1/* Copyright (c) 2012 Massachusetts Institute of Technology 2 * 3 * Permission is hereby granted, free of charge, to any person obtaining a copy 4 * of this software and associated documentation files (the "Software"), to deal 5 * in the Software without restriction, including without limitation the rights 6 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 7 * copies of the Software, and to permit persons to whom the Software is 8 * furnished to do so, subject to the following conditions: 9 * 10 * The above copyright notice and this permission notice shall be included in 11 * all copies or substantial portions of the Software. 12 * 13 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 14 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 15 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 16 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 17 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 18 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 19 * THE SOFTWARE. 20 */ 21 22#include "model/std_cells/LATQ.h" 23 24#include <cmath> 25 26#include "model/PortInfo.h" 27#include "model/TransitionInfo.h" 28#include "model/EventInfo.h" 29#include "model/std_cells/StdCellLib.h" 30#include "model/std_cells/CellMacros.h" 31#include "model/timing_graph/ElectricalNet.h" 32#include "model/timing_graph/ElectricalDriver.h" 33#include "model/timing_graph/ElectricalLoad.h" 34#include "model/timing_graph/ElectricalDelay.h" 35 36namespace DSENT 37{ 38 using std::ceil; 39 using std::max; 40 using std::min; 41 42 LATQ::LATQ(const String& instance_name_, const TechModel* tech_model_) 43 : StdCell(instance_name_, tech_model_) 44 { 45 initProperties(); 46 } 47 48 LATQ::~LATQ() 49 {} 50 51 void LATQ::initProperties() 52 { 53 return; 54 } 55 56 void LATQ::constructModel() 57 { 58 // All constructModel should do is create Area/NDDPower/Energy Results as 59 // well as instantiate any sub-instances using only the hard parameters 60 61 createInputPort("D"); 62 createInputPort("G"); 63 createOutputPort("Q"); 64 65 createLoad("D_Cap"); 66 createLoad("G_Cap"); 67 createDelay("D_to_Q_delay"); 68 createDelay("G_to_Q_delay"); 69 createDriver("Q_Ron", true); 70 71 ElectricalLoad* d_cap = getLoad("D_Cap"); 72 ElectricalLoad* g_cap = getLoad("G_Cap"); 73 ElectricalDelay* d_to_q_delay = getDelay("D_to_Q_delay"); 74 ElectricalDelay* g_to_q_delay = getDelay("G_to_Q_delay"); 75 ElectricalDriver* q_ron = getDriver("Q_Ron"); 76 77 getNet("D")->addDownstreamNode(d_cap); 78 getNet("G")->addDownstreamNode(g_cap); 79 d_cap->addDownstreamNode(d_to_q_delay); 80 g_cap->addDownstreamNode(g_to_q_delay); 81 g_to_q_delay->addDownstreamNode(q_ron); 82 q_ron->addDownstreamNode(getNet("Q")); 83 84 // Create Area result 85 // Create NDD Power result 86 createElectricalAtomicResults(); 87 // Create G Event Energy Result 88 createElectricalEventAtomicResult("G"); 89 // Create DFF Event Energy Result 90 createElectricalEventAtomicResult("LATD"); 91 createElectricalEventAtomicResult("LATQ"); 92 // Create Idle event for leakage 93 // G pin is assumed to be on all the time 94 //createElectricalEventAtomicResult("Idle"); 95 getEventInfo("Idle")->setStaticTransitionInfos(); 96 return; 97 } 98 99 void LATQ::updateModel() 100 { 101 // Get parameters 102 double drive_strength = getDrivingStrength(); 103 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 104 105 // Standard cell cache string 106 String cell_name = "LATQ_X" + (String) drive_strength; 107 108 // Get timing parameters 109 getLoad("D_Cap")->setLoadCap(cache->get(cell_name + "->Cap->D")); 110 getLoad("G_Cap")->setLoadCap(cache->get(cell_name + "->Cap->G")); 111 getDriver("Q_Ron")->setOutputRes(cache->get(cell_name + "->DriveRes->Q")); 112 getDelay("G_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->G_to_Q")); 113 getDelay("D_to_Q_delay")->setDelay(cache->get(cell_name + "->Delay->D_to_Q")); 114 115 // Set the cell area 116 getAreaResult("Active")->setValue(cache->get(cell_name + "->Area->Active")); 117 getAreaResult("Metal1Wire")->setValue(cache->get(cell_name + "->Area->Metal1Wire")); 118 119 return; 120 } 121 122 void LATQ::evaluateModel() 123 { 124 return; 125 } 126 127 void LATQ::useModel() 128 { 129 // Get parameters 130 double drive_strength = getDrivingStrength(); 131 Map<double>* cache = getTechModel()->getStdCellLib()->getStdCellCache(); 132 133 // Standard cell cache string 134 String cell_name = "LATQ_X" + (String) drive_strength; 135 136 // Propagate the transition info and get P_D, P_M, and P_Q 137 propagateTransitionInfo(); 138 double P_D = getInputPort("D")->getTransitionInfo().getProbability1(); 139 double P_G = getInputPort("G")->getTransitionInfo().getProbability1(); 140 double P_Q = getOutputPort("Q")->getTransitionInfo().getProbability1(); 141 double G_num_trans_01 = getInputPort("G")->getTransitionInfo().getNumberTransitions01(); 142 double D_num_trans_01 = getInputPort("D")->getTransitionInfo().getNumberTransitions01(); 143 double Q_num_trans_01 = getOutputPort("Q")->getTransitionInfo().getNumberTransitions01(); 144 145 // Calculate leakage 146 double leakage = 0; 147 leakage += cache->get(cell_name + "->Leakage->!D!G!Q") * (1 - P_D) * (1 - P_G) * (1 - P_Q); 148 leakage += cache->get(cell_name + "->Leakage->!D!GQ") * (1 - P_D) * (1 - P_G) * P_Q; 149 leakage += cache->get(cell_name + "->Leakage->!DG!Q") * (1 - P_D) * P_G * (1 - P_Q); 150 leakage += cache->get(cell_name + "->Leakage->D!G!Q") * P_D * (1 - P_G) * (1 - P_Q); 151 leakage += cache->get(cell_name + "->Leakage->D!GQ") * P_D * (1 - P_G) * P_Q; 152 leakage += cache->get(cell_name + "->Leakage->DGQ") * P_D * P_G * P_Q; 153 getNddPowerResult("Leakage")->setValue(leakage); 154 155 // Get VDD 156 double vdd = getTechModel()->get("Vdd"); 157 158 // Get capacitances 159 double g_b_cap = cache->get(cell_name + "->Cap->G_b"); 160 double d_b_cap = cache->get(cell_name + "->Cap->D_b"); 161 double q_i_cap = cache->get(cell_name + "->Cap->Q_i"); 162 double q_b_cap = cache->get(cell_name + "->Cap->Q_b"); 163 double q_cap = cache->get(cell_name + "->Cap->Q"); 164 double q_load_cap = getNet("Q")->getTotalDownstreamCap(); 165 166 // Calculate G Event energy 167 double g_event_energy = 0.0; 168 g_event_energy += (g_b_cap) * G_num_trans_01; 169 g_event_energy *= vdd * vdd; 170 getEventResult("G")->setValue(g_event_energy); 171 // Calculate LATD Event energy 172 double latd_event_energy = 0.0; 173 latd_event_energy += (d_b_cap) * D_num_trans_01; 174 latd_event_energy *= vdd * vdd; 175 getEventResult("LATD")->setValue(latd_event_energy); 176 // Calculate LATQ Event energy 177 double latq_event_energy = 0.0; 178 latq_event_energy += (q_i_cap + q_b_cap + q_cap + q_load_cap) * Q_num_trans_01; 179 latq_event_energy *= vdd * vdd; 180 getEventResult("LATQ")->setValue(latq_event_energy); 181 182 return; 183 } 184 185 void LATQ::propagateTransitionInfo() 186 { 187 const TransitionInfo& trans_G = getInputPort("G")->getTransitionInfo(); 188 const TransitionInfo& trans_D = getInputPort("D")->getTransitionInfo(); 189 190 double G_num_trans_01 = trans_G.getNumberTransitions01(); 191 double G_num_trans_10 = G_num_trans_01; 192 double G_num_trans_00 = trans_G.getNumberTransitions00(); 193 double D_freq_mult = trans_D.getFrequencyMultiplier(); 194 195 // If the latch is sampling just as fast or faster than input data signal 196 // Then it can capture all transitions (though it should be normalized to clock) 197 if((G_num_trans_10 + G_num_trans_00) >= D_freq_mult) 198 { 199 const TransitionInfo& trans_Q = trans_D.scaleFrequencyMultiplier(G_num_trans_10 + G_num_trans_00); 200 getOutputPort("Q")->setTransitionInfo(trans_Q); 201 } 202 // If the latch is sampling slower than the input data signal, then input 203 // will look like they transition more 204 else 205 { 206 // Calculate scale ratio 207 double scale_ratio = (G_num_trans_10 + G_num_trans_00) / D_freq_mult; 208 // 00 and 11 transitions become fewer 209 double D_scaled_diff = 0.5 * (1 - scale_ratio) * (trans_D.getNumberTransitions00() + trans_D.getNumberTransitions11()); 210 double D_scaled_num_trans_00 = trans_D.getNumberTransitions00() * scale_ratio; 211 double D_scaled_num_trans_11 = trans_D.getNumberTransitions11() * scale_ratio; 212 // 01 and 10 transitions become more frequent 213 double D_scaled_num_trans_10 = trans_D.getNumberTransitions01() + D_scaled_diff; 214 215 // Create final transition info, remembering to apply scaling ratio to normalize to G 216 const TransitionInfo trans_Q( D_scaled_num_trans_00 * scale_ratio, 217 D_scaled_num_trans_10 * scale_ratio, 218 D_scaled_num_trans_11 * scale_ratio); 219 getOutputPort("Q")->setTransitionInfo(trans_Q); 220 } 221 222 return; 223 } 224 225 // Creates the standard cell, characterizes and abstracts away the details 226 void LATQ::cacheStdCell(StdCellLib* cell_lib_, double drive_strength_) 227 { 228 // Get parameters 229 double gate_pitch = cell_lib_->getTechModel()->get("Gate->PitchContacted"); 230 Map<double>* cache = cell_lib_->getStdCellCache(); 231 232 // Standard cell cache string 233 String cell_name = "LATQ_X" + (String) drive_strength_; 234 235 Log::printLine("=== " + cell_name + " ==="); 236 237 238 // Now actually build the full standard cell model 239 createInputPort("D"); 240 createInputPort("G"); 241 createOutputPort("Q"); 242 243 createNet("D_b"); 244 createNet("Q_i"); 245 createNet("Q_b"); 246 createNet("G_b"); 247 248 // Adds macros 249 CellMacros::addInverter(this, "INV1", false, true, "D", "D_b"); 250 CellMacros::addInverter(this, "INV2", false, true, "Q_i", "Q_b"); 251 CellMacros::addInverter(this, "INV3", false, true, "Q_b", "Q"); 252 CellMacros::addInverter(this, "INV4", false, true, "G", "G_b"); 253 CellMacros::addTristate(this, "INVZ1", false, true, false, false, "D_b", "G", "G_b", "Q_i"); //trace timing through A->ZN path only 254 CellMacros::addTristate(this, "INVZ2", false, false, false, false, "Q_b", "G_b", "G", "Q_i"); //don't trace timing through the feedback path 255 256 // Update macros 257 CellMacros::updateInverter(this, "INV1", drive_strength_ * 0.125); 258 CellMacros::updateInverter(this, "INV2", drive_strength_ * 0.5); 259 CellMacros::updateInverter(this, "INV3", drive_strength_ * 1.0); 260 CellMacros::updateInverter(this, "INV4", drive_strength_ * 0.125); 261 CellMacros::updateTristate(this, "INVZ1", drive_strength_ * 0.5); 262 CellMacros::updateTristate(this, "INVZ2", drive_strength_ * 0.0625); 263 264 // Cache area result 265 double area = 0.0; 266 area += gate_pitch * getTotalHeight() * 1; 267 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV1_GatePitches").toDouble(); 268 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV2_GatePitches").toDouble(); 269 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV3_GatePitches").toDouble(); 270 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INV4_GatePitches").toDouble(); 271 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ1_GatePitches").toDouble(); 272 area += gate_pitch * getTotalHeight() * getGenProperties()->get("INVZ2_GatePitches").toDouble(); 273 cache->set(cell_name + "->Area->Active", area); 274 cache->set(cell_name + "->Area->Metal1Wire", area); //Cover-block m1 area 275 Log::printLine(cell_name + "->Area->Active=" + (String) area); 276 Log::printLine(cell_name + "->Area->Metal1Wire=" + (String) area); 277 278 // -------------------------------------------------------------------- 279 // Leakage Model Calculation 280 // -------------------------------------------------------------------- 281 // Cache leakage power results (for every single signal combination) 282 double leakage_000 = 0; //!D, !G, !Q 283 double leakage_001 = 0; //!D, !G, Q 284 double leakage_010 = 0; //!D, G, !Q 285 double leakage_100 = 0; //D, !G, !Q 286 double leakage_101 = 0; //D, !G, Q 287 double leakage_111 = 0; //D, G, Q 288 289 //This is so painful... 290 leakage_000 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 291 leakage_000 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 292 leakage_000 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); 293 leakage_000 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); 294 leakage_000 += getGenProperties()->get("INVZ1_LeakagePower_011_0").toDouble(); 295 leakage_000 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); 296 297 leakage_001 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 298 leakage_001 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 299 leakage_001 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); 300 leakage_001 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); 301 leakage_001 += getGenProperties()->get("INVZ1_LeakagePower_011_1").toDouble(); 302 leakage_001 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); 303 304 leakage_010 += getGenProperties()->get("INV1_LeakagePower_0").toDouble(); 305 leakage_010 += getGenProperties()->get("INV2_LeakagePower_0").toDouble(); 306 leakage_010 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); 307 leakage_010 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); 308 leakage_010 += getGenProperties()->get("INVZ1_LeakagePower_101_0").toDouble(); 309 leakage_010 += getGenProperties()->get("INVZ2_LeakagePower_011_0").toDouble(); 310 311 leakage_100 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 312 leakage_100 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 313 leakage_100 += getGenProperties()->get("INV3_LeakagePower_1").toDouble(); 314 leakage_100 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); 315 leakage_100 += getGenProperties()->get("INVZ1_LeakagePower_010_0").toDouble(); 316 leakage_100 += getGenProperties()->get("INVZ2_LeakagePower_101_0").toDouble(); 317 318 leakage_101 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 319 leakage_101 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 320 leakage_101 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); 321 leakage_101 += getGenProperties()->get("INV4_LeakagePower_0").toDouble(); 322 leakage_101 += getGenProperties()->get("INVZ1_LeakagePower_010_1").toDouble(); 323 leakage_101 += getGenProperties()->get("INVZ2_LeakagePower_100_1").toDouble(); 324 325 leakage_111 += getGenProperties()->get("INV1_LeakagePower_1").toDouble(); 326 leakage_111 += getGenProperties()->get("INV2_LeakagePower_1").toDouble(); 327 leakage_111 += getGenProperties()->get("INV3_LeakagePower_0").toDouble(); 328 leakage_111 += getGenProperties()->get("INV4_LeakagePower_1").toDouble(); 329 leakage_111 += getGenProperties()->get("INVZ1_LeakagePower_100_1").toDouble(); 330 leakage_111 += getGenProperties()->get("INVZ2_LeakagePower_010_1").toDouble(); 331 332 cache->set(cell_name + "->Leakage->!D!G!Q", leakage_000); 333 cache->set(cell_name + "->Leakage->!D!GQ", leakage_001); 334 cache->set(cell_name + "->Leakage->!DG!Q", leakage_010); 335 cache->set(cell_name + "->Leakage->D!G!Q", leakage_100); 336 cache->set(cell_name + "->Leakage->D!GQ", leakage_101); 337 cache->set(cell_name + "->Leakage->DGQ", leakage_111); 338 Log::printLine(cell_name + "->Leakage->!D!G!Q=" + (String) leakage_000); 339 Log::printLine(cell_name + "->Leakage->!D!GQ=" + (String) leakage_001); 340 Log::printLine(cell_name + "->Leakage->!DG!Q=" + (String) leakage_010); 341 Log::printLine(cell_name + "->Leakage->D!G!Q=" + (String) leakage_100); 342 Log::printLine(cell_name + "->Leakage->D!GQ=" + (String) leakage_101); 343 Log::printLine(cell_name + "->Leakage->DGQ=" + (String) leakage_111); 344 // -------------------------------------------------------------------- 345 346 // -------------------------------------------------------------------- 347 // Get Node Capacitances 348 // -------------------------------------------------------------------- 349 double d_cap = getNet("D")->getTotalDownstreamCap(); 350 double d_b_cap = getNet("D_b")->getTotalDownstreamCap(); 351 double q_i_cap = getNet("Q_i")->getTotalDownstreamCap(); 352 double q_b_cap = getNet("Q_b")->getTotalDownstreamCap(); 353 double q_cap = getNet("Q")->getTotalDownstreamCap(); 354 double g_cap = getNet("G")->getTotalDownstreamCap(); 355 double g_b_cap = getNet("G_b")->getTotalDownstreamCap(); 356 357 cache->set(cell_name + "->Cap->D", d_cap); 358 cache->set(cell_name + "->Cap->D_b", d_b_cap); 359 cache->set(cell_name + "->Cap->Q_i", q_i_cap); 360 cache->set(cell_name + "->Cap->Q_b", q_b_cap); 361 cache->set(cell_name + "->Cap->Q", q_cap); 362 cache->set(cell_name + "->Cap->G", g_cap); 363 cache->set(cell_name + "->Cap->G_b", g_b_cap); 364 365 Log::printLine(cell_name + "->Cap->D=" + (String) d_cap); 366 Log::printLine(cell_name + "->Cap->D_b=" + (String) d_b_cap); 367 Log::printLine(cell_name + "->Cap->Q_i=" + (String) q_i_cap); 368 Log::printLine(cell_name + "->Cap->Q_b=" + (String) q_b_cap); 369 Log::printLine(cell_name + "->Cap->Q=" + (String) q_cap); 370 Log::printLine(cell_name + "->Cap->G=" + (String) g_cap); 371 Log::printLine(cell_name + "->Cap->G_b=" + (String) g_b_cap); 372 // -------------------------------------------------------------------- 373 374 // -------------------------------------------------------------------- 375 // Build Internal Delay Model 376 // -------------------------------------------------------------------- 377 double q_ron = getDriver("INV3_RonZN")->getOutputRes(); 378 379 double d_to_q_delay = getDriver("INV1_RonZN")->calculateDelay() + 380 getDriver("INVZ1_RonZN")->calculateDelay() + 381 getDriver("INV2_RonZN")->calculateDelay() + 382 getDriver("INV3_RonZN")->calculateDelay(); 383 double g_to_q_delay = getDriver("INV4_RonZN")->calculateDelay() + 384 getDriver("INVZ1_RonZN")->calculateDelay() + 385 getDriver("INV2_RonZN")->calculateDelay() + 386 getDriver("INV3_RonZN")->calculateDelay(); 387 388 cache->set(cell_name + "->DriveRes->Q", q_ron); 389 cache->set(cell_name + "->Delay->D_to_Q", d_to_q_delay); 390 cache->set(cell_name + "->Delay->G_to_Q", g_to_q_delay); 391 Log::printLine(cell_name + "->DriveRes->Q=" + (String) q_ron); 392 Log::printLine(cell_name + "->Delay->D_to_Q=" + (String) d_to_q_delay); 393 Log::printLine(cell_name + "->Delay->G_to_Q=" + (String) g_to_q_delay); 394 395 return; 396 // -------------------------------------------------------------------- 397 398 } 399 400} // namespace DSENT 401 402