(cell_name + "->Cap->Y=" + (String) y_cap);
405        // --------------------------------------------------------------------
406
407        // --------------------------------------------------------------------
408        // Build Internal Delay Model
409        // --------------------------------------------------------------------
410        // Build abstracted timing model
411        double y_ron = getDriver("INV2_RonZN")->getOutputRes();
412
413        double a_to_y_delay = 0.0;
414        a_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
415        a_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
416
417        double b_to_y_delay = 0.0;
418        b_to_y_delay += getDriver("INVZ1_RonZN")->calculateDelay();
419        b_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
420
421        double s0_to_y_delay = 0.0;
422        s0_to_y_delay += getDriver("INV1_RonZN")->calculateDelay();
423        s0_to_y_delay += max(getDriver("INVZ1_RonZN")->calculateDelay(), getDriver("INVZ1_RonZN")->calculateDelay());
424        s0_to_y_delay += getDriver("INV2_RonZN")->calculateDelay();
425
426        cache->set(cell_name + "->DriveRes->Y", y_ron);
427        cache->set(cell_name + "->Delay->A_to_Y", a_to_y_delay);
428        cache->set(cell_name + "->Delay->B_to_Y", b_to_y_delay);
429        cache->set(cell_name + "->Delay->S0_to_Y", s0_to_y_delay);
430
431        Log::printLine(cell_name + "->DriveRes->Y=" + (String) y_ron);
432        Log::printLine(cell_name + "->Delay->A_to_Y=" + (String) a_to_y_delay);
433        Log::printLine(cell_name + "->Delay->B_to_Y=" + (String) b_to_y_delay);
434        Log::printLine(cell_name + "->Delay->S0_to_Y=" + (String) s0_to_y_delay);
435        // --------------------------------------------------------------------
436
437        return;
438    }
439
440} // namespace DSENT
441
442